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Abstract 

Effect of couple stress fluid flow on magnetohydrodynamic peristaltic blood flow with 

porous medium trough inclined channel in the presence of slip effect-Blood flow study 

have been studied under the assumption of long wavelength approximations. The 

expressions of the axial velocity, transverse velocity, pressure gradient, volume flow rate, 

average volume flow rate, pressure rise and shear stress are obtained and discussed 

through graphs. It is noted that the axial velocity increases with increase in M, S and α 

and deceases with increase in D and β  and the transverse velocity increases with 

increase in D and S and decreases with increase in M, β and α in the entire flow field. We 

notice the pressure gradient is maximum at x = 0.5. 

 

Keywords: Couple stress fluid flow, peristaltic fluid flow, porous medium, magnetic 
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1. Introduction 

The word peristalsis stems from the Greek word Peristaltikos, which means clasping 

and compressing. Peristaltic pumping is a form of fluid transport generated in the fluid 

contained in a distensible tube when a progressive wave travels along the wall of the tube. 

It is an inherent property of many syncytial smooth muscle tubes, stimulation at any point 

can cause a contractile ring to appear in the circular muscle of the gut, and this ring then 

spreads along the tube. In addition, peristaltic pumping occurs in many practical 

applications involving biomechanical systems. This mechanism also finds many 

applications in roller and finger pumps, some bio-mechanical instruments, e.g. heart-lung 

machine, blood pump machine and dialysis machine. Thus, peristaltic transport has been 

the recent studies of many researchers/scientists owing to the above mentioned 

applications in bio-mechanical engineering and bio-medical technology. From the fluid 

mechanical point of view, peristaltic motion is characterized by the dynamic interaction of 

flexible boundary with the fluid. It was probably Latham [1] who first studied the 

mechanism of the peristalsis in relation to mechanical pumping. A number of analytical 

studies of peristaltic transport obtained by a train of periodic sinusoidal waves in an 

infinitely long two-dimensional symmetric channel or ax-symmetric tubes containing a 

Newtonian or non-Newtonian fluid with no-slip wall condition have been investigated in 

refs. [2-17]. It is now a well-accepted fact that the peristaltic flows of 

magnetohydrodynamic (MHD) fluids are important in medical sciences and 

bioengineering. The MHD characteristics are useful in the development of magnetic 

devices, cancer tumor treatment, and hyperthermia and blood reduction during surgeries. 

Hence several scientists having in mind such importance extensively discussed the 

peristalsis with magnetic field effects (Agarwal and Anwaruddin [18], Hayat and Ali [19], 

Mekheimer [20], Subba Reddy et al., [21]).Since then, this work on magneto 
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hydrodynamic (MHD) flow has received much attention. This is due to the fact that such 

studies are useful particularly for getting a proper understanding of the functioning of 

different machines used by clinicians for pumping blood (Misra et al., [22]). Misra et al., 

[23] pointed out that theoretical researches with an aim to explore the effect of a magnetic 

field on the flow of blood in atherosclerotic vessels also find application in a blood pump 

used by cardiac surgeons during the surgical procedure. 

Couple stress fluids consist of rigid, randomly oriented particles suspended in a viscous 

medium. The couple stress fluid is a special case of the non-Newtonian fluids where these 

fluids are consisting of rigid randomly oriented particles suspended in a viscous medium 

and their sizes are taken into account. This model can be used to describe human and 

animal blood, infected urine from a diseased kidney and liquid crystals. From the recent 

attempts dealing with the couple stress model, we refer to Mekheimer [24], as he has 

investigated the problem of the peristaltic transport of a couple stress fluids in a uniform 

and non-uniform channel. Also Nadeem and Akram [25] have investigated the peristaltic 

flow of a couple stress fluids under the effect of induced magnetic field in an asymmetric 

channel, and Sobh [26] has studied the effect of slip velocity on peristaltic flow of a 

couple stress fluids in uniform and non-uniform channels. The peristaltic fluid flow 

through channels with flexible walls has been studied by Ravi Kumar et al., [27-35]. 

