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Abstract 

The need of similarity measures in life science is ever paramount given the modern 

biotechnology in producing and storing biomedical datasets in large amounts. This paper 

presents a novel scheme in measuring similarity of two datasets by prediction class, namely 

SPC. SPC offers an alternative approach to traditionally used ones such as pairwise 

correlations which assume every attribute carries equal importance. The unique advantage of 

SPC is the use of a machine learning model called Fuzzy Unordered Rule Induction to infer 

the similarity between two datasets based on their common attributes and their degrees of 

relevance pertaining to a predicted class. The method is demonstrated by a case of 

comparing lung cancer dataset and heart disease dataset. 

 

Keywords: Similarity measure; Classification; Fuzzy Unordered Rule Induction; Data 

Analytics 

 

1. Introduction 

Modern technological advances in life science instruments have given rise to easy and 

rapid production of biomedical data. The biomedical datasets however may come in different 

variables and sizes due to a wide variety of sources. Many biomedical datasets in 

heterogeneous formats are hence produced and electronically stored in distributed locations. 

For example, biomedical researchers work with many different types of image and signal 

data, as well as electronic patients’ records that cover diagnostic and prognosis data from 

health-care institutes all over the world. This makes biomedical analytics difficult because so 

far there is no universal similarity measuring method agreed to be best over heterogeneous 

data structures. Nevertheless researchers from both computer science communities and 

biomedical research communities formulated methods for measuring similarities between 

medical data items over the years. Their methods however vary greatly in theory based on 

different computational principles. 

One of the fundamental criteria for the characterization of similarities between measured 

biomedical data items is correlation. It is popularly used in ranking attributes that describe the 
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dataset with relations between the attributes and the predicated class; and also in computing 

the correlations between attributes owned by different data objects in order to infer the 

similarity. For instance, Strickert, et al., [1] extended the formal derivative of Pearson 

correlation for gradient-based optimization of data models, by rating the individual data 

attributes according to their impact on pairwise data relationships. Then the high-dimensional 

space is scaled by maximizing the correlation between distances of static source data and 

adaptive target vectors. The method was tested successfully on mass spectroscopy data. 

Analogous to Pearson correlation, the variance measure in hyperspace such as Euclidean 

Distance, Minkowski Distance and the like, is favoured by another group of researchers. In 

general, they refer this type of similarity measure as clustering-based similarity models [2, 3]. 

An affinity coefficient [4] is computed by measuring how close each pairs of attributes are 

apart via clustering on multivariate data analysis. Recently, Chanchala, et al., [5] proposed a 

similarity measure that based on the multivariate hypergeometric distribution for the pairwise 

comparison of images and data vectors. Testing on large-scale biological sample datasets are 

enabled by their method of piecewise approximation, such as mass spectrometry imaging data 

and gene expression microarray data.  

Along with the concept of pairwise comparison between the data features, a number of 

similar techniques have been studied but for specific applications such as measure of 

contextual similarity for biomedical terms [6] via Edit Distance for approximate string 

matching, biomedical image retrieval via case-based reasoning over image features [7], 

measuring the relatedness and similarity of biomedical concepts [8] or reports [9] by 

dictionary-like Unified Medical Language System and some ontology standards respectively; 

just to name a few. 

In this paper we present an alternative similarity measure called Similarity by Prediction 

Class (SPC). The method is extended from our previous work [10] called Dependency 

Network that displays out all the attributes and their respective predictive strengths to a 

disease, also inter-relations between symptoms across different diseases can be inferred. 

Using functions feature selection and information gain in inducing a predictive model, a 

Dependency Network is built by assigning the attributes of some disease significance values. 

The Dependency Network has the advantage of loading multiple medical history datasets so 

that dependencies can be traced across multiple diseases. This feature is useful for factors 

exploration especially those that were not previously known. The implicit link could be traced 

across a chain of diseases provided that they have common attributes in the forms of factors 

and symptoms in a sense of causality by investigating their relationships towards some related 

diseases. The underlying logic is a set of formula for quantitatively deriving a relational 

measure for this indirect dependency across diseases. Readers may find the mathematical 

definitions in [10]. One technical challenge in implementing a Dependency Network is the 

need of merging two or more medical datasets that have different dimensions in columns and 

rows though they may share some common attributes. This is known as schema matching 

which is a classical problem in information integration. A number of automated methods have 

been attempted in the past [11], such as matching the missing values by textual similarity, 

guessing from the mean values, by most frequently appearing numbers and so on. For the 

sake of obtaining the highest possible accuracy however, in medical data analysis, we resort 

to the most accurate yet computational-intensive method by building a RIPPER decision tree 

