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Abstract 

The quality of the protein structure can be determined by physical and chemical 

properties, therefore it has been used to distinguish native or native like structure from 

other predicted structures. In this study, the machine learning classification models are 

explored with six physical and chemical properties to classify the root mean square 

deviation (RMSD) of the protein structure in absence of its true native state and each 

protein structure lies between 0A
˚
 to 6A

˚
 RMSD space. Physical and chemical properties 

used in this paper are total surface area, Euclidean distance, total empirical energy, 

secondary structure penalty, residue length, and pair number. There are total 24294 

decoys, having 4919 native structures. Artificial bee colony algorithm is used to 

determine the feature importance. The K-fold cross validation is used to measure the 

robustness of the best classification model. The results show that random forest method 

outperforms other machine learning models in the classification of protein structure 

prediction with sensitivity of 0.72 and accuracy of 70.33% on testing data set. The data 

set used in the study is available at http://bit.ly/RMSD-Classification-DS. 

 

Keywords—Protein structure prediction, Machine learning, Random forest, Artificial 

bee colony algorithm 

 

1. Introduction 

Protein sequences are translated into 3D tertiary forms to carry out several biological 

functions. Prediction of high resolution protein structure has become one of the “grand 

challenge problems” in computational biology. Physical and chemical properties of 

amino acids and their solvent environment are the key determinants in folding a protein 

sequence into its unique tertiary structure. These factors essentially generate various 

types of energy contributors such as electrostatic, Vander Waals, salvation/desolvation 

which create folding pathways. Ab initio approaches for structure deter-mination employ 

these physical and chemical factors to generate a structure or an ensemble of structures 

from the sequence as possible candidates for the native. In the alternative approach, 

called homology modeling, one uses experimentally known protein structures as 

templates based on sequence similarity. Due to lack of a clear understanding of the true 

folding pathway of proteins to the native and insufficient experimental data, several 

prediction methods end up with low quality structures. These low quality structures may 

look similar to any high resolution structure passing all the quality assessment criteria but 

in reality they could be 10-15 A
˚
 away from their true native states (refer, Figure 1). It 

would be highly desirable to have a predictive model which can tell how far a structure is 

from the native in the absence of its experimental structure. Machine learning 

classification models have been widely used in protein structure prediction such as 2D 

and 3D structure prediction [1, 2], fold recognition [3-5], solvent accessibility prediction, 

disordered region prediction [6-8], binding site prediction [9], transmembrane helix 
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prediction [10], protein domain boundary prediction [11], contact map [12-14], functional 

site prediction, model generation [15], and model evaluation [16, 17]. 

This work explores the machine learning classification models to predict native or 

native like structure in the absence of its true native state using six physical and chemical 

properties and reports how far a structure is from its true native. Total surface area, 

Euclidean distance, total empirical energy, secondary structure penalty, residue length, 

and pair number are the physical and chemical properties used for predicting the native 

structure. There are total 24294 decoys, having 4919 native structures. Protein sequences 

are taken from protein structure prediction center (CASP) and protein data bank (RCSB). 

The root mean square deviation (RMSD) of each structure lies between 0A
˚
 to 6A

˚
 space. 

Since some of the considered features may have higher importance than others in 

predicting the native structures, artificial bee colony (ABC) algorithm is used to 

determine the feature importance. The features are used by four machine learning models 

namely decision tree, random forest, support vector machine, and linear model for the 

prediction of protein structure in absence of its true native state. The K-fold cross 

validation is used to measure the accuracy of the best predictive model. Rest of the paper 

is organized as follows. A brief overview of the considered features, data set, ABC 

algorithm, and machine learning models are presented in Section II. The proposed protein 

structure prediction methodology is described in Section III. Model evaluation is 

presented in Section IV. Section V describes experiments, results and discussion. Finally, 

conclusion is presented in Section VI. 
 