Effects of induced magnetic field and slip condition on peristaltic transport with heat and 

mass transfer in a non-uniform channel has been studied by Najma Saleem et al., 

[36].Couple stress fluid is known to be a better model for bio-fluids, such as blood, 

lubricants containing small amount of high polymer additive, electro-rheological fluids 

and synthetic fluids (Valanis and Sun [37]). The main feature of couple stress fluids is 

that the stress tensor is anti-symmetric and their accurate flow behavior cannot be 

predicted by the classical Newtonian theory. Stokes [38] generalized the classical model 

to include the effects of the presence of the couple stresses. Sankad and 

Radhakrishnamacharya [39], Srinivasacharya and Srikanth [40] and Mekheimer and 

Shehawey [41] studied the flow of couple stress fluid under different conditions. 

 

2. Mathematical Formulation and Solution 

We consider the peristaltic flow of a viscous incompressible Newtonian fluid with 

couple –stress through a porous a medium in magnetic field through a two-dimensional 

channel of non- uniform thickness with a sinusoidal wave travelling down its wall. A 

uniform magnetic field B0 is applied in the transverse direction to the flow. The electrical 

conductivity of the fluid is assumed to be small so that the magnetic Reynolds number is 

small and the induced magnetic field is neglected in comparison with the applied 

magnetic field. 

The geometry of the wall surface is defined as 

)1()(
2

sin)(),( ctxbxatxh 



 

With a(x) = a0+kx    

where a(x) is the half-width of the channel at any axial distance x from inlet, a0 is the half-

width at inlet, k(<<1) is a constant  whose magnitude depends on the length of the channel 

and exit and inlet dimensions, b is the wave amplitude,  is the wave length, c is the 

propagation velocity and t is the time. 

We introduce a wave frame of reference (x, y) moving with velocity c in which the 

motion becomes independent of time when the channel length is an integral multiple of 

the wave length and the pressure difference at the ends of the channel is a constant 

(Shapiro et al., (1969)). The transformation from the fixed frame of reference (X,Y) to the 

wave frame of reference (x, y)is given by 

x =X-ct, y = Y, u = U-c, v =V and p(x) = P(X, t), 
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where (u, v) and (U, V) are the velocity components, p and P are pressures in the wave 

and fixed frames of reference, respectively. 

The equations governing the flow in wave frame of reference are given by 
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u and v are the velocity components in the corresponding coordinates  p is the fluid 

pressure,  is the density of the fluid,   is the coefficient of the viscosity,  is the 

coefficient of couple stress,k1is the permeability of the porous medium, g is the 

acceleration due to gravity, inclination angle α and k is the thermal conductivity. Since it 

is presumed that the couple stress is caused by the presence of the suspending particles, 

obviously the clear fluid cannot support couple stress at the boundary, hence we have 

tactically assumed that, the components of the couple stress tensor at the wall vanish. 

Using the following the non-dimensional variables 
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The equations governing the flow in wave frame of reference are given by  
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Using long wavelength (i.e., 1 ) and negligible inertia (i.e., 0Re  ) 

approximations, we have 
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Where β is the slip parameter 

Solving equation (8) using the boundary conditions (10 and 11), we get 
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3. Shear Stress, Pressure Gradient and Pressure Rise 

The shear stress at the upper wall y = h ( ), in the dimensional form is given by 
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and it’s solution is given by  
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The rate of volume flow ’q’ through each section is a constant (independent of both x 

and t).It is given by 
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Hence the flux at any axial station in the fixed frame is found to be given by 
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The pressure gradient obtained from equation (17) can be expressed as    
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The pressure rise     (at the wall) in the channel of length L, non-dimensional form is 

given by 
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4. Numerical Results and Discussion 

