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Abstract 

Driven by the need to uncover the vast information and understand the dynamic behaviour 

of biological systems, researchers are now garnering interests in inferring gene regulatory 

networks (GRNs) from gene expression data which is otherwise unfeasible in the past due to 

technology constraint. In this regard, the dynamic Bayesian network (DBN) has been broadly 

utilized for the inference of GRNs, thanks to its ability to handle time-series microarray data 

and model feedback loops. Unfortunately, the commonly found missing values in gene 

expression data, and the excessive computation time owing to the large search space whereby 

all genes are treated as potential regulators for a target gene, often impede the effectiveness 

of DBN in inferring GRNs. This paper proposes a DBN-based model with missing values 

imputation and potential regulators selection (ISDBN) which deals with the missing values 

and reduces the search space by selecting potential regulators based on gene expression 

changes. The performance of the proposed model is assessed by using S. cerevisiae cell cycle 

and E. coli SOS response pathway time-series expression data. The experimental results 

showed reduced computation time and improved accuracy in detecting gene-gene 

relationships when compared to conventional DBN. The results of this study showed that 

ISDBN performs better than conventional DBN in terms of accuracy and computation time 

for GRNs inference. Moreover, we foresee the applicability of the resultant networks from 

ISDBN as a framework for future gene intervention experiments. 
 

Keywords: Dynamic Bayesian network, missing values imputation, gene expression data, 

gene regulatory networks, network inference 
 

1. Introduction 

In the post-genomic era, the exponentially increasing data generated from numerous 

biological fields such as genomics, metabolomics, proteomics and transcriptomics poses a 

serious challenge for biological researchers to analyse and utilise. Therefore, due to the 

increasing dependency on computation to scrutinise the high throughput data, the inclination 

of molecular biology evolving into a quantitative science is inevitable. Along with the science 

and technology breakthroughs, researchers are now concentrating on the holistic view of the 

system rather than just approaching one gene or one protein. The term systems biology is 
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thereby coined to describe the evolving nature and holism of bioscience research. It represents 

a new perspective as a biology-based interdisciplinary study field which focuses on the 

complicated interactions of biological systems from a holistic approach.  

One of the goals of systems biology is to understand the underlying mechanism and nature 

of the regulation of protein synthesis along with its reactions to external and internal stimuli. 

The framework of sequence information transfer between sequential information-carrying 

biopolymers was first described in the central dogma of molecular biology. Despite carrying 

the same genomic data, the regulation process causes the pattern of gene expression products 

for different kind of cells in an organism to be significantly different temporally and spatially. 

Nonetheless, these differences of protein makeup are crucial to the processes of life. This 

sophisticated way of regulating gene expression can be described as gene regulatory networks 

(GRNs). In other words, GRNs are a collection of gene segments in a cell and their 

interactions between each other and other substances in the cell, thus resulting in the 

governing of gene-product abundance. 

In recent years, the advent of DNA microarray technology enabled researchers to facilitate 

new experimental methods for understanding gene expression and regulation. This 

technology which probes the expression of hundreds to tens of thousands of gene 

simultaneously via a nucleic acid hybridization approach, is capable of showing the 

increment, decrement or inert expression of every gene in the test condition relative to the 

control condition (also known as gene expression profiling), thus providing a holistic 

viewpoint of gene expression to the researchers instead of only a few genes as in the classical 

experiments [1]. Over the years, numerous organisms and mammalian cells have been 

profiled, including S. cerevisae [2], human cancerous tissue [3], and E. coli [4]. The profiling 

data contain the answers to various problems such as the set of behaviours exhibited by the 

system under different conditions; anomalies of the system if certain parts cease to function; 

and the robustness of the system under extreme conditions [5]. However, the technology 

breakthrough in experimental methods for large-scale studies of gene regulation also implies 

that researchers must deal with the massive amount of expression profiling data generated by 

the microarray experiments. Nevertheless, motivated by the desire of researchers to 

understand the complex phenomena of gene regulation, gene expression profiling data have 

obtained significant importance in the inferring of GRNs to describe the phenotypic 

behaviours of a specific system. For instance, Segal et al. [6] constructed condition specified 

GRNs by utilising a probabilistic model on a S. cerevisiae gene expression dataset with a 

subset of 2355 genes. The inferred GRNs were proved to be fundamental in predicting the 

functions of several previously unannotated proteins. 

