Biotechnological Approach of Threatened Species Strychnos Nuxvomica L. to Standardized Nursery Techniques

O. P. Chaubey and G. Krishnamurthy

State Forest Research Institute, Jabalpur - 482008 (M.P.), India chaubey.dr@gmail.com, gkmurthy16@gmail.com

Abstract

Strychnos nux-vomica belonging to family Loganiaceae. Carbohydrate, protein, oil, steroid, alkaloid, resin, strychnine and brucine were detected in phytochemical screening. It is anticipated that lipid peroxidation may provide scientific rationale for the use of S. nux-vomica as an antidiabetic plant. There is a need to develop bio-technological approach for raising nursery plants of S. nux-vomica as per International Union for Conservation of Nature and Natural Resources (IUCN) criteria. Different concentration of growth hormones to break seed dormancy, four pre treatments, different size of polythene bags, root trainer, and impact of potting mixture on the growth were adopted to determine the best treatments. The results indicated that the seed dormancy was broken when seeds were treated with 40 ppm concentration of GA₃ or 100 ppm concentration of IBA hormones and soaking with warm water, the best size of polythene bag was used as medium size of polythene (25x11 cm), the best size of root trainer was used as medium cup root trainer (187 cm³), and the best potting mixture was found to be farm yard manure (FYM) with soil and sand in ratio of 1:1:1. Statistical analysis was also adopted to determine of significance levels.

Keywords: Biotechnological approach, growth hormones, pretreatment, potting mixture, root trainer, Polythene bag

1. Introduction

Of particular concern the fact that many forestry species were threatened by many reasons. It was estimated that between 60,000 - 1,00,000 plant species were threatened worldwide due to combination of factors such as over – collection, urbanization, unsustainable agriculture and forestry practices, pollution, land use changes and the spread of invasive alien species. Over 60,000 species were evaluated for conservation status according to internationally accepted criteria, of which, 34,000 were classified as globally threatened with extinction (IUCN, 2002).

The global strategy for plant conservation was proposed to address this challenge. The strategy has plant conservation as the entry point besides aspects of sustainable use and benefit sharing. The global strategy for biotechnological approach includes *in-situ* conservation. The strategy provides an opportunity to explore linkages between *in-situ* and *ex-situ* conservation including restoration programmes. *Strychnos nux-vomica* L. was locally known as Kuchla, and belonging to family Loganiaceae. Carbohydrate, protein, oil, steroid, alkaloid, resin, strychnine and brucine were detected in phyto-chemical screening. It was useful and found effective in the treatment of diabetes mellitus in various traditional systems of medicine. The antidiabetic effect produced by the extract of *S.nux-vomica* might be due to the presence of these active ingredients. It was anticipated that lipid per-oxidation may provide scientific rationale for the use of *S.nux-vomica* as an antidiabetic plant (Bhati *et. al.*, 2012). This was a perennial RET (vulnerable) tree species, due to loss of habitat and trading of seeds. The flowering period was from March to April and fruiting period from November to December. Its bark was used in epilepsy while

leaves were used to cure wounds. Its wood extract was referred for dysentery and cholera. Keeping above in view, there was a need to develop bio-technological approach for raising nursery plants of *S.nux-vomica* as per International Union for Conservation of Nature and Natural Resources (IUCN) criteria's.

2. Materials and Methods

Various places were visited to identify the superior germplasm. The seeds were collected from Balaghat, Seoni, Shahdol districts of Madhya Pradesh and best germplasm was found in Shahdol district. Different concentration of growth hormones, *i.e.*, IBA (Indole Butyric Acid) and GA₃ (Gibberellic Acid) were used to break the seed dormancy. The Four treatments with five replications were laid for knowing the effect of growth hormone on seed dormancy. For this study, four pre treatments with five replications were laid for knowing the effect of seed pre-treatment.

Three different size of polythene bags were tried to know the impact of size of growing media on the growth of seedlings. In each replication, a total number of 60 germinated seeds were used. For this purpose, three different sizes (three treatments) of root trainer with six replications were used. In each replication, three treatments, *i.e.*, large cup (315 cc), medium cup (187 cc) and small cup (126 cc) were used. A total of 60 germinated seeds were raised in different size of root trainer in each replication. To know the impact of potting mixture on the growth of seedlings, three different potting mixtures viz; FYM, leaf litter, and vermi-compost were tried. These mixtures were tried in 1:1:1 ratio with soil, sand and organic manure. In each replication, a total number of 60 germinated seeds were used (ISTA, 1985).

3. Results and Discussions

In *Strychnos nux-vomica*, impact of hormone (GA₃) to break seed dormancy was also studied. Five treatments i.e. different concentrations of hormone T-0 (Control), T-1 (10 ppm), T-2 (20 ppm), T-3 (30 ppm) and T-4 (40 ppm) were applied. GA₃ 40 ppm (T-4) was found the best (25.25 percent) over other treatments (Table-1).