The analytical expressions for the axial velocity, transverse velocity, shear stress, 

pressure gradient and pressure rise have been derived in the last section. The numerical 

and computational results are discussed through the graphical illustration. Mathematica 

software is used to find out numerical results. The axial and transverse velocities are 
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presented in the figures (1) to (20) for various in the governing parameters like couple 

stress parameter (S), porous parameter (D),magnetic field (M) and slip parameter (β) and 

inclined angle (α).The effects of Don axial velocity are shown in Figures 1 and 2. From 

these figures, it can be seen that the axial velocity (u) decreases with increasing the 

Porous parameter (D) with M ≥ 0.1 for fixed S = 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 0.5,

 = 0.7, x = t=
4

 , 

  = 10, k = 0.0005, a0= 0.01. Figures 3 and 4 illustrate the effects of magnetic field on 

axial velocity (u).It is interested to note that the axial velocity rapidly increases with 

increase in magnetic field (M) with D ≥1for fixed S = 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 

0.5,  = 0.7, x = t=
4

 ,   = 10, k = 0.0005, a0= 0.01.The axial velocity distribution (u) 

with Couple stress parameter (S) as depicted in Figures (5) to (6) with M ≥ 0.1for being 

fixed other parameters. We observe that the axial velocity increases with increase in 

Magnetic field (M). Figures 7 and 8 are plotted to study the effect of β on the velocity. 

We observed that the velocity gradually decreases with increase in β with M ≥ 0.1 for 

fixed S = 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 0.5,  = 0.7, x = t=
4

 ,   = 10, k = 0.0005, 

a0= 0.01. The effects of α on axial velocity are depicted in Figures 9 and 10. We observe 

that that the axial velocity enhances with enhance in inclined angle α with D ≥1 for fixed 

M = 0.5, S = 0.1, η = 0.5,
dx

dp  = 0.5,   = 0.7, x = t =
4

 ,   = 10, k = 0.0005, a0= 0.01. 

Hence we conclude that the axial velocity increases with increase in M, S and α and 

deceases with increase in D and β throughout the flow field. 

The transverse velocity distribution (v) with porous parameter (D) as depicted in 

Figures (11) to (12) with M ≥ 0.1. We notice that the transverse velocity enhances with 

increase in porous parameter (D) for fixed S = 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 0.5, 

= 0.7, x = t=
4

 ,   = 10, k = 0.0005, a0= 0.01. From Figures 13 and 14, We notice that the 

transverse velocity (v) decreases with increase in Magnetic field (M) with D ≥1for fixed S 

= 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 0.5,  = 0.7, x = t=
4

 ,   = 10, k = 0.0005, a0= 0.01. 

Figures 15 and 16 reveal the transverse velocity (v) with Couple stress parameter (S). We 

observe that the transverse velocity (v) enhances with increase in S with M ≥ 01for fixed 

other parameters. The effects of β on transverse axial velocity are depicted in Figures 17 

and 18. We observe that the transverse velocity (v) decreases with increase in slip 

parameter (β) with M ≥ 0.1 for fixed S = 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 0.5,  = 0.7, 

x = t=
4

 ,   = 10, k = 0.0005, a0= 0.01. Figures 19 and 20 illustrate the effect of α on 

transverse axial velocity (v).We notice that the transverse velocity decreases with increase 

in α. Hence we conclude that the transverse velocity increases with increase in D and S 

and decreases with increase in M, β and α. Figures 21 to 28 reveals the axial pressure 

gradient for different value of S, M, D, α and β. Figures 20 and 21 illustrate the influence 

of Q  on pressure gradient dp/dx. The figures show that the wider part of the channel 

 3.0,0x  and  1,7.0x , the pressure gradient is relatively small. Hence, the flow can 

easily pass without imposing large pressure gradient. However, in the narrow part of 

channel x  [0.3, 0.7], larger pressure gradient is needed to maintain the same flux to pass 

through it and we notice that the pressure gradient is increases with increase in Q . The 



International Journal of Bio-Science and Bio-Technology 

Vol.7, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC  71 

effects of Mon pressure gradient dp/dx are shown in Figures 23 and 24. We notice that the 

magnitude of dp/dx is inversely proportional to M and notice that pressure gradient is 

maximum at x = 0.5. Figures 25-26 illustrate the variations of 
dx

dp with S. From these 

figures, it can be seen that the axial pressure gradient is decreases with increase in S. 