 
(a) Native Structure                   (b) Predictive Structure 

Figure 1. The RMSD of Predicted Structure from its Native is 10.3 °A (PDB 
ID:1IF4) 

2. Materials and Methods 

Data set and its features: There are total 24294 modeled structures having 4919 native 

structures. The modeled structures are taken from protein structure prediction center 

(CASP-5 to CASP-10 experiments), public decoys structures database [18] and native 

structure from protein data bank (RCSB). Table I describes the physical and the chemical 

properties used in this study. A sample of the data set is shown in Table II. Table III 

shows the correlation between each feature. There is negative correlation of energy with 

Euclidean distance, pair number, residue length and area. There is high correlation 

between (i) Euclidean distance and pair number, (ii) residue length and pair number, and 

(iii) residue length and area. 

Table I. Description of the Features 

Feature Information 

Area Total surface area. 

ED Euclidean distance. 

Energy Total empirical energy. 

SS Secondary structure penalty. 

RL Residue length 

PN Pair number 
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Table II. Sample Dataset 
RMSD Area ED Energy SS RL PN 

0 8243.0 4939.6 -3391.1 86 75.00 165 
3 7918.2 11984.2 -2273.2 29 153.00 102 
4 9354.8 11535.1 -2422.5 66 67.00 186 
2 15664.1 129761.0 -5820.4 146 104.00 368 
0 8836.1 12198.8 -2926.1 80 66.00 101 
5 12629.3 41461.0 -6206.8 146 61.00 116 

 

Table III. Correlation between Each Feature 

  Energy SS ED PN RL Area 
 Energy 1.000 0.003 -0.001 -0.001 -0.002 -0.002  

 SS 0.003 1.000 0.514 0.572 0.670 0.656  

 ED -0.001 0.514 1.000 0.953 0.838 0.803  

 PN -0.001 0.572 0.953 1.000 0.913 0.837  

 RL -0.002 0.670 0.838 0.913 1.000 0.942  

 Area -0.002 0.656 0.803 0.837 0.942 1.000  

         

 

Figure 2. Distribution of RMSD in the Dataset 

A. Data Transformation:  

Here, RMSD of protein structure lies between 0A
˚
 and 6A

˚
. For classification purpose, 

RMSD is transformed into discrete value using eq. (1), keeping in mind that closer 

RMSD of protein structures having similar features. There may be more transformation 

rule that can be used for transformation. The Figure 2 show the distributionof the RMSD 

in the dataset. The data count for RMSD=0 is highest and least for RMSD=1. 

 

Class=    

{
  
 

  
 
0   𝑖𝑓 0 ≤ 𝑅𝑀𝑆𝐷 ≤ 1.0
1   𝑖𝑓 1.0 ≤ 𝑅𝑀𝑆𝐷 ≤ 2.0
2  𝑖𝑓 2.0 ≤ 𝑅𝑀𝑆𝐷 ≤ 3.0
3  𝑖𝑓 3.0 ≤ 𝑅𝑀𝑆𝐷 ≤ 4.0
4  𝑖𝑓 4.0 ≤ 𝑅𝑀𝑆𝐷 ≤ 5.0
5  𝑖𝑓 5.0 ≤ 𝑅𝑀𝑆𝐷 ≤ 6.0

(1) 

 

B. Feature Measurement 

Here, we present a brief discussion of the physical and the chemical properties used in 

this study. 

1. Root Mean Square Deviation (RMSD): The RMSD iscalculated using the 

superposition between matched pairs of C between two protein sequences. This 

superposition is computed using the Kabsch rotation matrix [19, 20] as shown below: 

                       RMSD = √∑
(𝑑𝑖∗𝑑𝑖)

𝑁
𝑁
𝑖  
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where, di is the distance between matched pair i, N is the number of matched pairs. 

RMSD is calculated using the freely available program at [21]. 