	Treatments (germination percent)								
Replicates	T-0 Control	T-1 GA₃ (10 ppm)	T-2 GA₃ (20 ppm)	T-3 GA₃ (30 ppm)	T-4 GA₃ (40 ppm)				
R1	18	18	22	24	30				
R2	19	20	17	26	23				
R3	17	19	23	20	21				
R4	20	22	23	22	27				
Mean	18.5	19.75	21.25	23	25.25				

 Table 1. Impact of Hormones (GA₃) to Break Seed Dormancy of Strychnos

 Nux-vomica

Table- 2 shows descriptive analysis, *i.e.*, number of cases, mean, standard deviation, lower and upper bound at 95% confidence interval for mean, minimum and maximum values. The perusal of descriptive results revealed that treatments do differ in mean and range (*i.e.*, maximum and minimum observation). The ANOVA test showed One-way analysis of variance test for each parameter taken for study. The table had given the information that treatment taken in the study is showing different effect on Impact of hormone (GA₃). The analysis was again done to find out the significance difference in treatments with respect to above parameters. The table also revealed that values for such parameter were 0.021 which was significant at 0.05 levels and indicates that there was

difference between the treatments. The Post hoc test (Multiple comparisons) shown all treatments were different. The study concluded that all the studied treatments were significantly differed. Thus, T-4 (40 ppm) treatment could be applied.

Table 2. Statistical Analysis to Break Seed Dormancy with Hormones (GA ₃)
of Strychnos Nux-vomica

DESCR	<u>RIPTI\</u>	/ES: GERM	INATION					
Treat			Std.		95% Cor Interval f	nfidence for Mean		
ment N		Mean	Deviatio	n Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
T-0	4	18.5000	1.29099	.64550	16.4457	20.5543	17.00	20.00
T-1	4	19.7500	1.70783	.85391	17.0325	22.4675	18.00	22.00
T-2	4	21.2500	2.87228	1.43614	16.6796	25.8204	17.00	23.00
T-3	4	23.0000	2.58199	1.29099	18.8915	27.1085	20.00	26.00
T-4	4	25.2500	4.03113	2.01556	18.8356	31.6644	21.00	30.00
Total	20	21.5500	3.41012	.76253	19.9540	23.1460	17.00	30.00
ANOVA	A: GE	RMINATIO	N					
			Sum	of Squares	df	Mean Square	F	Sig.
Betv	veen	Groups	1	13.700	4	28.425	3.976	.021
Wi	thin G	Groups	1	07.250	15	7.150		
	Tot	al	2	20.950	19			
MULTI	PLE (COMPARIS	ONS					
Depend	ient v	ariable: Ge	rmination	LSI	ר			
(1)				Maar			95% Co	nfidence
treatm	nent	(J) trea	tment	Difference	Std.	Sia	Interval	
		(0) 1100		(I-J)	Error	eig.	Lower Bound	Upper Bound
T-()	T-	T-1		1.89077	.519	-5.2801	2.7801
		T-	2	-2.75000	1.89077	.166	-6.7801	1.2801
		T-	3	-4.50000(*)	1.89077	.031	-8.5301	4699
		T-	4	-6.75000(*)	1.89077	.003	-10.7801	-2.7199
T- 1	1	T-	0	1.25000	1.89077	.519	-2.7801	5.2801
		T-	2	-1.50000	1.89077	.440	-5.5301	2.5301
		T-	3	-3.25000	1.89077	.106	-7.2801	.7801
		T-	4	-5.50000(*)	1.89077	.011	-9.5301	-1.4699
T-2	2	T-	0	2.75000	1.89077	.166	-1.2801	6.7801
		T-	1	1.50000	1.89077	.440	-2.5301	5.5301
		T-	3	-1.75000	1.89077	.369	-5.7801	2.2801
		T-	4	-4.00000	1.89077	.052	-8.0301	.0301
T-3	3	T-	0	4.50000(*)	1.89077	.031	.4699	8.5301
		T-	1	3.25000	1.89077	.106	7801	7.2801
		T-	2	1.75000	1.89077	.369	-2.2801	5.7801
		T-	T-4		1.89077	.253	-6.2801	1.7801
T-4	1	T-	0	6.75000(*)	1.89077	.003	2.7199	10.7801
		T-	1	5.50000(*)	1.89077	.011	1.4699	9.5301
		T-	2	4.00000	1.89077	.052	0301	8.0301
		T-	3	2.25000	1.89077	.253	-1.7801	6.2801
* The r	nean	difference is	s significar	nt at the .05 leve	el.			

International Journal of Bio-Science and Bio-Technology Vol.7, No.6 (2015)

In *Strychnos nux-vomica*, impact of hormone (IBA) to break seed dormancy was also studied. Five treatments i.e. different concentrations of hormone T-0 (Control), T-1 (25 ppm), T-2 (50 ppm), T-3 (75 ppm) and T-4 (100 ppm) were applied. IBA 100 ppm (T-4) was found the best (26 percent) over other treatments (Table-3).

	Treatments (germination percent)								
Replicates	T-0 Control	T-1 IBA (25 ppm)	T-2 IBA (50 ppm)	T-3 IBA (75 ppm)	T-4 IBA (100 ppm)				
R1	21	15	22	22	24				
R2	18	20	23	20	31				
R3	16	19	24	26	29				
R4	19	19	23	23	20				
Mean	18.5	18.25	23	22.75	26				

Table 3. Impact of Hormones (IBA) to Break Seed Dormancy of Strychnos Nux-vomica

Table- 4 showed descriptive analysis *i.e.*, number of cases, mean, standard deviation, lower and upper bound at 95% confidence interval for mean, minimum and maximum values. The perusal of descriptive results revealed that treatments do differ in mean and range (*i.e.*, maximum and minimum observation). The ANOVA test showed One-way analysis of variance test for each parameter taken for study. The Table had given the information that treatment taken in the study was showing different effect on Impact of hormone (IBA). The analysis was again done to find out the significance difference in treatments with respect to above parameters. The Table also revealed that values for such parameter were 0.007, which was significant at 0.05 levels and indicated that there was difference between the treatments. The Post hoc test (Multiple comparisons) showed all treatments were different. The study concluded that all the studied treatments were significantly differed. Thus, T-4 (100 ppm) treatment could be applied.