From the figures, we observed that through the region  8.0,2.0x  
i.e., narrowing part of 

the channel, the flow cannot pass easily. Therefore, it required large pressure gradient to 

maintain the same flux to pass it in the narrow part of the channel. The effects of D on 

axial pressure gradient are depicted in figures 27 and 28.It is interested to note that the 

pressure gradient is increases with increase in D and notice that pressure gradient is 

maximum at x = 0.5. Figure 29 to 30 reveals the behavior of the shear stress in a cycle of 

oscillations at different points of wave length for various in governing parameters S, D, 

M, α and β. We notice that no separation occurs in flow field. 

 

 

Figure 1. Distribution of Axial Velocity for Different Values of D with fixed M 

= 0.1, S = 0.1, β = 0.2, η = 0.5,
6


  , 

dx

dp  = 0.5,   = 0.7, x = t =
4

 ,   = 10, k = 

0.0005, a0= 0.01 

 

Figure 2. Distribution of Axial Velocity for Different Values of D with Fixed M 
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Figure 3. Distribution of Axial Velocity for Different Values of M with Fixed D 

= 1,S = 0.1, β = 0.2, η = 0.5,
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Figure 4. Distribution of Axial Velocity for Different Values of M with Fixed D 
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Figure 5. Distribution of Axial Velocity for Different Values of S with Fixed D 
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Figure 6. Distribution of Axial Velocity for Different values of S with Fixed D 

= 1.5, M = 0.5, β = 0.2, = η 0.5,
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Figure 7. Distribution of Axial Velocity for Different Values of β with Fixed D 
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Figure 8. Distribution of Axial Velocity for Different Values of β with Fixed D 
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Figure 9. Distribution of Axial Velocity for Different Values of α with Fixed D 

= 1, M = 0.5, S = 0.1, η = 0.5,  
dx

dp  = 0.5,   = 0.7, x = t =
 

 
,   = 10, k = 0.0005, 
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Figure 10. Distribution of Axial Velocity for Different Values of α with Fixed 

D = 1.5, M = 0.5, S = 0.1, η = 0.5,  
dx

dp  = 0.5,   = 0.7, x = t =
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Figure 11. Distribution of Transverse Velocity for Different Values of D with 

Fixed M = 0.1, S = 0.1, β = 0.2, η = 0.5,
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Figure 12. Distribution of Transverse Velocity for Different Values of D with 

Fixed M = 0.5, S = 0.1, β = 0.2, η = 0.5,
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Figure 13. Distribution of Transverse Velocity for Different Values of M with 

Fixed D = 1, S = 0.1, β = 0.2, η = 0.5,
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Figure 14. Distribution of Transverse Velocity for Different Values of M with 

Fixed D = 1.5, S = 0.1, β = 0.2, η = 0.5,
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Figure 15. Distribution of Transverse Velocity for Different Values of S with 

Fixed D = 1.5, M = 0.1, β = 0.2, η = 0.5,
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Figure 16. Distribution of Transverse Velocity for Different Values of S with 

Fixed D = 1.5, M = 0.5, β = 0.2, η = 0.5,
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Figure 17. Distribution of Transverse Velocity for Different Values of β with 

fixed D = 1, M = 0.1, S 0.1, η = 0.5,
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Figure 18. Distribution of Transverse Velocity for Different Values of β with 

Fixed D = 1, M = 0.5, S = 0.1, η = 0.5,
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Figure 19. Distribution of Transverse Velocity for Different Values of α with 