 

2. Total surface area (Area): Protein folding is ruled byvarious driving forces, which 

seek towards minimization of its total surface area. Degree of these external forces 

depends on the surface of protein exposed to the solvent, which convey the strong 

dependency of free energy on solvent accessible surface area (SASA) [22]. SASA has 

been widely used as one of the important properties to assess the quality of protein 

structures. Hydrophobic collapse is considered as a major factor in protein folding and 

this can be estimated as a loss of SASA of non-polar residues. Each amino acid shows a 

different affinity to be found on the surface of the protein based on the functional groups 

present in its side chain [23]. Some questions arise with regard to the usage of SASA: (i) 

should it be the total area or is it the area of the non-polar residues, (ii) what is the 

standard fixed value of SASA for a native structure and (iii) isthe rule of minimum area 

applicable to non-globular proteins. Here, total SASA have been calculated using Lee & 

Richards [23] method.  

 

3. Euclideandistance (ED): Spatial positioning of𝐶𝛼atomsdecides the overall 

conformation of a protein. Recently, neighbor-hood profiles of 𝐶𝛼 atoms for each pair of 

residues have been characterized and observed to be invariant in 3618 native proteins 

suggesting certain geometrical constraints in their positioning [24]. The authors consider 

four aliphatic non polar residues Alanine (ALA), Valine (VAL), Leucine (LEU) and 

Isoleucine (ILE); collectively they formed 6 unique pairs among each other. Cumulative 

inter-atomic distance of their respective 𝐶𝛽 atoms were calculated for each residue pair. 

Euclidean distance is calculated by taking the cumulative difference of 𝐶𝛼and 𝐶𝛽 . 

Euclidean distance between two protein sequences p and q is given as:  

                   𝐸𝑑 = √∑ (𝑞𝑖 − 𝑝𝑖)
2𝑛

𝑖=0 (2) 

Where n is sequence length. 

 

4. Total empirical energy (Energy): The total empirical energy is the absolute sum of 

electrostatic force, Vander Waals force and hydrophobic force [25, 26]. Molecular 

dynamics simulation package AMBER12 [12 ] is used to compute total empirical energy. 

It  is computed as given below: 

𝐸𝑒𝑙𝑒𝑐
𝑖𝑗

=
332∗𝑞𝑖∗𝑞𝑗

𝑟𝑖𝑗
 

                                       𝐸𝑣𝑑𝑊
𝑖𝑗

   =  
𝐶12
𝑖𝑗

𝑟𝑖𝑗
12 - 

𝐶6
𝑖𝑗

𝑟𝑖𝑗
6  

 

                                     𝐸ℎ𝑦𝑑
𝑖𝑗

 =   
𝑀12
𝑖𝑗

𝑟𝑖𝑗
12  - 

𝑀6
𝑖𝑗

𝑟𝑖𝑗
6  

Where,𝑟𝑖𝑗 is the distance between pair of atoms i and j, 

𝐶12
𝑖𝑗

= ∈ 𝜎12,𝐶6
𝑖𝑗

=2  ∈ 𝜎6,σ is be van der waals  

radii ,∈ is well depth , 𝑀12
𝑖𝑗

=∈ 𝑅12,𝑀6
𝑖𝑗

=∈ 𝑅6,R is the distance variable and ϵ is set to 

1. Finally total empirical energy is given below: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ (𝐸𝑒𝑙𝑒𝑐
𝑖𝑗

+ 𝐸𝑣𝑑𝑤
𝑖𝑗

+ 𝐸ℎ𝑦𝑑
𝑖𝑗
)𝑛

𝑗=𝑗+1
𝑛−1
𝑖  

 

5. Secondary Structure penalty (SS): Secondary Structure Prediction has reached to 82% 

accuracy [27] over the last fewyears. Therefore deviation from ideal predicted secondary 

structures can be used as a measure to quantify the quality of a structure. Secondary 

structure penalty is measured from the secondary structure sequence. It is computed as 

the absolute difference of the STRIDE and the PSIPRED scores. STRIDE is used to 
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assign three secondary structure classes, i.e., helix, sheet and coil to each residue in the 

protein models based on coordinates. PSIPRED is used to predict the probability for the 

same secondary structure classes. 