Table 4. Statistical Analysis to Break Seed Dormancy with Hormones (IBA)
of Strychnos Nux-vomica

DESCRIPTIVES: GERMINATION										
Treat			Std.		95% Confidence Interval for Mean					
ment	Ν	Mean	Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum		
T-0	4	18.5000	2.08167	1.04083	15.1876	21.8124	16.00	21.00		
T-1	4	18.2500	2.21736	1.10868	14.7217	21.7783	15.00	20.00		
T-2	4	23.0000	.81650	.40825	21.7008	24.2992	22.00	24.00		
T-3	4	22.7500	2.50000	1.25000	18.7719	26.7281	20.00	26.00		
T-4	4	26.0000	4.96655	2.48328	18.0971	33.9029	20.00	31.00		
Total	20	21.7000	3.94835	.88288	19.8521	23.5479	15.00	31.00		
ANOV	A: GE	ERMINATIO	ON							
			Sum of	Squares	df	Mean Square	F	Sig.		
Betv	veen	Groups	173	.700	4	43.425	5.317	.007		
Within Groups		122	122.500		8.167					
Total			296	.200	19					
MULTI	PLE	COMPARIS	SONS							

Dependent Variable: Germination LSD							
(I) treatment	(I) tractmont	Mean	Std.	Sig	95% Confidence Interval		
	(J) treatment	Unterence	Error	Sig.	Lower	Upper	
		(1-3)			Bound	Bound	
T-0	T-1	.25000	2.02073	.903	-4.0571	4.5571	
	T-2	-4.50000(*)	2.02073	.042	-8.8071	1929	
	T-3	-4.25000	2.02073	.053	-8.5571	.0571	
	T-4	-7.50000(*)	2.02073	.002	-11.8071	-3.1929	
T-1	T-0	25000	2.02073	.903	-4.5571	4.0571	
	T-2	-4.75000(*)	2.02073	.033	-9.0571	4429	
	T-3	-4.50000(*)	2.02073	.042	-8.8071	1929	
	T-4	-7.75000(*)	2.02073	.002	-12.0571	-3.4429	
T-2	T-0	4.50000(*)	2.02073	.042	.1929	8.8071	
	T-1	4.75000(*)	2.02073	.033	.4429	9.0571	
	T-3	.25000	2.02073	.903	-4.0571	4.5571	
	T-4	-3.00000	2.02073	.158	-7.3071	1.3071	
T-3	T-0	4.25000	2.02073	.053	0571	8.5571	
	T-1	4.50000(*)	2.02073	.042	.1929	8.8071	
	T-2	25000	2.02073	.903	-4.5571	4.0571	
	T-4	-3.25000	2.02073	.129	-7.5571	1.0571	
T-4	T-0	7.50000(*)	2.02073	.002	3.1929	11.8071	
	T-1	7.75000(*)	2.02073	.002	3.4429	12.0571	
	T-2	3.00000	2.02073	.158	-1.3071	7.3071	
	T-3	3.25000	2.02073	.129	-1.0571	7.5571	
* The mean	difference is signifi	cant at the .05 lo	evel.				

Seed pretreatment was also carried out in *Strychnos nux-vomica*. Three treatments, *i.e.*, soaking with warm water (T-1), soaking with cold water (T-2) and soaking with normal water/control (T-0) were applied. Warm water treatment was found to be best (22.5 percent), followed by cold water treatment germination and control (Table-5).

Table 5. Impact of Seed Pretreatments on Germination Percent of Strych	nos
Nux-vomica	

	Treatments (germination percent)							
Replicates	T-0	T-1	T-2					
	Control	Treated with warm water	Treated with cold water					
R1	21	16	19					
R2	20	27	23					
R3	18	21	17					
R4	18	26	25					
Mean	19.25	22.5	21					

Table- 6 shows descriptive analysis, *i.e.*, number of cases, mean, standard deviation, lower and upper bound at 95% confidence interval for mean, minimum and maximum values. The perusal of descriptive results revealed that treatments do differ in mean and range (*i.e.*, maximum and minimum observation). The ANOVA test showed One-way analysis of variance test for each parameter taken for study. The table had given the information that treatment taken in the study was showing different effect on germination percentage. The analysis was again done to find out the significance difference in treatments with respect to above parameters. The table also revealed that values for such parameter were 0.491 which was insignificant at 0.05 levels and indicated that there was no difference between the treatments. The Post hoc test (Multiple comparisons) shown all

treatments were similar. The study concluded that all the studied treatments were insignificant so, any one of the treatment can be applied. Soaking with warm water (T-1) was highest germination and it could be used as a seed pretreatment (Kumar and Bhanja, 1992; Shivkumar, *et al.*, 2006).