The traditional way of inferring GRNs from gene expression profiling data involves the 

generation of an initial condition-specific model, that is, a hypothetical model which 

simulates the system’s set of behaviours under experimental conditions. The subsequent steps 

would be focused on disproving the hypothesis by comparing the prediction of the model 

based on new conditions against the observed gene expression data to give a glimpse of the 

hypothetical model’s competency. The model must be revised if the predicted system 

behaviours do not match with the observed data, and this set of routine iterates until a model 

which accurately describe the system’s behaviours is attained [7]. It is obvious that the 

traditional trial and error method for inferring GRNs is not feasible due to its time-consuming 

nature of repeating the routine to achieve competency of the model. As a result, researchers 

have started to rely on computational methods to automate the inference procedure. 

From a computational viewpoint, a GRN is a directed graph represented by nodes (genes) 

and edges (interactions) to describe the causal relationship between gene activities. The 

simplest interactions include activation (up-regulation), inhibition (down-regulation) or 
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constitutive expression. The absence of an edge between two nodes suggests that there is no 

relationship between them. The general idea behind inferring GRNs using computational 

methods is the reverse engineering paradigm, or more widely known as inferring [8]. Recent 

researches have also showed that the integration of available domain knowledge (such as 

functional and structural information) to the method is capable of deriving a realistic model 

by narrowing down the search space, thus shortening the time and effort spent on validation 

and verification [7]. Over the years, various computational methods have been developed to 

infer GRNs from gene expression data. In particular, Bayesian network (BN), which models 

conditional dependencies of a set of variables via probabilistic measure, was widely utilized 

by researchers in inferring GRNs from gene expression data. BN’s effectiveness in inferring 

GRNs is mainly due to its ability to work on locally interacting components with a relatively 

small number of variables; able to assimilate other mathematical models to avoid the 

overfitting of data; and allows the combination of prior knowledge the strengthen the causal 

relationship. Despite the advantages stated above, BN has two critical limitations in which it 

does not allow feedback loops and is unable to handle the temporal aspect of time-series 

microarray data. 

In view of the fact that feedback loops represent the importance of homeostasis in living 

organisms, researchers have developed the dynamic Bayesian network (DBN) as a promising 

alternative. Since the pioneering work of Murphy and Mian [9], DBN has attracted particular 

attention from numerous researchers. Perrin et al. [10] used an extended expectation-

maximisation (EM) algorithm as a penalised likelihood maximisation method to estimate the 

parameters of the model. Alternatively, Yu et al. [11] proposed an influence score metric for 

DBN to identify the nature and estimate the relative magnitude of the interactions between the 

genes. Zhang and Moret [12] applied DBN as one of the two base inference methods in part 

of their refinement algorithm for inferring transcriptional regulatory networks. Nevertheless, 

conventional DBN typically assumes all genes as potential regulators against target genes, 

and consequently causes the large search space and the excessive computational cost which 

inhibit the efficiency of DBN [13]. In addition, the missing values commonly found in 

expression data may influence up to 90% of the genes [14], thus affecting the inference 

results. To tackle the two problems, we proposed a model of DBN with missing values 

imputation and potential regulators selection (ISDBN) which would work out against the 

missing values problem and reduce the search space by selecting potential regulators based on 

gene expression changes. The details of our model are discussed in the following section. 

 

2. Methods 

In this section, we discuss the particulars of the proposed DBN-based model 

(ISDBN) for inferring GRNs from gene expression data. ISDBN primarily consists of 

three main steps: missing values imputation, potential regulators selection and DBN 

inference. ISDBN differs from conventional DBN whereby the missing values are 

ignored and all genes are considered as potential regulators against a target gene. Figure 

1 illustrates the schematic overview of ISDBN. 

 

2.1. Missing Values Imputation 

Missing values in gene expression data occur for numerous reasons. For one, the 

spots on the slides are miniscule and they are packed very tightly. A deficiency, a 

smudge, or even a speck of dust will corrupt the signals at a number of spots. After the 

array are scanned through and digitalised, the questionable spots are manually labelled 
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as missing. Also, it may occur due to various technical reasons, such as bleed-over from 

neighbouring spots, hybridisation failures or background noise in the scanned image.  