𝑆𝑠𝑡𝑟𝑖𝑑𝑒(𝑃)=𝑆ℎ𝑒𝑙𝑖𝑥(𝑃) + 𝑆𝑠ℎ𝑒𝑒𝑡(𝑃) + 𝑆𝑐𝑜𝑖𝑙(𝑃) 
𝑆𝑝𝑠𝑖𝑝𝑟𝑒𝑑 ( P) =𝐹1(𝑃) + 𝐹2(𝑃) + 𝐹3(P) 

SS = abs (𝑆𝑠𝑡𝑟𝑖𝑑𝑒 (𝑃) − 𝑆𝑝𝑠𝑖𝑝𝑟𝑒𝑑 (P) )                       (3) 

Where, P is the protein sequence ;𝑆𝑠𝑡𝑟𝑖𝑑𝑒(P) and 𝑆𝑝𝑠𝑖𝑝𝑟𝑒𝑑(P)Are the STRIDE and 

PSIPRED scores respectively ;𝑆ℎ𝑒𝑙𝑖𝑥(P),𝑆𝑠ℎ𝑒𝑒𝑡 (P) ,𝑆𝑐𝑜𝑖𝑙(P) are the STRIDE scores of 

helix ,sheet andCoil of protein sequence P respectively ;𝐹1(P) is the predictedProbability 

from PSIPRED for  the secondary structure of the  

Central residue in the sequence window ;𝐹2(P) is the corres-Pondence between 

predicted and actual secondary structureOver a 21- residue window ;𝐹3 (P) is the 

secondary structureAssigned by STRIDE, binary encoded into three classes over a 5- 

residue window. 

 

6. Pair Number (PN): Pair Number is the Total Number of Aliphatic hydrophobic 

residue pairs in the protein structure and it is calculated by counting the total number of 

pairs between the Cβ carbons in the protein structure. 

 

7.  Residue Length (RL): Residue length is the total number of C𝛽 carbons in the 

protein structure. 

 

3. Methodology 

The methodology is described in Figure 3. In the first step, The modeled protein 

structures are taken from protein structure prediction center (CASP-5 to CASP-10 

experiments), public decoys database [18] and native structure from protein data bank 

(RCSB). The feature measurement, as discussed in section, of protein structures is carried 

out in second step. The removal of duplicates and missing value entries from dataset were 

carried out along with the transformation in the third step. There are total 24294 decoys 

structures having 4919 native structures. In the forth step, the ABC algorithm [28] is used 

to measure the importance of each feature. Feature selection makes the prediction of 

model efficient and accurate. In the fifth step, the four machine learning approaches 

(refer, Table V) were trained and tested on the data set with their default parameters. 

Figure 4 describes the prediction model. Finally, the evolution of the model is done on 

accuracy and sensitivity and K-fold cross validation is used to measure robustness of the 

best predictive model. 
 

 

Figure 3. Methodology Used 
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Figure 4. Prediction Model 

A. Artificial Bee Colony (ABC)   

The ABC algorithm [28] is a relatively recent swarm intelligence based algorithm. The 

algorithm is inspired by the intelligent food foraging behavior of the honey bees. Each 

solution of the problem is called food source of honey bees. The fitness is determined in 

terms of the quality of the food source. The honey bees are classified into three groups 

namely employed bees, onlooker bees, and scout bees. The number of employed bees are 

equal to the onlooker bees. The employed bees are the bees which search the food source 

and gather the information about the quality of the food source. Onlooker bees, which 

stay in the hive, search the food sources on the basis of the information gathered by the 

employed bees. The scout bees search new food sources randomly in places of the 

abandoned foods sources. Similar to the other population-based algorithms, ABC is also 

an iterative search algorithms. After, initialization of the ABC parameters and swarm, it 

requires the repetitive iterations of the three phases namely employed bee phase, 

onlooker bee phase and scout bee phase. There are three control parameters in ABC 

search process: the number of food sources SN (equal to number of onlooker or 

employed bees), the value of limit and the maximum number of iterations [29]. The 

pseudo-code of the ABC is shown in Algorithm 1. 