DESCRIPTIVES: GERMINATION										
_					95% Coi	95% Confidence				
Ireat	NI	Маан	Std.			for Mean				
ment	N	mean	Deviation	Sta. Error	Lower	Upper	winimum	waximum		
T-0	4	19.2500	1.50000	.75000	16.8632	21.6368	18.00	21.00		
T-1	4	22.5000	5.06623	2.53311	14.4385	30.5615	16.00	27.00		
T-2	4	21.0000	3.65148	1.82574	15.1897	26.8103	17.00	25.00		
Total	12	20.9167	3.62963	1.04779	18.6105	23.2228	16.00	27.00		
ANOV	A: GE	RMINATIC	N	•			•			
			Sum of	Squares	df	Mean	F	Sia		
			Outil Of	oquares	<u>u</u> i	Square	•	oig.		
Betw	/een	Groups	21.	167	2	10.583	.770	.491		
Within Groups		123	123.750		13.750					
	Tot	al	144	.917	11					
MULTI	PLE	COMPARIS	SONS							
Depend	dent \	Variable: G	ermination	1 90	`					
(1)				LOL	,		95% Cor	fidence		
treatm	nent	(1) (m)	(J) treatment		Std.	0:	Inte	rval		
		(J) tre			Error	Sig.	Lower	Upper		
							Bound	Bound		
T-0)	-	T-1	-3.25000	2.62202	.247	-9.1814	2.6814		
	T-2		Г-2	-1.75000	2.62202	.521	-7.6814	4.1814		
T- 1	1	T-0		3.25000	2.62202	.247	-2.6814	9.1814		
	T-2		1.50000	2.62202	.581	-4.4314	7.4314			
T-2	2	T-0		1.75000	2.62202	.521	-4.1814	7.6814		
		-	Г-1	-1.50000	2.62202	.581	-7.4314	4.4314		
* The r	mean	difference	is significant	t at the .05 le	evel.					

 Table 6. Statistical Analysis to Seed Pretreatments on Germination Percent

 of Strychnos Nux-vomica

Three different sizes of polythene bags were tried to know the impact of size on the growth of seedlings. The sizes of polythene used for such study was big (T-1: 28x14 cm), medium (T-2: 25x11 cm) and small (T-3: 23.5x8 cm). In each replication, a total number of 60 germinated seeds were used. The impacts of size of polythene on growth of seedlings were given. The studied growth parameters of 5 seedlings were given on average basis. The best treatment was found to be T-2 with average girth 2.2 cm and height 35.8 cm followed by T-1 and T-3, respectively (Table-7).

	Treatments									
Replicates	T-1		1	ſ - 2	-	Т-3				
	Girth (cm)	Height (cm)	Girth (cm)	Height (cm)	Girth (cm)	Height (cm)				
R1	1.1	36.5	2.0	30.8	1.3	34.3				
R2	1.6	32.9	2.3	39.7	1.8	37.7				
R3	1.6	29.7	2.2	35.7	1.8	28.2				
R4	1.5	24.0	2.5	37.2	1.6	25.5				
Mean	1.5	30.8	2.2	35.8	1.7	31.4				

 Table 7. Impact of Sizes of Polythene Bag on Growth of Strychnos Nuxvomica

Table- 8 showed descriptive analysis, i.e., number of cases, mean, standard deviation, lower and upper bound at 95% confidence interval for mean, minimum and maximum values. The perusal of descriptive results reveals that treatments do differ in mean and range (*i.e.*, maximum and minimum observation). The ANOVA test showed One-way analysis of variance test for each parameter taken for study. The Table was given the information that treatment taken in the study was showing different effect of size of polythene on the basis of girth and height. The analysis was again done to find out the significance difference in treatments with respect to above parameters. The Table also revealed that values for such parameter were 0.002 and 0.332 for girth and height, respectively, in which girth was significant while height was insignificant at 0.05 levels and indicated that there was difference between the treatments through girth and no difference between the treatments through heights. The Post hoc test (Multiple comparisons) showed all treatments were different in respect of girth, while they were similar in respect of height. The study concluded that all the studied treatments were significant on the basis of girth so, medium size of polythene (T-2) was highest growth of seedling for girth and it could be used for better growth of seedlings in nursery.

 Table 8. Statistical Analysis to Impact of Sizes of Polythene Bag on Growth of Strychnos Nux-vomica

DESCRIPTIVES											
	Treat			95% Confidence Interval for Mea		nfidence for Mean					
	ment	Ν	Mean	Deviation	Error	Lower Bound	Upper Bound	Minimum	Maximum		
Girth	T-1	4	1.4500	.23805	.11902	1.0712	1.8288	1.10	1.60		
	T-2	4	2.2500	.20817	.10408	1.9188	2.5812	2.00	2.50		
	T-3	4	1.6250	.23629	.11815	1.2490	2.0010	1.30	1.80		
	Tota I	12	1.7750	.41369	.11942	1.5122	2.0378	1.10	2.50		
Ht	T-1	4	30.775 0	5.30244	2.65122	22.337 6	39.212 4	24.00	36.50		
	T-2	4	35.850 0	3.74922	1.87461	29.884 2	41.815 8	30.80	39.70		
	T-3	4	31.425 0	5.57218	2.78609	22.558 4	40.291 6	25.50	37.70		
	Tota I	12	32.683 3	5.05134	1.45820	29.473 9	35.892 8	24.00	39.70		
ANO	VA										