Fixed D = 1, M = 0.5, S = 0.1, η = 0.5,  
dx

dp  = 0.5,   = 0.7, x = t =
 

 
,   = 10, k = 

0.0005, a0= 0.01 

 

Figure 20. Distribution of Transverse Velocity for Different Values of α with 

Fixed D = 1.5, M = 0.5, S = 0.1, η = 0.5, 
dx

dp  = 0.5,   = 0.7, x = t =
 

 
,   = 10, k = 
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Figure 21. Distribution of Pressure Gradient Versus x with  ̅ for Fixed D = 

1.5, M = 0.1, S = 0.3, β = 0.2, η = 0.5,
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Figure 22. Distribution of Pressure Gradient Versus x with  ̅ for Fixed D = 

1.5, M = 0.3, S = 0.3, β = 0.2, η = 0.5,
6


  ,   = 0.7,  t =

 

 
,   = 10, k = 0.0005, 

a0= 0.01 

 

Figure 23. Distribution of Pressure Gradient Versus x with M for Fixed D = 

0.5, S = 0.1,β = 0.2,  ̅     , η = 0.5,
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Figure 24. Distribution of Pressure Gradient Versus x with M for Fixed D = 1, 

S = 0.1,β = 0.2, ̅     , η = 0.5,
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Figure 25. Distribution of Pressure Gradient Versus x with S for Fixed D = 

1.5, M = 0.1, β = 0.2,  ̅     , η = 0.5,
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Figure 26. Distribution of Pressure Gradient Versus x with S for Fixed D = 

1.5, M = 0.3, β = 0.2,  ̅     , η = 0.5,
6


  ,   = 0.7,  t =

 

 
,   = 10, k = 0.0005, 

a0= 0.01 

0.2465

0.247

0.2475

0.248

0.2485

0.249

0.2495

0.25

0.2505

0 0.2 0.4 0.6 0.8 1

dp/dx 

x 

M = 0.1

M = 0.3

M = 0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

dp/dx 

x 

S = 0.1

S = 0.2

S = 0.3

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1dp/dx 

x 

S = 0.1

S = 0.2

S = 0.3



International Journal of Bio-Science and Bio-Technology  

Vol.7, No.5 (2015) 

 

 

80  Copyright ⓒ 2015 SERSC 

 

Figure 27. Distribution of Pressure Gradient Versus x with D for Fixed S = 

0.1, M = 0.1, β = 0.2,  ̅     , η = 0.5,
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Figure 28. Distribution of Pressure Gradient versus x with D for Fixed S = 

0.1, M = 0.5, β = 0.2,  ̅     , η = 0.5,
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Figure 29. Distribution of Shear Stresses τ for S = 0.1, M = 0.1, D = 1, β = 

0.2, ̅      , η = 0.5,
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Figure 30. Distribution of Shear Stresses τ for S = 0.1, M = 0.1, D = 1.5, β = 

0.2, ̅     , η = 0.5,
6


  ,   = 0.7, t =

 

 
,   = 10, k = 0.0005, a0= 0.01 

5. Conclusions 

Effect of couple stress fluid flow on magnetohydrodynamic peristaltic blood flow with 

porous medium trough inclined channel in the presence of slip effect-Blood flow study is 

investigated under the assumption of long wavelength approximation. Furthermore, the 

effect of various values of parameters on axial velocity, transverse velocity, pressure 

gradient and shear stress have been computed numerically and explained graphically. We 

conclude the following observations: 

1. The axial velocity increases with increase in M, S and α and deceases with 

increase in D and β. 

2. The transverse velocity increases with increase in D and S and decreases with 

increase in M, β and α in the entire flow field.  

3. The pressure gradient is maximum at x = 0.5. 

4. The pressure gradient is decreases with increase in S. 

5. The pressure gradient is increases with increase in ̅. 
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