[12] for estimating the blank values. As long as the two medical datasets have sufficient 

amount of common attributes and the attributes have fairly good predictive powers to the 

diseases, the decision-tree-per-missing-attribute method works satisfactorily. A pioneer work 

on applying decision-trees for estimating missing values demonstrated its feasibility [13]. 
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While Dependency Network was designed for informatics visualization, SPC improves its 

precursor by qualitatively and quantitatively inferring which are the most relevant common 

attributes and the similarity measure in numbers, between a pair of medical datasets in 

question. When studying diseases and genetic disorders, researchers would like to quantify 

the amount of presence of a condition as well as comparing a particular dataset or sample to a 

reference dataset. So the objective is mainly classification. For example, cases of a new 

disease surfaced, which is possibly mutated, unseen and undiscovered before. Not only is it 

interested to find which other disease it is related to by their common properties, but to know 

in quantitative value how similar they are. The major difference between our proposed SPC 

model and the existing ones including Dependency Network, is that SPC is measured based 

on common attributes and their specific relevance to the predicted class in concern. Instead of 

measuring similarity merely by pairwise correlations assuming every attribute is equally 

important (which is clearly not true in medical contexts), SPC infers the predictive powers (in 

terms of relevance) of the commonly owned attributes of two datasets with respective to the 

predicted class. Hence a more accurate similarity measure can possibly be achieved. Taking a 

layman analogous example, two persons can be related by screening their bodily and 

demographics attributes which they own in common; person A and person B may be similar 

in terms of body built for the classification of hobby – sports-type, A is a soccer player and B 

is a hockey player. However, they are dis-similar once the classification is changed to, let’s 

say – profession, A is an accountant and B is a bus driver. The overlapped attributes of the 

two persons that sustain strong predictive power to the class of ‘hobby’ could be body height, 

physical fitness features, etc. But in the context of classification of ‘profession’, these 

physical attributes may become less relevant compared to other attributes like education 

background and work experiences. 

 

2. SPC Method 

Three computational steps are involved in estimating a result from the SPC model: Step (1) 

Data-preprocessing – merge two datasets into a combined dataset which contains a meta-

prediction class. Step (2) Classification Model Induction – from the combined dataset that 

contains training records from the two datasets in comparison, mapping to categories of meta-

class, induce a classification model by supervised learning via Fuzzy Unordered Rule 

Induction algorithm (FURIA). Step (3) Rule Analysis – from the induced rules, calculate the 

similarity and the respective performance indicators. 

 

2.1. Data-preprocessing 

The medical dataset is a matrix of instances collected from the historical records or 

specimen samples. Each instance (row) is characterized by different attributes or features 

(columns) and it comes with a priori known label called class (in the last column). It is 

assumed that the classes of two datasets would have a common ontology which leads to a 

meta-class. For example, a lung cancer dataset may contains a collection of patients’ records, 

each of which are characterized by attributes such as age, gender, whether he is a smoker, 

how many cigarettes are smoked daily, how long he has been a smoker, diet habits etc. Each 

record has a numeric class value having 0 means he is free of the disease, and other positive 

integers indicate different stages of lung cancer. Likewise for the other dataset heart disease 

with which the lung cancer dataset compares, it has attributes describing the conditions of the 

patient in each record and a class label of 0 meaning normal and other values representing 

different types of heart diseases. Over these two datasets, a meta-class could be simply 
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binary, 1-sick and 0-not sick. The two datasets, which come in different numbers of instances 

(n, j) and attributes (m, k) may take the form: 

 

A={

    
    
 
    

    
    
 
    

 
 
 

    
    
 
    

} and B={

    
    
 
    

    
    
 
    

 
 
 

    
    
 
    

}  (1) 

. 

Taking into account that the class for A(ca) and class for B(cb) have a meta-class, and data 

are combined according to the meta-class, the transformed datasets are: 
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}  (2b) 

 

2.2. Classification Model Induction 

The rationale behind the use of FURIA is the fact that the instances after combining the 

two datasets are unordered and there may have existed some extent of uncertainty in 

persevering the non-linear relations between the attribute values and the meta-class. By now 

the attribute values should have been normalized into numeric z-scores for consistency. The 

FURIA is based on RIPPER [12] (Pruning to Produce Error Reduction) by William Cohen of 

AT&T Laboratories which is used here because of its high accuracy in predicate-logics rules 

generation, the information about the information gain for each attribute would be used for 

inferring a collection of links each represents the predictive power (in term of information 

gain) towards the prediction class. A selector constraining a numerical attribute   (with 

domain   = R) in a RIPPER rule can obviously be expressed in the form (  ∈I), where I ⊆R 

is an interval: I = (-∞,v] if the rule contains a selector (Ai ≦v), I = [u,∞) if it contains a 

selector (Ai ≧u), and I= [u, v] if it contains both (in the last case, two selectors are combined). 