			Sur	n of Squar	es	df	Mean S	Square	F	Sig.
Girth	Bet	ween		1 415		2	7()7	13 620	002
	Gro	oups				-		51	101020	.002
	W	ithin		.467		9	.052			
	Gro	oups								
		otal		1.882		11				
Ht	Bet Gro	ween oups	61.012			2	30.5	506	1.250	.332
	W	ithin		040.005		•		407		
	Gro	oups		219.665		9	24.4	407		
	Тс	otal		280.677		11				
MULI		OMPAR	ISON	S					1	
					L	SD				
					Me	ean			95% Co	nfidence
				(J)	Dif	fere			Inte	erval
Depe	ndent	(I)		treatme	n	се	Std.			
Vari	able	treatme	ent	nt	(ŀ	-J)	Error	Sig.	Lower	Upper
									Bound	Bound
Gi	rth	T-1		T-2	.800	- 00(*)	.16116	.001	-1.1646	4354
				T-3	17	7500	.16116	.306	5396	.1896
		T-2		T-1	.800	00(*)	.16116	.001	.4354	1.1646
				T-3	.625	600(*)	.16116	.004	.2604	.9896
		T-3		T-1	.17	500	.16116	.306	1896	.5396
				T-2	.625	- 500(*)	.16116	.004	9896	2604
ŀ	Ηt	T-1		T-2	-5.0	7500	3.49337	.180	-12.9775	2.8275
				T-3	65	5000	3.49337	.857	-8.5525	7.2525
		T-2		T-1	5.07	7500	3.49337	.180	-2.8275	12.9775
				T-3	4.42	2500	3.49337	.237	-3.4775	12.3275
		T-3		T-1	.65	000	3.49337	.857	-7.2525	8.5525
				T-2	-4.4	2500	3.49337	.237	-12.3275	3.4775
* The	mean	difference	e is si	gnificant at	the .	05 lev	/el.			

For this purpose, three different sizes (three treatments) of root trainers with four replications were used. In each replication, three treatments, *i.e.*, T-1 (large cup 315 cc), T-2 (medium cup 187 cc) and T-3 (small cup 126 cc) were taken. A total of 60 germinated seeds were raised in different size of root trainer in each replication. The studied growth parameters of seedlings were given on average basis. The best treatment was found to be T-2 with average girth 1.2 cm and height 18.7 cm, followed by T-3 and T-1, respectively (Table-9).

Table 9. Impact of Sizes of Root Trainer on Growth of Strychnos Nux-
vomica Seedlings

	Treatments								
Replicates	T-1		Т	-2	Т-3				
Replicates	Girth (cm)	Height (cm)	Girth (cm)	Height (cm)	Girth (cm)	Height (cm)			
R1	0.3	8.0	1.3	19.0	0.9	14.0			
R2	0.6	12.0	1.5	21.8	1.0	17.1			
R3	0.4	8.9	1.1	17.0	1.0	15.7			
R4	0.4	8.9	1.1	17.0	1.0	16.7			
Mean	0.4	9.4	1.2	18.7	1.0	15.9			

Table- 10 showed descriptive analysis, *i.e.*, number of cases, mean, standard deviation, lower and upper bound at 95% confidence interval for mean, minimum and maximum values. The perusal of descriptive results revealed that treatments do differ in mean and range (*i.e.*, maximum and minimum observation). The ANOVA test showed One-way analysis of variance test for each parameter taken for study. The Table was given the information that treatment taken in the study was showing different effect of size of root trainer on the basis of girth and height. The analysis was again done to find out the significance difference in treatments with respect to above parameters. The Table also revealed that values for such parameter are 0.000 and 0.000 for girth and height, respectively, which were significant at 0.05 levels and indicated that there was difference between the treatments. The Post hoc test (Multiple comparisons) showed all treatments were different. The study concluded that all the studied treatments were significant so, medium cup root trainer (T-2) was highest growth of seedling for girth and height and it could be used for better growth of seedlings in nursery.

Table 10.	Statistical	Analysis to	Impact of	Sizes o	of Root	Trainer o	n Growth
	C	of Strychnos	s Nux-vom	ica See	edlings		