 

B. Feature Importance using ABC 

The ABC is used to find the importance of each features. It defines the weight to each 

feature according to the objective function defined in eq. (4). 

 

Algorithm 1 Artificial Bee Colony Algorithm: 

Initialize the parameters; 

While Termination criteria is not satisfied do 

Step 1: Employed bee phase for generating new food sources; 

Step 2: Onlooker bees phase for updating the food sources 

depending on their nectar amounts;  

Step 3: Scout bee phase for discovering the new food sources in place of abandoned food 

sources; 

Step 4: Memorize the best food source found so far; 

end while 

Output the best solution found so far. 
 

Table IV. Importance of Each Feature using ABC 

Runs Energy RL PN SS ED Area 
1 0.256 0.184 0.172 0.150 0.123 0.115 

       2 0.250 0.190 0.169 0.153 0.120 0.118 
3 0.253 0.187 0.172 0.150 0.123 0.115 
4 0.249 0.182 0.174 0.148 0.125 0.122 
5 0.251 0.184 0.177 0.156 0.117 0.115 

Avg. 0.252 0.185 0.173 0.151 0.122 0.117 
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The parameters for the ABC are the colony size (NP=50; [30, 31]), number of food 

sources (SN=NP/2), dimension of the problem (D=6), limit (number of trials after which 

a food source is considered to be abandoned; D*SN [32, 33]) and the termination criteria 

(number of iterations = 2000). 

After five different runs, the weight obtained for each feature is described in Table IV. 

The average weight of energy is highest and area is lowest that also signifies the 

importance of each feature in the dataset. As the weight given to each feature is 

significant so all the features are selected for the experiment. 

Objfun = min (∑ √(𝑅𝑖–∑ 𝑤𝑗 ∗ 𝑝𝑖,𝑗
𝑛
𝑗=1 )

2𝑇
𝑖=1 )          (4) 

where, T is the total number of instances in training data set, R is the RMSD, P is 

physical and chemical properties, n is the number of properties (6 in this case) and w is 

the weight given to each feature defined in the range of [0,1]. 

 

C.  Machine Learning Methods 

 In this work, we used four machine learning models (refer,Table V) for prediction of 

RMSD of protein structure. The models are available in R open source software. R is 

licensed under GNUGPL. A brief of the models is presented below:  

 

1) Decision Trees: This model is an extension of C5.0 classification algorithms described 

by Quinlan [34]. 

 

2) Random forest: It is based on a forest of trees using 

random inputs [35]. 

 

3) Support Vector Machine: SVM is a powerful method for 

general (nonlinear) classification and outliers detection 

with an intuitive model representation [36]. 

 

4) Linear Models: It uses linear models to carry out regression,single stratum analysis of 

variance and analysis of covariance [37]. 
 

Table V. Machine Learning Classification Model Used 

Model Package Tuning Parameter(s) Ref. 
Decision Trees C50 window, model, trials [34] 
Random Forest randomForest mtry [35] 
SVM e1071 nu, epsilon [36] 
LM stats None [37] 

 

Table VI. Parameter Setting for Machine Learning Models 
 

Model Parameter Setting 
Decision Trees Min Split = 20, Max Depth = 30, Min Bucket = 7 
Random Forest Number of tree = 500 

SVM Kernel Radial Basis 
LM Multinomial 

 

4. Model Evaluation 

There are various ways to measure performance of the classifiers; some are more 

suitable than others depending on the considered application. The formula used for all the 

machine learning models is given by 

RMSD ~ Area + ED + Energy + SS + RL + PN 
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This paper uses sensitivity and accuracy as a pair of (S, C) for measuring the 

performance of machine learning models. To determine the (S, C), a confusion or error 

matrix is formedshowing the information about actual and predicted classification done 

by a classifier. The diagonal elements of confusion or error matrix represent the number 

of objects for which the predicted label is equal to the true label, while off-diagonal 

elements are those that are mislabeled by the classifier. The higher the diagonal values of 

the error matrix, better the accuracy. If there are n number of classes then the value𝐶𝑖𝑗of 

the confusion matrix of size n × n represents thenumber of patterns of class i predicted in 

class j. 