 

 

Figure 1. Schematic overview of ISDBN 
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Unfortunately, many downstream gene expression analysis methods lose 

effectiveness even with a few missing values. Traditional methods of treating missing 

values include reiterating the microarray experiment which is not economical feasible, 

or simply substitute the missing values by zero or row average. A better solution is to 

use imputation algorithms to estimate the missing values by utilising the observed data 

structure and expression pattern. Widely utilised imputation methods include 

KNNimpute [15], BPCA [16] and LLSimpute [17]. In particular, LLSimpute exploits 

local similarity structures by treating target gene with missing values as a linear 

combination of similar genes based on a similarity measure. The work of Kim et al. 

[17] showed that LLSimpute registered the overall lowest normalized root mean 

squared error (NRMSE) for all five experimental datasets (Including the S. cerevisiae 

cell cycle dataset used in this study) against other methods. Based on this information, 

LLSimpute was implemented as the missing values imputation method in our proposed 

model. In essence, LLSimpute consists of two main steps. The first step is to select k 

genes by the L2-norm, where k is defined as a positive integer that determines the 

number of coherent genes to the target gene. For example, to impute a missing value  

located at x11 in a m×n matrix X, the k-nearest neighbour gene vectors for x1,  

 

                                                                                                                (1) 

 

are first computed, whereby the gene expression data is summarised as a m×n matrix X (m is 

the number of genes, n is the number of observations), and x1 represents the row of the first 

gene with n observations. si is a list of k-nearest neighbour genes  vectors with their respective 

observations, which in turn corresponds to the i-th row of the transpose vector v
T
. The second 

step involves regression and estimation of the missing values. A matrix,  whereby 

the k rows of the matrix contains vector v, and two vectors,  and , are 

subsequently formed. The vector b contains the first element of k vectors v
T
, while vector w 

contains n – 1 elements of vector x1. A k-dimensional coefficient vector y is then computed 

such that the least square problem 

 

                                                                                        (2) 

 

is minimised as 

 

                                                                                                                          (3) 

 

Let y
*
 to denote the vector whereby the square is minimised such that 

 

                                                                                      (4) 

 

where , and therefore, the missing value  can be estimated as a linear combination 

of coherent genes such that 

 

                                                                                                                (5) 

 

where ( A
T
 )  exists as the pseudoinverse of A

T
. 
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2.2. Potential Regulators Selection 

Yu et al. [18] showed that in most cases, transcriptional factors (TFs) experience 

changes in expression level prior to or concurrently with their target genes. With this in 

mind, it is possible to devise an algorithm to reduce the search space by limiting the 

potential regulators of each target genes. First, we classified the gene expression values 

into three states: up-, down- and normal regulation. The three states indicate whether 

the expression value is greater than, lower than or similar to the threshold. This 

threshold can be either determined experimentally or fixed as the average expression 

level of the genes across experiments. In this study, we determined the threshold for up-

regulation and down-regulation based on the baseline cut-off of the gene expression 

values. As such, we decided to use ≥1.2 (up-regulation) and ≤0.7 (down-regulation) for 

the S. cerevisiae dataset, and ≥1.4 (up-regulation) and ≤0.7 (down-regulation) for the E. 

coli dataset. Next, the time points of initial up-regulation and down-regulation of each 

gene were determined, and genes with prior or concurrent expression changes were 

selected as the potential regulators for those genes with later expression changes.  As 

genes with late expression changes might comprise a large number of potential 

regulators, we only allowed five time points as the maximum time gap for prior 

expression changes to avoid selecting potential regulators for a target gene across the 

whole gene expression dataset. For example, Figure 2 shows the expression profiles of 

CLN1, CLN2 and GLK1 from the S. cerevisiae dataset. We found that the initial up-

regulation of CLN1 and GLK1 occurred at the 100th minute and CLN2 at the 110th 

minute. As CLN1 and GLK1 experienced up-regulation before CLN2, both were 

included in the subset of potential regulators for CLN2. The same potential regulators 

selection was applied to other up- and down-regulated genes. 

 

2.3. Dynamic Bayesian Network 

The network inference step is done by applying DBN, which is actually an extension 

of BN to describe the stochastic evolution of a network against time. This is mainly 

because BN is limited to steady-state data (static data), and DBN readily handles the 

temporal aspect to identify the causal relationships among variables in time-series data. 

It also enables the modelling of cyclic structure while inheriting the advantages of BN. 