DESC	CRIPTI	/ES								
							95% Cor	nfidence		
	Treat			Std.	S	td.	Interval	for Mean		
	ment	Ν	Mean	Deviatio	n Er	ror	Lower	Upper	Minimum	Maximum
							Bound	Bound		
Girth	T-1	4	.4250	.12583	.06	292	.2248	.6252	.30	.60
	T-2	4	1.250	.19149	.09	574	.9453	1.5547	1.10	1.50
	T-3	4	.9750	.05000	.02	500	.8954	1.0546	.90	1.00
	Total	12	.8833	.37859	.10	929	.6428	1.1239	.30	1.50
Ht	T-1	4	9.450	0 1.75214	.87	607	6.6620	12.2380	8.00	12.00
	T-2	4	18.700	0 2.27156	5 1.13	3578	15.0854	22.3146	17.00	21.80
	T-3	4	15.875	0 1.38173	.69	086	13.6764	18.0736	14.00	17.10
	Total	12	14.675	60 4.37121	1.26	6186	11.8977	17.4523	8.00	21.80
ANO	VA									
				Sum of Sq	uares	df	Mean	Square	F	Sig.
Girt	Betwe	en			1 412		>	706	38 500	000
h	Group)S			1.412		-		00.000	
	Withir	n Gro	oups		.165	5 9 .018				
	Total				1.577	11				
Ht	Betwe	en		17	9.765		2	89.883	26.595	.000
	Group	os			0.447		_	0.000		
	Within	n Gro	oups	3	0.417)	3.380		
				21	0.183	11				
WUL			PARIS	JN5	1	LSL)		050/ 001	fidanaa
Damas			/I)		Маа		044		95% COI	maence
Veri		troo	(I)	/ 1)	Differ	n ono	Stu. Error	Sia		Unnor
Valle	able	uea	ument	(J) troatmont			EIIOI	Sig.	Bound	Bound
G	rth		T_1	T-2	- 8250	<u>סן</u> 10(*)	09574	000	-1 0416	- 6084
				T-3	- 5500)0(*)	09574	000	- 7666	- 3334
			T-2	T-1	8250)0(*)	09574	000	6084	1 0416
			1 2	T-3	2750)0(*)	09574	018	0584	4916
			T-3	T-1	5500)0(*)	09574	000	3334	7666
				T-2	2750)0(*)	.09574	.018	- 4916	0584
ŀ	Ht		T-1	T-2	-9.250	00(*)	1.29995	.000	-12.1907	-6.3093
	-		-	T-3	-6.425	00(*)	1.29995	.001	-9.3657	-3.4843
			T-2	T-1	9.250	00(*)	1.29995	.000	6.3093	12.1907
				T-3	2.82	500	1.29995	.058	1157	5.7657

	T-3	T-1	6.42500(*)	1.29995	.001	3.4843	9.3657
		T-2	-2.82500	1.29995	.058	-5.7657	.1157
* The mean	difference is	significant a	at the .05 lev	/el.			

To know the impact of potting mixture on the growth of seedlings, three different potting mixture viz. T-1 (FYM), T-2 (Leaf Litter) and T-3 (Vermicompost) were tried. These mixtures were tried in 1:1:1 with soil and sand. In each replication, a total no. of 60 germinated seed was used. The studied growth parameters of seedlings were given on average basis. The best treatment was found to be T-1 with average girth 2.2 cm and height 40.3 cm, followed by T-2 and T-3, respectively (Table-11).

Table 11. Impact of Potting Mixture on Growth of Strychnos Nux-vomica
Seedlings

			Tre	atments			
Poplicatos	T-1		Т	-2	Т-3		
Replicates	Girth (cm)	Height (cm)	Girth (cm)	Height (cm)	Girth (cm)	Height (cm)	
R1	2.3	44.0	1.5	27.5	0.7	16.3	
R2	2.2	42.0	1.4	28.0	0.7	15.6	
R3	2.2	43.4	1.4	26.6	0.7	16.0	
R4	2.0	31.7	1.2	22.1	0.8	16.4	
Mean	2.2	40.3	1.4	26.0	0.7	16.0	

Table- 12 showed descriptive analysis, *i.e.*, number of cases, mean, standard deviation, lower and upper bound at 95% confidence interval for mean, minimum and maximum values. The perusal of descriptive results revealed that treatments do differ in mean and range (*i.e.*, maximum and minimum observation). The ANOVA test showed One-way analysis of variance test for each parameter taken for study. The table was given the information that treatment taken in the study was showing different effect of potting mixture on the basis of girth and height. The analysis was again done to find out the significance difference in treatments with respect to above parameters. The table also revealed that values for such parameter are 0.000 and 0.000 for girth and height, respectively, which were significant at 0.05 levels and indicated that there was difference between the treatments. The Post hoc test (Multiple comparisons) showed all treatments were different. The study concluded that all the studied treatments were significant so potting mixture of FYM with soil and sand in ratio of 1:1:1 (T-1) was highest growth of seedling for girth and height and it could be used for better growth of seedlings in nursery.

 Table 12. Statistical Analysis of Potting Mixture for Better Growth of

 Strychnos Nux-vomica Seedlings

DESC	RIPTI	/ES							
	Treat			Std	Std	95% Cou Interval	nfidence for Mean		
	ment	Ν	Mean	Deviation	Error	Lower Bound	Upper Bound	Minimum	Maximum
Girth	T-1	4	2.1750	.12583	.06292	1.9748	2.3752	2.00	2.30
	T-2	4	1.3750	.12583	.06292	1.1748	1.5752	1.20	1.50
	T-3	4	.7250	.05000	.02500	.6454	.8046	.70	.80
	Total	12	1.4250	.62686	.18096	1.0267	1.8233	.70	2.30
Ht	T-1	4	40.2750	5.77776	2.88888	31.0813	49.4687	31.70	44.00
	T-2	4	26.0500	2.69629	1.34815	21.7596	30.3404	22.10	28.00

