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Abstract 

In the field of metabolic engineering, one of the primary goals is to maximize the 

production of a desired substance. However, to identify the set of gene deletions that will 

result to the desired production goals is difficult. This is due to the complexity of the 

regulatory cellular and metabolic network and also lack of good modeling and optimization 

tools. In this study, the optimization algorithm from previous works was implemented to 

identify the gene knockout on the result. The previous works faced the problem of inability to 

provide single run with two goals to maximize the biomass and the desired products. Besides 

that, the previous work also showed long computational time. In this study, a hybrid of 

Differential Evolution and Flux Balance Analysis (DEFBA) is proposed to solve the long 

computational time problem and provide an optimal set of gene knockout with high yield of 

the desired product. The case study in this research involved the production of succinic acid 

(also called as succinate) in yeast Saccharomyces cerevisiae. The results from this 

experiment included the list of knockout genes and the growth rate after the deletion. DEFBA 

had shown better results compared to the other methods. The identified list suggested gene 

modifications over several pathways which may be useful in solving challenging genetic 

engineering problems. 
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1. Introduction 

Saccharomyces cerevisiae is a robust, well-established industrial production organism 

which exhibits very good growth characteristics, a broad substrate spectrum and an 

extraordinarily high acid and osmotolerance. The high tolerance towards acidity is a major 

advantage over bacterial succinic acid production hosts, since it uses neutralization salts 

dispensable, which facilitates the downstream process. Most specialty and commodity 

applications of succinic acid require a free acid form rather than a salt form. Other than that, 

Saccharomyces cerevisiae is genome-sequenced; genetically and physiologically well 

characterized, and best as a tool for genetic optimization. These features made yeast 

particularly suitable for the biotechnological production of succinic acid. 

The purpose of this research is to develop a computational approach to analyze the 

production of succinic acid in yeast Saccharomyces cerevisiae. Previously, Maranas et 

al., (2003) developed the first rational modeling frameworks (named OptKnock) for 

introducing gene knockout leading to the overproduction of a desired metabolite. 
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OptKnock identifies a set of gene (reaction) deletions to maximize the flux of a desired 

metabolite without affecting the internal flux distribution such that growth is optimized. 

OptKnock is implementing by using mixed integer linear programming (MILP) to 

formulate a bi-level linear optimization that is very promising to find the global optimal 

solution [1]. OptGene is an extended approach of OptKnock which formulates the in 

silico design problem by using Genetic Algorithm (GA). These meta-heuristic methods 

are capable in resulting near-optimal solutions with reasonable computation time, 

furthermore the objective function that can be optimized is flexible  [2]. However, these 

methods still face some problems. In this research, we compared and focused on the 

Evolutionary Algorithm (EAs) and OptGene. Evolutionary Algorithm (EAs) that is 

referred to the combination of SA and flux balance analysis (FBA) faces the premature 

convergence into a local extremes problem, which may result from adverse 

configuration and not yield (a point near) the global extremes [3]. For OptGene, the 

problem is to set a prior number of genes to be deleted from an individual so as to 

obtain a desired phenotype [2]. In this research, we used gene deletions to obtain high 

yield of succinic acid in Saccharomyces cerevisiae. Since Differential Evolution (DE) 

algorithm is a stochastic and non-deterministic approach for solving polynomial fitting 

problems [4], we proposed DEFBA in this research to solve the problems from the 

previous methods. In this research, we focused on enhancing the production of succinic 

acid in yeast by using DEFBA. 

 

2. Method 

 
Differential Evolution 

Differential evolution (DE) is a stochastic optimization method to minimize the objective 

function that can model the problem’s objectives while incorporating constrains. Each design 

variable in DE is represented in the chromosome by a real number. DE algorithm is simple 

and requires only three control parameters which are weight factor (F), crossover rates (CR), 

and population size (NP). In this study, the initial population was randomly generated by 

uniformly distributed random numbers using the upper and lower limitation of each design 

variable. After that, the objective function values of all the individuals of population were 

calculated. This step was done to find out the best individual xbest, G of current generation, in 

which G is the index of generation. Bao et al. (2010) stated that there are three main steps of 

DE, which are mutation, crossover, and selection [5]. These steps were performed 

sequentially and were repeated during the optimization cycle. Figure 1 shows the original 

basic step of DE. Figure 3 shows the implementation of the fitness function, FBA, to produce 

DEFBA algorithm. 
 

