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Abstract 

In this research, we investigate the MHD peristaltic transportation of a conducting 

blood flow with porous medium through inclined coaxial vertical channel. Applying wave 

frame analysis, exact analytic solutions have been obtained for the axial velocity. 

Expressions for the pressure gradient, pressure rise and the shear stress are also 

obtained and the numerical results are presented graphically for different values of the 

physical parameters of interest. It is found that the axial velocity decreases with increase 

in magnetic field and the axial velocity increases with increase in Da and α and η. It has 

been observed that the pressure gradient decreases with increase in Da and Q . The shear 

stress at the lower wall increases with increase in Da, η and α. The shear stress at the 

wall y = h2 has an opposite behavior compared with shear stress at the wall y = h1. 

 

Keywords: Peristaltic fluid flow, porous medium, magnetic field, inclined coaxial 

vertical channel 

 

1. Introduction 

Peristaltic transport is a well known process of a fluid transport which is induced by a 

progressive wave of area contraction or expansion along the length of distensible tube 

containing the fluid. It is used by many systems in the living body to propel or to mix the 

contents of a tube. The peristalsis mechanism usually occur in urine transport from kidney 

to bladder, swallowing food through the esophagus, chyme motion in the gastrointestinal 

tract, vasomotion of small blood vessels and movement of spermatozoa in the human 

reproductive tract. There are many engineering processes as well in which peristaltic 

pumps are used to handle a wide range of fluids particularly in chemical and 

pharmaceutical industries. Many modern mechanical devices have been designed on the 

principle of peristaltic pumping for transporting fluids without internal moving parts. The 

idea of peristaltic transport in mathematical point of view was first coined by Latham [1]. 

The initial mathematical model of peristalsis obtained by train of sinusoidal waves in an 

infinitely long symmetric channel or tube has been investigated by Shapiro, et al., [2] and 

Rathod and Asha [3] have studied the effect of magnetic field and an endoscope on 

peristaltic motion in uniform and non-uniform annulus.  

   The MHD characteristics are useful in the development of magnetic devices, cancer 

tumor treatment, hyper thermia and blood reduction during surgeries. Hence several 

scientists having in mind such   importance extensively discussed the peristalsis with 

magnetic field effects (Reddy and Raju [4], Hayat, et al., [5], Abd elmaboud and 

Mekheimer [6] and Hayat, et al., [7]). Further, Singh and Rathee [8, 9] discussed the 

blood flow in the presence of an applied magnetic field and also motion of the conducting 

fluid across the magnetic field generates electric currents which change the magnetic 
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field, and the action of the magnetic field on these currents gives rise to mechanical forces 

which modify the flow of the fluid (Ferraro, [10]). The magnetohydrodynamic (MHD) 

flow of a fluid in a channel with elastic, rhythmically contracting  walls (peristaltic flow) 

is of interest in connection with certain problems of the movement of conductive 

physiological fluids, e.g., the blood, blood pump machines and with the need for 

theoretical research on the operation of a peristaltic MHD compressor. Agarwal and 

Anwaruddin [11] studied the effect of moving magnetic field on blood flow. They studied 

a simple mathematical model for blood through an equally branched channel with flexible 

outer walls executing peristaltic waves. Ravikumar [12] studied the peristaltic 

transportation with effect of magnetic field in a flexible channel under an oscillatory flux. 

Ravikumar, et al., [13] studied the magnetohydrodynamic couple Stress Peristaltic flow of 

blood Through Porous medium in a flexible channel at low Reynolds number. Peristaltic 

flow of blood through coaxial vertical channel with effect of magnetic field: Blood flow 

study has studied by Ravikumar [14]. The result revealed that the velocity of the fluid 

increases with an increase in the magnetic field. Peristaltic transport of a Johnson-

Segalman fluid under the effect of a magnetic field was developed by Elshahed and 

Haroun [15]. The peristaltic flow of a MHD fourth grade fluid in a planer channel has 

studied by Hayat, et al., [16]. The magnetohydrodynamics effects on blood flow through a 

porous channel have been studied by Ramamurthy and Shankar [17]. 