Basically, in modelling time-series data, values of a set of variables are observed at 

different points in time. The general idea that time does not flow backward gives the 

assumption of an event can cause another event in the future but not vice-versa. As 

such, the design of DBNs on time-series data is unidirectional whereby the network 

should flow forward in time. Assuming each time point as single variable Yi, the 

simplest causal model for a sequence of data {Y1,…,Yt} would be a first-order Markov 

chain, in which the state of the next variable is dependent on the previous variable only. 

The Markov chain does not represent the dependencies between variables over more 

than one time step directly. A simple way to extend this model is to assume that the 

observable variables are dependent on their respective hidden discrete variables known 

as states. The sequence of hidden states can be classified as a hidden Markov model 

(HMM), which is regarded as one of the simplest form of DBN. DBN consists of two 

steps: parameter learning followed by structure learning. In the first step, we calculate 

the joint probability distribution (JPD) by applying the chain rule of probabilities and 

conditional independencies based on Bayes theorem. Assuming we have a microarray 

dataset which contains m genes and n observations. The dataset could be summarised as 

a m × n matrix X = (x1, …, xm) whereby each row, vector xm = (xm1,…, xmn) corresponds 
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to a gene expression vector measured at time t. First, time dependency is assumed in 

DBN modelling. The relationship is depicted as a directed acyclic graph ( first-order 

Markov chain) whereby only forward edges are allowed. The JPD of the model has the 

general form of: 

 

                                                            (6) 

 

 

Figure 2. Expression profiles of CLN1, CLN2 and GLK1 corresponding to 
the S. cerevisiae dataset. CLN1 and GLK1 exhibit up-regulated expression 
at the 100th minute and CLN2 at the 110th minute. Since CLN1 and GLK1 

have expression changes prior to CLN2, both were selected as the 
potential regulators of CLN2 

   

Next, the gene regulations are modelled according to the construction of conditional 

probability, P(xi | xi-1) for i = 2, …, n. Suppose that the network structure is stable 

through all time points, the conditional probability could be decomposed into the 

product of conditional probability of each gene given its parent genes p: 

 

                                                           (7) 

 

Based on the threshold defined earlier, we discretised the expression values of the 

results obtained from the previous step into three categories: -1, 0 and 1, which 

correspond to down-, normal and up-regulation respectively. The conditional 

probabilities of each subset of potential regulators against their target genes were then 

computed in a data matrix. The second step of DBN inference is to learn and search for 

the optimal network structure based on the parameters of the previous step. This  is done 

by using a polynomial time-based search strategy which utilises a scoring function 

based on the Bayesian Dirichlet equivalence (BDe). The minimal description length 

(MDL) is another generally used scoring function, and despite that MDL has a faste r 

computation time, BDe are more preferred for its accuracy in statistical interpretation 

[19]. Hence, for each target gene, the subset of potential regulators that has the minimal 

network score was selected as the final set of regulators. The final result s were then 
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imported into GraphViz (http://www.graphviz.org) for network visualization and 

analysis. 
 

3. Results and Discussion 
 

3.1. Experimental Data and Setup 

The experimental data used in this study includes the S. cerevisiae cell cycle time-

series gene expression data [2] and the E. coli SOS response pathway gene expression 

data [20]. The S. cerevisiae cell cycle progression comprises of four phases (G1, S, G2 

and M). At G1 phase, the cyclin-dependent kinase, CDC28 associates with cyclin CLN3 

and when it accumulates more than a certain threshold, SWI4, SWI6, MBP1 are 

activated, subsequently promoting the transcription of CLN1 and CLN2. This induces 

DNA replication and activates CLB1 and CLB2. The association of CLB1 and CLB2 to 

CDC28 promotes entry into mitosis. This dataset contains a total of 6178 genes 

observed at two short time series (CLN3, CLB2; both 2 time points) and four medium 

time series (alpha, CDC15, CDC28 and elu; 18, 24, 17 and 14 time points), and 

contains 5.912% missing values (28127 out of 475706 observations). We focused on the 

sub-network around CDC28 which contains around 20 genes. The E. coli SOS response 

pathway is an error-prone repair system which responses to damaged DNA by arresting 

cell cycle and inducing DNA repair. Under normal circumstances, the repressor protein, 

lexA negatively regulates the SOS genes by binding to the promoter region of these 

genes. DNA damage is signified by the blockage of DNA polymerase which would 

result in the accumulation of single-stranded DNA (ssDNA). The recA protein, which 

acts as a sensor of DNA damage, is activated by binding to these ssDNA. The activated 

recA then facilitates the self-cleavage of lexA repressor. 