Model Pre-Processing 

To have only useful data for the research, model preprocessing must be done to have 

accurate results. As stated before, this research would using yeast Saccharomyces cerevisiae 

as a model. Here, we used ‘yeast_4.05.xml’ for the data. This model also needed to undergo 

the model preprocessing steps. This pre-processing step functioned to remove all the dead end 

metabolites and reaction from the model. Besides that, it also functioned to remove all the 

reactions that would not be used (max and min are < tol), and find the minimal bounds for the 

flux through each reaction and provide the result for flux variability analysis (maxes, mins). 

Next, we performed single GeneDeletion function to make single gene deletion analysis using 

FBA, MOMA or linearMOMA; but in this case, we used FBA. Lastly, we deleted the zero (0) 
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value in the model. After pre-processing had been done, the number of metabolites was 

reduced from 1461 to 768 and the numbers of reactions had been reduced from 1865 to 1246. 

After going through the model pre-processing, it was analyzed using DEFBA algorithm to 

get the gene deletions. In the next section, we provide a brief explanation on the core steps in 

Differential Evolution. 

 
Mutation 

In this research, each reaction in the metabolic model can be associated with one or more 

genes in the genome and each of those genes is represented by a binary variable indicating the 

absence (0) or the presence (1) of the gene in the reaction, and thus a set of these variables 

forms a chromosome representing a particular mutant that lacks some metabolic reactions 

when compared with the wild type. For each individual vector xi,G in the population, 

mutation operation is used to generate mutated vectors in DE. Equation (1) below shows the 

calculation of mutation operation: 

vi,G+1 = xbest,G + F (xr1,G – xr2,G), i=1,2,3......NP                     (1)  

In this equation, vector indices r1 and r2 are different population index and randomly 

selected. After selecting two vectors, xr1,G and xr2, G will then be used as differential 

variation for the mutation. Therefore, the best solution of current generation is vector xbest,G  

while vi,G+1 is the best target vector and mutation vector of current generation. Weight factor 

F is the real value between 0 to 1 and it controls the amplification of the differential variation 

between the two random vectors. There are different mutation mechanisms available for DE 

which may be applied in the optimization search process (Wu et al, 2008). However, in this 

research we applied DE/rand/1/bin since /bin likes to have a slightly larger CR than /exp. 

 

Crossover 

In crossover, the trial vector ui,G+1 is generated by choosing some parts of mutation 

vector, vi,G+1 and other parts come from the target vector xi,G. In Figure 2, Cr represents the 

crossover probability and j is the design variable component number. If random number R is 

larger than Cr value, the component of mutation vector, vi, G+1, will be chosen into the trial 

vector. Otherwise, the component of target vector is selected into the trial vectors (Wu et al, 

2008). The mutation and crossover operators are used to diversify the search area of 

optimization problems. 

 

Selection 

All solutions in the population have the same chance of being selected as parents without 

dependence on their fitness value. The child produced after the mutation and crossover 

operations will then be evaluated. Then, the performance of the child vector and its parent 

will be compared and the better one will be selected. If the parent was still better, it would be 

retained in the population. After that, the optimization loop of DE will be run iteratively until 

the stop criteria are met. There are three stop criteria used in the program. One of the stop 

criterions is the maximum number of optimization generation. The second criterion is the 

maximum number of consecutive generations when there is no better global optimum found 

in the whole process. Therefore, if the improvement of objective function between two 

consecutive generations is less than the threshold set by program, it will be considered as the 

fitting convergence requirement. The last stop criterion will be conformed if the accumulated 

number of generations fitted convergence requirement is greater than maximum counter set 

by the program [6]. 
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Figure 1. The Flowchart of Basic Differential Evolution 

 

Figure 2. The Crossover Operator [6] 

A Hybrid of Differential Evolution and Flux Balance Analysis 

As mentioned before, Flux Balance Analysis (FBA) would be used to replace and calculate 

the scoring fitness in Differential Evolution (DE). Figure 3 shows the flowchart of DEFBA. 