Flow through a porous medium has been of significant interest in recent years 

particularly among geophysical fluid dynamicity. Examples of natural porous media are 

beach sand, sandstone, limestone, rye bread, wood, the human lung, bile duct, gall bladder 

with stones and in small blood vessels. The fluid motion through a porous medium has 

been studied by many authors: Raptis, et al., [18], Raptis and Peridikis [19], and El-Dabe 

and El-Mohandis [20]. Pressure rise increases as the permeability decreases. This is 

because of the resistance caused by the porous medium. In the case of ureters stones this 

causes renal colic (ureteric colic) Ayman [21]. Habtu alemaychu and 

Radhakrishnamacharya [22] dispersion of a Solute in Peristaltic Motion of a couple stress 

fluids through a porous medium with slip condition. Reddy and Venkata Ramana [23] 

have studied the peristaltic transport of a conducting fluid through a porous medium in an 

asymmetric vertical channel. Krishna Kumari, et al., [24] studied the peristaltic pumping 

of a Casson fluid in an inclined channel under the effect of a magnetic field. The 

peristaltic fluid flow through flexible channels has been studied by Ravikumar, et al., [25-

31]. Krishna Kumari, et al., [32] studied the peristaltic pumping of a Jeffrey fluid in a 

porous tube. Ravi Kumar, et al., [33] studied the unsteady peristaltic pumping in a finite 

length tube with permeable wall. However, the peristaltic transport of micro polar fluids 

in an inclined channel in the presence of magnetic field has not been studied. Some of the 

studies on couple- stress fluid just mentioned considered the blood as a couple stress fluid 

and they were carried out using no slip conditions, although in real systems there is 

always a certain amount of slip. There are two extremely different types of fluids that 

appear to slip. One class contains the rarefied gases (Kawang-Hua [34]), while the other 

fluids have a much more elastic character. In such fluid, some slippage occurs under a 

large tangential traction. It has been claimed that slippage can occur in non-Newtonian 

fluid, concentrated polymer solution, and molten polymer. Furthermore, in the flow of 

dilute suspensions of particles, a clear layer is sometimes observed next to the wall. 

Poiseuille, in a work that won a prize in experimental physiology, observed such a layer 

with a microscope in the flow of blood through capillary vessels (Coleman, et al., [35]). 

Several investigators considered the effect of slip (Kwang, et al., [36], Srinivas, et al., 

[37]). 
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2. Formulation of the Problem and Analytic Solution 

Consider the unsteady hydromagnetic flow of a viscous, incompressible and 

electrically conducting couple-stress fluid through a two-dimensional channel of non- 

uniform thickness with a sinusoidal wave travelling down its wall. The plates of the 

channel are assumed to be electrically insulated. We choose a rectangular coordinate 

system for the channel with x along centerline in the direction of wave propagation and y 

transverse to it.  

The geometry of the wall surface is defined as  

   ctXbatXH 


2
cos,

101
                                                   (1) 
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2
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212
                                        (2) 

Where 
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, bb be the amplitudes of   0 the waves, a0 +a1 is the width of the 

channel, λ is the wave length, θ is the phase differences   0 , c is the propagation 

velocity and t is the time. We introduce a wave frame of reference (x, y) moving with 

velocity c in which the motion becomes independent of time when the channel length is 

an integral multiple of the wavelength and the pressure difference at the ends of the 

channel is a constant (Shapiro et al., (1969)). The transformation from the fixed frame of 

reference (X, Y) to the wave frame of reference (x, y) is given by  

x = X-ct, y = Y, u = U-c, v = V and p(x) = P(X, t) 

Where (u, v) and (U, V) are the velocity components, p and P are pressures in the wave 

and fixed frames of reference, respectively. 

The equations governing the flow in wave frame of reference are given by                                                                               
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u and v are the velocity components in the corresponding coordinates  p is the fluid 

pressure, is the density of the fluid,  is the coefficient of the viscosity,  k1 is the 

permeability of the porous medium and k is the thermal conductivity. Proceeding with the 

analysis, we introduce the following dimensionless parameters: 
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Where 𝛿 , 𝜀   and Re designate the wave number, ratio of half width of channels, 

amplitude ratio and Reynolds number respectively. Utilizing the long wavelength and low 

Reynolds number approximation in Equations (3) - (5), we obtain: 
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Using long wavelength (i.e.,  𝛿 << 1 ) and negligible inertia (i.e., 𝑅𝑒 → 0 ) 

approximations, we have 
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With dimensionless boundary conditions 
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Solving equation (9) using the boundary conditions (11 and 12), we get 
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3. Shear Stress, Pressure Gradient and Pressure Rise 

The shear stress at the wall  xhy
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The rate of volume flow ‘q’ through each section is a constant (independent of both x 

and t).It is given by 
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Hence the flux at any axial station in the fixed frame is found to be given by 

   
21

1

2

1 hhqdyuQ

h

h

 
                                                                                      (16) 

The average volume flow rate over one wave period (T =
c


) of the peristaltic wave is 

defined as  

 

T

dqdtQ
T

Q

0

1
1                                                                                                  (17) 

The pressure gradient obtained from equation (17) can be expressed as          
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The pressure rise 
p

  in the channel of length L, non-dimensional form is given by 
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4. Results and Discussion 

The primary object of this investigation has been to study magnetohydrodynamics 

peristaltic transportation of a conducting blood flow with porous medium through 

inclined coaxial vertical channel. The analytical expressions for velocity distribution, 

pressure gradient and shear stress have been derived in the previous section. 