	T-3	4	16.075	.3594	10	.179	70	15.5031	16.6469	15.60	16.40
	Total	12	27.466	67 10.894	81	3.145	506	20.5444	34.3889	15.60	44.00
ANO\	/A			-					•		
				Sum of	Squa	ires	d	f Mean	Square	F	Sig.
Girt	Betwe	een (Groups	4.2	220		2	2	.110	185.268	.000
h	With	nin G	roups	.10	03		9		011		
		Tota	al	4.3	323		11	1			
Ht	Betwe	een (Groups	1183	3.322		2	59	1.661	43.524	.000
	With	in G	roups	122.	.345		9	13	3.594		
		Tota	al	1305	5.667		11	1			
MULT	FIPLE (COM	PARIS	ONS			_				
					-		SD			050/ 0-	
Dama			//)	/ N		Viean		644		95% CO	nflaence
Depe	naent		(1)	(.))	Difference		ce	510			
Vori	abla	++-00	tmont	(-) trootmont			00	Error	Sia		Unnor
Vari	able	trea	itment	treatment		(I-J)		Error	Sig.	Lower Bound	Upper Bound
Vari Gi	able	trea	T-1	treatment	.80	(I-J)	*)	Error	Sig.	Lower Bound	Upper Bound .9707
Vari Gi	able rth	trea	T-1	treatment T-2 T-3	.80	(I-J)	*) (*)	.07546	Sig. .000 .000	Lower Bound .6293 1.2793	Upper Bound .9707 1.6207
Vari Gi	able rth	trea	T-1 T-2	T-2 T-3 T-1	.80 1.45	(I-J)	*) (*) (*)	.07546 .07546 .07546	Sig. .000 .000 .000	Lower Bound .6293 1.2793 9707	Upper Bound .9707 1.6207 6293
Vari Gi	able rth	trea	T-1 T-2	T-2 T-3 T-1 T-3	.80 1.45 80	(I-J) 0000(5000 0000(5000(*) (*) (*) *)	.07546 .07546 .07546 .07546	Sig. .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793	Upper Bound .9707 1.6207 6293 .8207
Vari Gi	able rth	trea	T-1 T-2 T-3	T-2 T-3 T-1 T-3 T-1 T-3 T-1	.80 1.45 80 .65	(I-J) 5000(5000(5000(5000(15000	*) (*) (*) (*)	.07546 .07546 .07546 .07546 .07546	Sig. .000 .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207	Upper Bound .9707 1.6207 6293 .8207 -1.2793
Vari Gi	able rth	trea	T-1 T-2 T-3	T-2 T-3 T-1 T-3 T-1 T-3 T-1 T-2	.80 1.49 80 .65 -1.4 65	(I-J) <u>5000</u> <u>5000</u> <u>5000</u> <u>5000</u> <u>5000</u>	*) (*) (*) (*) (*) (*)	.07546 .07546 .07546 .07546 .07546 .07546 .07546	Sig. .000 .000 .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793
Vari Gi	able rth	trea	T-1 T-2 T-3 T-1	T-2 T-3 T-1 T-3 T-1 T-3 T-1 T-2 T-2	.80 1.4 80 .65 -1.4 65 14.2	(I-J) 0000(5000 0000(5000(5000(5000(2250(*) (*) (*) (*) (*) (*) (*)	.07546 .07546 .07546 .07546 .07546 .07546 .07546 2.60710	Sig. .000 .000 .000 .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207 8.3273	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793 20.1227
Vari Gi	able rth	trea	T-1 T-2 T-3 T-1	T-2 T-3 T-1 T-3 T-1 T-3 T-1 T-2 T-2 T-3	.80 1.4 80 .65 -1.4 65 14.2 24.2	(I-J) 5000 5000 5000 5000 5000 5000 22500 20000	*) (*) (*) (*) (*) (*) (*) (*) (*)	.07546 .07546 .07546 .07546 .07546 .07546 .07546 2.60710 2.60710	Sig. .000 .000 .000 .000 .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207 8.3273 18.3023	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793 20.1227 30.0977
Vari Gi	able rth	trea	T-1 T-2 T-3 T-1 T-1 T-2	T-2 T-3 T-1 T-3 T-1 T-3 T-1 T-2 T-2 T-3 T-1	.80 1.4 80 .65 -1.4 65 14.2 24.2 -14.2	(I-J) 5000 5000 5000 5000 5000 5000 22500 22500 22500	*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (Error .07546 .07546 .07546 .07546 .07546 .07546 2.60710 2.60710 2.60710	Sig. .000 .000 .000 .000 .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207 8.3273 18.3023 -20.1227	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793 20.1227 30.0977 -8.3273
Vari Gi	able rth	trea 	T-1 T-2 T-3 T-1 T-2	T-2 T-3 T-1 T-3 T-1 T-2 T-1 T-2 T-1 T-2 T-3 T-1 T-2 T-3 T-1 T-2 T-3 T-3	.80 1.4 80 -1.4 65 14.2 24.2 -14.2 9.9	(I-J) 0000(5000 0000(5000(5000(2250(2250(7500)	*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (.07546 .07546 .07546 .07546 .07546 .07546 .07546 2.60710 2.60710 2.60710	Sig. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207 8.3273 18.3023 -20.1227 4.0773	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793 20.1227 30.0977 -8.3273 15.8727
Vari Gi	able rth	trea	T-1 T-2 T-3 T-1 T-2 T-2 T-2 T-3	T-2 T-3 T-1 T-3 T-1 T-2 T-1 T-2 T-1 T-2 T-1 T-2 T-1 T-2 T-1 T-2 T-3 T-1 T-3 T-1	.80 1.43 80 -1.4 65 14.2 24.2 -14.2 9.9 -24.2	(I-J) 0000(5000 0000(5000(15000 5000(2250(2250(2250(7500) 2000(*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (.07546 .07546 .07546 .07546 .07546 .07546 2.60710 2.60710 2.60710 2.60710 2.60710	Sig. .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .004 .000	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207 8.3273 18.3023 -20.1227 4.0773 -30.0977	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793 20.1227 30.0977 -8.3273 15.8727 -18.3023
Vari Gi	able rth	trea	T-1 T-2 T-3 T-1 T-2 T-2 T-2 T-3	T-2 T-3 T-1 T-3 T-1 T-3 T-1 T-2 T-2 T-3 T-1 T-2 T-3 T-1 T-2 T-3 T-1 T-3 T-1 T-3 T-1 T-3 T-1	.80 1.43 80 -1.4 65 14.2 24.2 -14.2 9.9 -24.2 -9.9	(I-J) 5000 5000 5000 5000 5000 22500 22500 22500 22500 22500 22500 22500 20000 20000 22500 20000 20000 20000 20000 22500 2000000 20000 20000 20000 20000 20000	*) (*) (*) (*) (*) (*) (*) (*) (*) (*) (Error .07546 .07546 .07546 .07546 .07546 2.60710 2.60710 2.60710 2.60710 2.60710 2.60710	Sig. .000 .000 .000 .000 .000 .000 .000 .000 .004 .004	Lower Bound .6293 1.2793 9707 .4793 -1.6207 8207 8.3273 18.3023 -20.1227 4.0773 -30.0977 -15.8727	Upper Bound .9707 1.6207 6293 .8207 -1.2793 4793 20.1227 30.0977 -8.3273 15.8727 -18.3023 -4.0773