The classifier accuracy can be calculated as: 

Accuracy= 
∑ 𝑐𝑖𝑖
𝑛
𝑖=1

∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

                      (5) 

However, the classification accuracy may show inaccurateresults in a case when there 

is a high variance in the numberof objects in the classes. Hence, this paper represents the 

accuracy of the classifier as a pair of values (S;C) where S is the minimum of sensitivities 

among all classes and C is the overall accuracy [38], [39]. Sensitivity Si for the class i 

can be defined as the number of patterns correctlypredicted to be in class i with respect to 

the total number of patterns in class i which is shown below [38]. 

                               𝑆𝑖=
𝐶𝑖𝑗

∑ 𝐶𝑖𝑗
𝑛
𝑗=1 

(6) 

Therefore, the sensitivity (S) of the classifier will be theminimum value of the 

sensitivities as shown in eq. (7) [38]. 

S = min(Si; i = 1; :::; n) (7) 

The correct classification rate or accuracy (C) for the classifier 

is defined as in eq. (8) that is, the rate of all the correct predictions[38]. 

C=
1

 𝑛
∑ 𝑆𝑖
𝑛
𝑖=1  (8)                 

 

Table VII. Performance Comparison of all Four Models on Different 
Training-testing Partitions using Random Forest in Sensitivity and 

Accuracy Pair 

 
 

 
(a) Sensitivity                          (b) Accuracy 

Figure 5. 10-fold Cross Validation of Sensitivity and Accuracy on Training-
Testing Dataset (70-30%) in the Prediction of RMSD using Random Forest 

K-fold cross validation is used to measure accuracy of thepredictive model. The 

original sample is randomly partitioned into k equal size subsamples. Of the k 

subsamples, a single subsample is retained as the validation data for testing the model 

and the remaining k-1 subsamples are used as training data. The crossvalidation process 
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is then repeated k times (the folds) with each of the k subsamples used exactly once as 

the validation data. Further, the k results from the folds are can be averaged to produce a 

single estimation. The advantage of this model over repeated random sub-sampling is that 

all observations are used for both training and validation, and each observation is used for 

validation exactly once. Here, 10-fold (k=10) cross validation is used to measure the 

robustness of the best selected model. 

 

5. Experimental Results 

In this section, we analyze the prediction results of all the four 

machine learning classification models on the testing dataset. All the four methods are 

run on their default parameters as shown in Table VI. The accuracy is calculated using 

eq. (8) and is shown in Table VII for all the models on 50-50, 60-40, 70-30 and 80- 20 

training-testing partitions. It is evident that the random forest have the highest sensitivity 

and accuracy pair of (0.71,69.39%), (0.72,70.33%), (0.72,70.33%), and (0.73,71.35%) on 

the trainingtesting partitions respectively. 

Further, 10-fold cross validation is used to measure robustness of the random forest. 

Figure 5(a) and Figure 5(b) shows the sensitivity and accuracy respectively for the 10 

folds. Cross validation results show a uniform performance in accuracy using random 

forest. The results validates that random forest outperforms the machine learning models 

in the classification. 

 

6. Conclusion 

In this work we explore the machine learning classification models with six physical 

and chemical properties to predict the structure of protein in the absence of its true native 

state. The results indicate that random forest outperforms the other existing classification 

models. The work can be extended for more physical and chemical properties and other 

computational methods to enhance the performance of machine learning methods. The 

data set and source code used in the study are available at http://bit.ly/ 
RMSDClassification-DS. 
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