Mathematica software is used to find out numerical results.  

The Axial velocity has been calculated as a function of y from the equation (13) and 

plotted from the figures 1to4. Figure 1 represent the variation of axial velocity with 

magnetic field (M) for fixed other parameters 
1

 ,
2

 , η, α, dp/dx ,x,  d, θ when (a) Da = 

0.1and (b) Da = 0.5, we notice that the axial velocity decreases when the magnetic field 

increases. Figure 2 is drawn to study the effects of porous parameter Da on the axial 

velocity when (a) M =2 and (b) M = 4, it can be found that velocity increases with 

increase of M and Da. Figure 3 shows that the effect of α on the axial velocity when (a) 

Da = 0.1 and (b) Da = 0.5. It reveals that the velocity increases when increase in α.  The 

effect of η on the axial velocity is shown in the Figure 4, it can be seen that axial velocity 

increases with increase in η when (a) Da = 0.1 and (b) Da = 0.5. 

The pressure gradient has been calculated as a function of x from the equation (18) and 

plotted from the Figures 5 to7. Figure 5 shows the influence of Porous parameter Da on 

the pressure gradient dp/dx when (a) M =2 and (b) M = 4. It is observed that in the wider 

part of channel x ε [0, 0.3] and x ε [07, 1], the pressure gradient is relatively small. Hence, 

the flow can easily pass without imposing large pressure gradient. However, in the narrow 

part of channel x ε [0.3, 7], larger pressure gradient is needed to maintain the same flux to 

pass through it. It is further observed that the pressure gradient decreases by increasing 

the values of Da i.e. the magnitude of pressure gradient is inversely proportional to porous 

parameter. It is also found that when M >2, the pressure gradient gradually increases. 

Figure 6 represents the variation in the pressure gradient verses x when (a) Da = 0.1 and 

(b) Da = 0.5. It is note that the pressure gradient decreases when Q increases. It can be 

seen that when Da > 0.1, the variations in pressure gradient gradually decreases (figure 

6(b)). The effect of magnetic field (M) on the pressure gradient is shown in the figure (7). 

It interested to note that the pressure gradient is increases when increase in magnetic field. 

It is observed that the flow can easily pass without imposing the pressure gradient in 

wider part of channel x ε [0, 0.3] and x ε [07, 1].It is found that the variations in the 

pressure gradient is gradually deceases when Da > 0.1(Figure 7(b)). Finally, it can be 
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conclude that the effect of magnetic field on pressure gradient is inversely proportional to 

the effects of Da and Q  on pressure gradient.  

Figure (8) is plotted to study the effect of Da on shear stress at the wall y = h2. We 

notice that the shear stress increases in the regions x ε [0, 0.2] and x ε [0.6, 0.8] while it 

decreases in the regions x ε [0.2, 0.6] and x ε [0.8, 1] when porous parameter (Da) 

increases. Moreover, shear stress is symmetric for M = 2 and M = 4.Figure (9) is plotted 

to study the effect of η on shear stress at the wall y = h2. We notice that the shear stress 

increases in the regions x ε [0, 0.2] and x ε [0.6, 0.8] while it decreases in the regions x ε 

[0.2, 0.6] and x ε [0.8, 1] when η increases. Moreover, shear stress is symmetric for Da = 

0.1 and Da =0.5. Figure (10) is plotted to study the effect of α on shear stress at the wall y 

= h2. We notice that the shear stress increases in the regions x ε [0, 0.2] and x ε [0.6, 0.8] 

while it decreases in the regions x ε [0.2, 0.6] and x ε [0.8, 1] as α increases. Finally, we 

conclude that the shear stress is increases with increase in Da, η and α at the wall y = h2. 

Figure (11) is plotted to study the effect of Da on shear stress at the wall y = h1. We notice 

that the shear stress decreases in the regions xε[0,0.2] and xε[0.5,0.8] while it increases in 

the regions x ε [0.2,0.5] and x ε [0.8,1] with  increase  in porous parameter Da. Figures 12 

and13 reveals the shear stress at the wall y = h1. We notice that shear stress is decreases 

with increase in η and α.  