Peering and Farwell (1977) also adapted a proforma by noting down rate of decline, number of localities, attractiveness and usefulness of plants which are exposed to unethical collection, percentage of localities in nature reserve and non-accessibility of the terrain. BSI also suggested some criteria for assessing threat value of a species.

4. Conclusions

The conclusive remarks of Strychnos nux-vomica were as under:

- 1. The seed dormancy was broken when seeds were treated with 40 ppm concentration of GA3 or 100 ppm concentration of IBA hormones and soaking with warm water.
- 2. The best size of polythene bag was used as medium size of polythene (25x11 cm).
- 3. The best size of root trainer was used as medium cup root trainer (187 cm^3) .
- 4. The best potting mixture was found to be farm yard manure (FYM) with soil and sand in ratio of 1:1:1.

References

- [1] A. Bhati, H. Garg, A. Gupta, H. Chhabra, A. Kumari and T. Patel, "Omics of Cancer", Asian Pacific Journal of Cancer Prevention, vol. 13, (**2012**), pp. 4229-4233.
- [2] ISTA, "International rules for seed testing", Seed Science and Technology, vol. 13, (1985), pp. 299-520.
- [3] IUCN, 2000 IUCN red list of threatened species, IUCN, Gland, Switzerland and Cambridge, (2002).
- [4] S.V. Kumar and M. Bhanja, "Forestry Seed Manual of Andhra Pradesh", Andhra Pradesh Forest Department, Hyderabad, India, (1992).

International Journal of Bio-Science and Bio-Technology Vol.7, No.6 (2015)

- [5] F. H. Perring and L. Farwell, "British Red Data Book", Vascular Plants. Society for the Promotion of Nature Conservation, Lincoln, vol. 1, (1977).
- [6] V. Shivkumar, R. Anandlakshmi, R. R. Warrier, M. Tigabu, P. C. Oden, S. N. Vijayachandran, S. Geetha and B. G. Singh, "Effect of presowing treatments, desiccation and storage conditions on germination of Strychnos nux-vomica seeds, a valuable medicinal plant", New Forest, vol. 32, (2006), pp. 121-131.

Authors

O. P. Chaubey, is working as Head of Forest Botany and Tree Improvement Divisions in Madhya Pradesh State Forest Research Institute, Jabalpur (M.P.) India. He was awarded in Ph.D. degree in Forest Ecology in 1986 from Dr. H.S. Gaur University, Sagar, (Madhya Pradesh, India). He has to his credit six books, 13 monograph of various forestry species and more than 90 research papers published in both National and International journals. He has 32 years of research experience in field of forestry. He has completed more than 25 externally funded research projects in the capacity of Principal Investigator. He has organized a number of symposia/ workshops at National and State levels. He has imparted trainings to field foresters, University scholars, NGOs and Rural Communities engaged in conservation and management of biological diversity.

G. Krishnamurthy, is an Indian Forest Service Officer of 1984 batch, borne on Madhya Pradesh cadre. He has extensive experience in the field of Joint Forest Management, Wild Life Management and Tribal Development. He has been awarded Gold Medal for outstanding work for the upliftment of tribals. Introduced innovative management concepts as a Filed Director, Panna Tiger Reserve in the form of village relocation from core area and removal of feral cattle. Awarded Ph.D degree in Wild Life Science by Forest Research Institute, Dehra dun (India). Currently, posted as Additional Principal Chief Conservator of Forests and Director, State Forest Research Institute, Jabalpur.