The fitness computation process was carried out for each site visited by DE through FBA. 

Cellular growth is defined as the objective function Z, vector c is used to select a linear 

combination of metabolic fluxes to include in the objective function, v is the flux map and i is 

the index variable (1, 2, 3, …, n).  

 

Maximize Z, where  

 

 

where c = a vector that defines the weights for of each flux.  
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Figure 3. The Flowchart of DEFBA 

3. Results and Discussion 

In this research, the Saccharomyces cerevisiae dataset was used to test the operation of 

DEFBA. The glucose uptake rate was fixed to 10 mmol/gDW/hr while a set non-growth was 

associated with the maintenance of 7.6 mmol ATP/gDW/hr. The results obtained were 

compared to Opt Gene by Patil et al. [2] and Simmulated Annealing with Flux Balance 

Analysis (SA+FBA) by Rocha et al. [3]. To test the accuracy of DEFBA algorithm, we had 

validated our list of gene knockout with the database like PathCase and yeastgenome.org. 

Every deleted reaction was checked with the database and journal that were related to the 

reaction to make sure the deletions that had been done were correct. In this paper, we are 

unable to compare the computational performance with previous methods as it is not reported 

in the original papers. 

Table 1 shows the comparison of different methods for producing succinate. As shown in 

the results, this method produced better results than the previous works. DEFBA suggested 

the removal of five reactions from the network results in succinate growth rate reaching 

1.7023 which is better than other previous works. OptGene [2] also suggested five reactions 

to be deleted, but it did not achieve high growth rate; 0.39 compared to DEFBA. For SA with 

FBA [3], it showed the lowest growth rate; 0.05398 and a very large number of deletions to 

be made to enhance the production of succinate. 

Table 1. Result Comparison of DEFBA with OptGene and SA+FBA for 
Producing Succinic Acid in Yeast 

Methods Growth Rate 

(1/hr) 

List of Knockout 

DEFBA 1.7023 SDH1, ADH1, GDH2, PDA1, OAC1 

OptGene 

(Patil et al, 2005) 

0.39 SDH-complex, ZWF1, PDC6, U133, U221 

SA + FBA 

(Rocha et al, 

2008) 

0.05398 PGI1_1, PGI1_2, FBP1, PDC6, ADH4, SDH3_2, 

AAH1_1, URH1_1, U30_, MET3, ALD4_2, 

GSH1,U103_, YER053C, CTP1_1 

Table 2 shows three of the identified gene knockout strategies (i.e., mutants A, B, and C). 

In this research, potential genes which can be removed had been identified. Each mutant 

produced a set of gene deletions that was identified by using the algorithm. Table 2 shows, we 

can see that mutant B obtained the highest production yield of succinate, followed by mutant 
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C and mutant A. This amount of production yield depends on the gene knockout. More detail 

and explanation of the list of gene knockout are discussed below. For the production of 

succinate, alcohol dehydrogenase (ADH1) inhibited the reduction of acetaldehyde to ethanol. 

Therefore, the acetaldehyde can be fully used in the glycoxylate to produce succinate without 

bothering to be used to produce ethanol [7]. As we can see from the table, ADH1 mostly 

involved as the gene to be knocked out because it was in the list of knockout of each mutant. 

This shows that ADH1 plays an important role in enhancing the production of succinate. 

Mutant B and C showed that succinate dehydrogenase, SDH1 was also one of the genes to be 

knocked out. SDH1 was involved in the TCA cycle which converted succinate to fumarate. 

To enhance the production of succinate, we must reduce the utilization of succinate. 

Therefore, the deletion of SDH1 would lead to the production of succinate [8]. OAC 1 which 

encoded the 2-isopropylmalate transport was involved in the deletion of the three mutants. 