The drop in lexA level in turn causes the SOS genes to be de-repressed. This continues 

until the damage is repaired, whereby the level of activated recA drops, lexA accumulates and 

represses the SOS genes again. This dataset contains 8 genes observed at evenly spaced 50 

instants with 6 minutes intervals, and contains 11.5% missing values (184 out of 1600 

observations).  

We applied our model under the framework of BNFinder [19], whereas the missing values 

imputation and the potential regulators selection were both implemented in MATLAB. To 

evaluate the performance of ISDBN, we compared the accuracy and computation time of our 

proposed model against conventional DBN (typified as BNFinder). We first compared the 

inferred results of both models to the established S. cerevisiae cell cycle pathway at KEGG 

(http://www.kegg.jp) and the well-known E. coli SOS response pathway [21], and followed by 

comparing the computation time of both models on a 3.2GHz Intel Core i3 computer with 

2GB main memory. The results of Experiment 1 and Experiment 2 are summarised in Table 1 

and Table 2 respectively. In both tables, the first row represents the network inferred by 

ISDBN and the second row represents the network predicted by using BNFinder (Listed as 

DBN). An edge indicates a relationship between the two connected genes. ‘Correctly inferred 

relationships’ denotes the number of relationships found in the established networks and also 

in the inferred results, ‘sensitivity’ is the percentage of correctly inferred relationships out of 

all inferred relationships, and ‘specificity’ relates to the percentage of correct inference that 

no relationship exists between two genes. 
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3.2. Experiment 1 

In this experiment, ISDBN managed to correctly infer 30 relationships (Figure 3) out 

of the established 35 relationships. On the other hand, conventional DBN correctly 

inferred 27 relationships – it missed out YHP1-MCM1, SWI4-CLN1 and CDC28-

WHI5. YHP1 is one of the two transcriptional repressors that bind to MCM1 in the 

early cell cycle regulation process; SWI4 is a transcriptional activator that regulates the 

cyclin CLN1 during DNA synthesis and repair; and CDC28 releases the transcriptional 

repressor WHI5 during early cell cycle phases. A closer look at the original expression 

profiles of the six genes revealed numerous missing values scattered across each 

expression profiles. Obviously replacing the missing values as zero or row averages has 

weakened the statistical relationships between the three pairs of genes, thus causing 

conventional DBN to erroneously determine that the three relationships were non-

existent. However, in ISDBN, the missing values were imputed based on a linear 

combination of similar genes, and the three relationships were correctly identified. Both 

models were able to capture the cyclic nature of the cell cycle pathway, for instance, the 

partial pathway of CDC28-SWI4/6-YOX1-MCM1-CLN3-CDC28 which represents 

transcription regulation during G1 phase of the cell cycle. As a measure of 

performance, ISDBN reported 85.71% sensitivity and 94.91% specificity compared to 

conventional DBN’s 77.14% sensitivity and 93.22% specificity. 

 

Table 1. The Results of Experiment 1 

Inference 

model 

Correctly identified 

relationships 

Sensitivity Specificity Computation time 

(HH:MM:SS) 

ISDBN 30 85.71% 94.91% 00:25:09 

DBN 27 77.14% 93.22% 01:08:23 

 

Although an edge denotes a relationship between two genes, there are 4 possible 

states for each relationship: correct direction and regulation type, correct direction but 

incorrect regulation type, incorrect direction but correct regulation type, and incorrect  

direction and regulation type. By selecting potential regulators to only those which 

exhibit earlier or concurrent expression changes, ISDBN was able to correctly predict 

most of the relationships’ direction and regulation type (three wrong regulation 

assignments and two misdirected edges). In contrast, conventional DBN has seven 

wrong regulation assignments and nine misdirected edges. Also, since we limited the 

subset of potential regulators, the search space is relatively small and therefore ISDBN 

registered a computation time of 25 minutes and 9 seconds against conventional DBN’s 