 

(a) Da = 0.1 

 

(b) Da = 0.5

Figure 1. Distribution of Axial Velocity for Different Values of M with Fixed
1



= 0.7, 
2

 = 1.2, η = 0.5,
4


  , 

dx

dp
= - 0.5, x = 0.25 ,d = 2,θ = 0
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 M = 2 
 

(a) M = 4

Figure 2. Distribution of Axial Velocity for Different Values of Da with Fixed 

1
 = 0.7, 

2
 = 1.2, η = 0.5, , 

dx

dp
= - 0.5, x = 0.25, d = 2,θ = 0

(a) Da = 0.1                                                                                 (b) Da = 0.5 

Figure 3. Distribution of Axial Velocity for different Values of α with Fixed M 

= 2, 
1

 = 0.7, 
2

 = 1.2, η = 0.5, 
dx

dp
 = - 0.5, x = 0.25, d = 2, θ = 0 
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(a) Da = 0.1 

 

(b) Da = 0.5 

Figure 4. Distribution of Axial Velocity for Different Values of η with Fixed M 

= 2, 
1

 = 0.7, 
2

 = 1.2, 
4


  , 

dx

dp
= - 0.5, x = 0.25 ,d = 2,θ = 0. 

 

      
M = 2                                                     (b)M = 4 

Figure 5. Pressure Gradient (
dx

dp
) Versus x with Da for Fixed 

1
 = 0.7, 

2
 =1.2,

4


  , d = 2, θ = 0, η = 0.5, Q = 0.2 
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Da = 0.1 Da = 0.5 

Figure 6. Pressure Gradient (
dx

dp
) Versus x with Q  for Fixed M = 2, 

1
 = 0.7, 

2
 = 1.2

4


  , d = 2, θ = 0, η = 0.5 

 

Da = 0.1 Da = 0.5 

Figure 7. Pressure Gradient (
dx

dp
) Versus x with M for fixed 

1
 = 0.7,

2
 = 1.2, 

4


  , d = 2, θ = 0, η = 0.5, Q = 0.2
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(a) M = 2 M = 4 

Figure 8. Shear Stress ( ) Versus x at the Wall y = h2 with Da for Fixed 
1

 = 

0.7, 
2

 = 1.2, 
4


  ,

dx

dp
 = - 0.5, d = 2,θ = 0, η = 0.5

 
(a) Da = 0.1 

 
(b) Da = 0.5

Figure 9. Shear Stress ( ) Versus x at the Wall y = h2 with η for Fixed M =2, 

1
 = 0.7, 

2
 = 1.2, 

4


  , 

dx

dp
= - 0.5, d = 2,θ = 0, η = 0.5. 
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M  =2 M = 4 

Figure 10. Shear Stress ( ) Versus x at the Wall y = h2 with α for Fixed Da = 

0.1, 
1

 = 0.7, 
2

 = 1.2, 
4


  , 

dx

dp
= - 0.5, d = 2,θ = 0, η = 0.5

M = 2 M =4 

Figure 11. Shear Stress ( ) Versus x at the Wall y = h1with Da for Fixed 
1

 = 

0.7,
2

 = 1.2, 
4


  , 

dx

dp
= - 0.5,d = 2, θ = 0, η = 0.5
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Da = 0.1 Da = 0.5 

Figure 12. Shear Stress ( ) Versus x at the Wall y = h1 with η for Fixed M =2, 

1
 = 0.7, 

2
 = 1.2, 

4


   

dx

dp
= - 0.5, d = 2, θ = 0, η = 0.5

M  = 2 
 

(a) M = 4 

Figure 13. Shear stress ( ) Versus x at the Wall y = h1 with α for Fixed Da 

= 0.1, 
1

 = 0.7, 
2

 = 1.2, 
4


  , 

dx

dp
= - 0.5, d = 2,θ = 0, η = 0.5. 

5. Conclusions 

This research considered the magnetohydrodynamics peristaltic transportation of a 

conducting blood flow with porous medium through inclined coaxial vertical. The 

exact solution of simplified equations is calculated. The results are discussed through 

graphs. We conclude the following observations: 
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 The axial velocity deceases with increase in Magnetic field (M).  

 With increase in Da, α and η, the axial velocity increases. 

 The pressure gradient decreases when increase porous parameter (Da) and 

volume flow rate ( Q ). 

 Pressure gradient increases as increases magnetic field (M). 

 The shear stress is increases with increase in Da, α and η at the wall y = h1. 

 The shear stress is decreases with increase in Da, α and η at the wall y = h2. 
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