Essentially, a fuzzy rule is obtained through replacing intervals by fuzzy intervals, namely 

fuzzy sets with trapezoidal membership function. A fuzzy interval of that kind is specified by 

four parameters and will be written   = (                      ): 

      

{
 
 

 
 

                                            ≦   ≦     

      

         
           

      

         
           

                                                                            

  (3) 

 



International Journal of Bio-Science and Bio-Technology 

Vol.6, No.2 (2014) 

   

 

Copyright ⓒ 2014 SERSC   163 
 

    and    arethe lower and upper bound of the core (elements with membership 1) 

of the fuzzy set respectively, likewise,      and     are represent the lower and upper 

bound of the support. To obtain fuzzy rules, the idea is to “fuzzify” (to make something 

fuzzy) the final rules from our modified RIPPER algorithm. The purpose is to search 

for the best fuzzy extension of each rule, where a fuzzy extension is understood as a 

rule of the same structure, everything is the same but the intervals is replaced by fuzzy 

intervals. For the fuzzification of the antecedent (Ai∈Ii) it is important to consider only 

the relevant data   
 , i.e., to ignore those instances that are excluded by any other 

antecedent (Aj ∈  
 ), j ≠ i: 

 

  
  { |           |  

 (  )               }⊆    (4) 

And split the instances   
  into two subsets, the positive instances    

  and the 

negative instances   
   Then to measure the quality of the fuzzication, the rule purity 

will be used: Pur = pi/(pi+ni), Pi means positive instances, and the Ni means negative 

instances. 

 

pi ∑         
 (x), and ni  ∑         

 (x)   (5) 

How to make the classifier output, we need a factor to judge, the factor is called 

certainty factor. Suppose the fuzzy rules   
   
   

   
 have been learned for the class   . 

For a new query instance x, the support of this class is define by 

 

Sj(x)  ∑  
  
        (x). CF (  

   
)    (6) 

where CF (  
   

) is the certainty factor of the rule   
   

. It is defined as: 
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where   
   

 denotes the subsets of training instances with label     . The class predicted 

by FURIA is the one with maximal support. In the case where x is not covered by any 

rule, which means that sj(x)=0 for all classes λj, a classification decision is derived in a 

separate way. 

 

2.3. Rule Analysis 

During the process of rule induction by FURIA, the entropy for each class of instances is 

calculated. 

Entropy (class) =                        (8) 

In the combined dataset where the meta-class is binary, there are r positive class and s 

negative class, the equation will be: 

Entropy (     ) =                            (9a) 

Entropy (     ) =                            (9b) 
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The gain information is therefore: 

                               ∑
|      |

|     |
                           (10) 

Assume there is x number of overlapped attributes among the two datasets in comparison, 

such that {1..x} attributes from which we can infer the predictive strengths with respective to 

the meta-class. 

         , and r+s=n. 

                               ∑
|      |

|     |
                                     (11) 

We can index the occurrence of the respective attributes in the rules, and produce a 

counting list as follow: 

D-class A= {

              
       

 
       

 
              

}    (12a) 

 

D-class B= {

              
       

 
       

 
              

}    (12b) 

where           means the index number for the instances that originally come from 

dataset A and dataset B respectively, and for the result 

 

                                     (Assume we only concern about c=1, 

sick) (13) 

The common instances with the same index and classification result K will be: 

 
K  = D-class A ∩ D-class B 

= {

             
      
 

       
 

             

}    (14) 

where k means the number of how many instance are there the two datasets overlapped in 

classification result. And the similarity of the two datasets is therefore: 

 

Similarity (A, B) =        = k/n    (15) 

In general, the result of SPC would be presented as a tuple, as follow 

 

Similarity (A, B)={S | CF | Acc | Conf}   (16) 

where S is computed from Eqn. 15, CF is confidence factors averaged out from all the 

overlapped attributes involved as by Eqn. 7, Acc is the accuracy of the FURIA induced 

model in terms of the number of correctly classified instances over the total number of 

instances, and Conf is confidence indicator derived from the amount of overlapped 

attributes over the total number of attributes of the dataset.  
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Conf = overlap(ia, ib) = 
|     |

    |  | |  | 
    (17) 

 

3. Experiment 

In order to demonstrate the efficacy of the SPC method proposed here, two empirical 

datasets, available for download from UCI repository [14] are used. Lung cancer is released 

in May 1992 by Hong, Z.Q. and Yang, J.Y. This data was used by Hong and Young to 

illustrate the power of the optimal discriminate plane. The data described 3 types of 

pathological lung cancers. This date is published in July 1988 in UCI. The "goal" field refers 

to the presence of heart disease in the patient. It is integer valued from 0 (no presence) to 4. 