1 hour 8 minutes and 23 seconds. We expect that the difference of computation time 

between the two models would be more significant on larger dataset.  
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Figure 3. Predicted cell cycle sub-network for S. cerevisiae dataset using 
ISDBN. Dash edges (---) denote down-regulations and straight-lined edges 

(—) denote up-regulations. A cross represents an incorrect inference; a 
triangle represents a misdirected relationship; a circle represents an 

incorrect regulation type; an edge without any attachment is a correct 
inference 

 

3.3. Experiment 2 

In the second experiment, ISDBN correctly identified nine relationships (lexA–recA, 

lexA–polB, lexA–umuD, lexA–uvrY, lexA–uvrA, lexA-uvrD, lexA–ruvA, lexA–lexA, 

recA–recA) (Figure 4) out of the established ten relationships, whereby conventional 

DBN correctly inferred eight relationships. As the dataset is relatively small compared 

to the previous experiment, both models have similar capabilities to infer relationships 

from this dataset. Although ISDBN reported 90% of sensitivity against conventional 

DBN’s 80%, the relatively significant difference in percentage is due to the fact that the 

total of established relationships is only ten. On the other hand, ISDBN has a lower 

specificity (66.67%) compared to conventional DBN (72.22%). Both models again were 

able to identify two self-cyclic regulatory relationships: recA, which corresponds to its 

ability to self-activate when DNA damage is detected, and lexA, which indicates its 

self-cleavage mechanism when the level of activated recA is raised. ISDBN reported 

two incorrect regulation assignments and one misdirected edges, while conventional 

DBN has three wrong regulation assignments and one misdirected edges. Regarding the 

computation time, ISDBN demonstrated a computation time of 8 minutes and 43 

seconds while conventional DBN recorded 15 minutes and 17 seconds. This is more or 

less due to the fact that the dataset used in this experiment was relatively small, 

therefore the computation time for both models were also relatively short. 
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Table 2. The Results of Experiment 2 

Inference 

model 

Correctly identified 

relationships 

Sensitivity Specificity Computation time 

(HH:MM:SS) 

ISDBN 9 90% 66.67% 00:08:43 

DBN 8 80% 72.22% 00:15:17 

 

 

Figure 4. Inferred SOS response pathway for E. coli dataset using ISDBN. Dash 
edges (---) denote down-regulations and straight-lined edges (—) denote up-

regulations. A cross represents an incorrect inference; a triangle represents a 
misdirected relationship; a circle represents an incorrect regulation type; an 

edge without any attachment is a correct inference 
 

4. Conclusions 

In this study, we addressed two problems found in conventional DBN in inferring 

GRNs from gene expression data: the missing values which would influence the 

inference results, and the excessive computation time due to the large search space 

since conventional DBN assumes all genes as potential regulators against a target gene. 

To this end, we proposed a DBN-based model with missing values imputation and 

potential regulators selection (ISDBN) to tackle both problems. First, instead of 

replacing missing values with zeros or row averages, we treated missing values by 

exploiting local similarity structures as a linear combination of similar genes. In this 

way, we were able to capture most of the statistical correlation between genes that has 

missing values spread across their expression profiles. Second, by exploiting the fact 

that most transcriptional factors generally exhibit prior or concurrent expression 

changes, we were able to reduce the search space by limiting the number of potential 

regulators for each target gene, and in turn contributed to the decreased computation 

time.  Based on the datasets of S. cerevisiae cell cycle pathway and E. coli SOS 

response pathway, ISDBN showed promising results in terms of computation time and 

accuracy when compared to conventional DBN. 

In addition, we are also interested in taking account of the transcriptional time lag 

which is commonly ignored in inferring GRNs from gene expression data. The lack of 

an algorithm to handle transcriptional time lag is one of the main factors that 
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contributed to the relatively low accuracy of inferring GRNs using DBN. Also, it 

should be noted that presently, our proposed model could only handle inter-time slice 

edges. To learn DBN with both inter- and intra-time slice edges remains an interesting 

point of research. It is suggested to learn intra-time slice edges separately before 

combining with the inter-time slice edges and post-processing as an alternative to 

describe gene-gene interactions [22]. Lastly, in spite of the broad practice of using 

DBN to infer GRNs from gene expression data, it is in no way to completely substitute 

gene intervention experiments. The resultant networks should be treated as a guideline 

or framework of the studied biological pathways for future hypotheses testing and 

intervention experiments. 
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