The OCA1 functioned as the mitochondrial inner membrane transporter, which transported 

oxaloacetate, sulfate, thiosulfate, and isopropyl malate; which are members of the 

mitochondrial carrier family [9]. TCA cycle occurred in the mitochondria and glycoxylate 

cycle occurred in the cytosol. Therefore, when OAC1 had been deleted, the oxaloacetate and 

isopropyl malate remained in the mitochondria and helps the TCA cycle. This activated the 

TCA cycle and produced succinate in the reductive pathways. Deletion of SER3 in mutant A 

blocked the synthesis of L-Serine via 3-Phospho-D-glycerate, which increased the demand on 

glycine production via glyoxylate. Overall, it led to a further increase in the flux 

through ICL1, ensuring a higher flux towards succinate [10]. Mutant B showed PDA1 which 

encoded pyruvate dehydrogenase as one of the list knockouts. PDA1 catalyzed the direct 

oxidative decarboxylation of pyruvate to acetyl-CoA and was regulated by glucose. Mutant C 

knocked out the PDC1 which encoded pyruvate decarboxylases, which then increased the 

conversion of pyruvate into oxaloacetic acid via PYC1. ERG10 which encoded acetyl-CoA C-

acetyltransferase was a cytosolic enzyme that functioned to transfer an acetyl group from one 

acetyl-CoA molecule to another. The knockout of ERG10 thus reduced the usage of acetyl-

CoA, which could be used in the cycle to produce succinate. 

As we can see from Table 2, the growth rates among three mutants were much similar to 

each other. In this research, 50 runs were carried out individually to look for the accuracy of 

this method. To define the accuracy, we had calculated the standard deviation of growth rate 

for this research. The standard deviation we obtained from this research was 0.1435. This 

value is categorized as low standard deviation. A low standard deviation indicates that the 

data points tend to be very close to the mean. 

Table 2. Result of Different Knockout Strategies for Succinate 
Production 

Mutants Growth Rate 
(1/hr) 

Production yield 
(mmol/gDW/hr) 

List of knockout 

A 1.7021 5.1226 ADH1, GAD1, ERG10, SER3 OD1C2 

B 1.7023 8.2097 SDH1, ADH1, GDH2, PDA1, OAC1 

C 1.7023 6.9244 SDH1, ADH1, PDC1, ERG10, OAC1 

 

In this research, we studied the production of succinic acid in yeast by using in silico 

method. The in silico was done because of the limitation that might occur when using in vivo 

method. Heerde et al (1978) studied the metabolism of the anaerobic formation of 

succinic acid by Saccharomyces cerevisiae In this research, we included a comparison of 

in vivo and in silico methods. According to Heerde et al. (1978), Succinic acid can be 

formed up to 2g/l in all product fermentations [11]. In Saccharomyces cerevisiae, normally, 
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the range of succinic acid formed is 0.2 until 1.7g/l. The growth rate obtained from this 

research was 1.7023mmol. After converting the 1.7023mmol into g/l, we obtained 0.20087g/l 

which is in the range of the in vivo succinic acid production. 

 

4. Conclusion and Future Works 

In short, we can conclude that DEFBA is an efficient algorithm to predict the 

optimal sets of gene deletion in order to maximize the production of succinate. This is 

based on DE algorithm which is a population based algorithm like the genetic 

algorithms using similar operators; crossover, mutation and selection. The main 

difference in constructing better solutions is that genetic algorithms rely on crossover 

while DE relies on mutation operation, in which this main operation is based on the 

differences of randomly sampled pairs of solutions in the population. FBA approach 

is based on a steady state approximation to concentrations of the internal metabolites, 

used as a fitness function, which reduces the corresponding mass balances into a set 

of linear homogeneous equations. In this work, we propose DEFBA to predict optimal 

sets of gene deletions to maximize the production of desired phenotype. DEFBA, 

which is based on DE, is an efficient algorithm in constructing better solutions, where 

in this paper, its performance is improved in identifying optimal gene knockout 

strategies. Hence, it is a useful tool in metabolic engineering. With regard to further 

improve the performance of DEFBA, we are developing optimization algorithms in a 

single run to achieve two goals, for example, maximizing the biomass and the desired 

product. Lastly, DE is a computationally efficient and natural tool for applying gene 

knockout strategies to enhance the succinate. For future research, we suggest 

researches on lactate and malate production in yeast Saccharomyces cerevisiae. It will 

be interesting because all of these metabolites are actually related to one another. 

Other than that, an effort to study hybrid other optimization also could be interesting. 

From hybrid to the optimization method, we can determine whether the optimization 

method is best to operate alone or best if combined with another optimization method. 
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