Experiments with the Cleveland database have concentrated on simply attempting to 

distinguish presence (values 1, 2, 3, 4) from absence (value 0). The characteristics of the two 

datasets in comparison are shown in Table 1. 

 

Table 1. Number of attributes and instances for the two datasets 

NAME INSTANCE# ATTRIBUTE# CLASS# 

Lung Cancer 800 42 7 

Heart Disease 200 48 2 

 

In order to demonstrate the efficacy of the SPC method proposed here, two empirical 

datasets, available for download from UCI repository [14] are used. Lung cancer is released 

in May 1992 by Hong, Z.Q. and Yang, J.Y. This data was used by Hong and Young to 

illustrate the power of the optimal discriminate plane. The data described 3 types of 

pathological lung cancers. This date is published in July 1988 in UCI. The "goal" field refers 

to the presence of heart disease in the patient. It is integer valued from 0 (no presence) to 4. 

Experiments with the Cleveland database have concentrated on simply attempting to 

distinguish presence (values 1, 2, 3, 4) from absence (value 0). The characteristics of the two 

datasets in comparison are shown in Table 1. 

The two datasets are subject to SPC measure by following the steps in Section 2. For the 

sake of objective comparison with existing methods, the following two methods are used – 

Pearson correlation as reported in [10] by using Dependency Network, and Mutual 

Information Score [15] which is a measure of mutual dependence of two sets of variables. 

The formula for Mutual Information as reported in [16] is defined as follow: 

       ∑∑           
      

        
 

      

 

where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) 

are the marginal probability distribution functions of X and Y respectively. The results 

of the different similarity measures by the three methods, SPC, Correlation and Mutual 

Information are presented in Table 2. The results have been normalized in [0..1] for 

easy comparison. In SPC, the meta-class is ‘illness’ that abstracts all the non-zero class 

values. 
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Table 2. Results of various similarity measures by SPC, Correlation and Mutual 
Information 

Similarity Measure SPC Correlation 

Mutual 

Information 

Lung Cancer & Heart 

Disease 0.3902 0.1037 0.1992 

    

 
Interestingly it can be seen that SPC has the highest value among the three similarity 

measure methods. It indicates a phenomenon that by taking account of the predicated class we 

can obtain more a precise similarity measurement than going through all the attributes in 

pairwise fashion (as in correlation and mutual information). The dependence graphs that show 

all the attributes of the two diseases and only the significant overlapped attributes are depicted 

in Figure 1 and Figure 2 respectively. 

 

 

Figure 1. Dependency graph that shows all the attributes 

 

 

Figure 2. Dependency graph that shows only the significant overlapped 
attributes 
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4. Conclusions 

Similarity measure is an important data exploratory tool in life. In the past many 

researchers attempted to provide computational methods in measuring how close/different 

two biomedical data are. Existing methods include statistical means like correlation, 

frequency counting, clustering and other sophistical data mining techniques. In this paper we 

present an alternative similarity measure method called Similarity by Predicted Class (SPC) 

which can more precisely infer a quantitative measure between two different datasets by 

referring to their common predicated class (e.g., illness, fatality, maliciousness, etc.). SPC 

works completely different from pairwise computing methods as SPC depends on the 

predictive power of the overlapped attributes pertaining to a common predicted class of the 

two datasets. In particular, fuzzy unordered rule induction algorithm is used in the inference 

process that offers fuzziness of the relevance of the attributes to the predicted class, and it is 

extended from a known classifier called RIPPER which offers relatively high accuracy. Our 

new method is demonstrated by a case of comparing lung cancer dataset and heart disease 

dataset. Experiments are conducted using UCI medical datasets and the results demonstrate 

that the methodology and the technical tasks within are possible. This methodology is 

believed to be useful for medical experts who want to investigate dependencies of attributes 

among a wide variety of medical data and it has positive implication to medical applications 

such as information retrieval, medical document matching and categorizing biomedical data, 

etc. 
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