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Abstract 
Catheter ablation along the posterior aspect of the left atrium has a small but real risk of 

esophageal perforation. This left atrioesophageal fistula formation is associated with multiple 
gaseous and/or septic embolic events causing cerebral and myocardial damage. The main 
objective is to mathematically model the ablation associated with delivery of radiofrequency 
(RF) energy to treat atrial fibrillation in order to control the temperature rise in the 
esophageal lumen. We model the heat exchange problem in a time-dependent multi-region for 
the catheter ablation therapy, with particular application to RF thermal ablation on the atrial 
tissue. From the selected set of geometric and operational parameters, benchmark 
calculations result in graphical representations. The proposed solutions enable whether 
quantitative or qualitative the study of temperature behavior whenever in space or in time. 
These enhance the physical understanding of what factors can affect the esophageal 
temperature and how to most accurately measure it. The model is sufficiently explicit to be, in 
turn, applied to different performances of one ablation procedure, or even to other thermal 
techniques. 
 

Keywords: Heat conduction; Analytical and numerical techniques 
 
1. Introduction 

Thermal techniques to alter the abnormal conductive tissue generally fall into two 
categories: heat-based and cold-based procedures. The patients that are good candidates for 
one catheter-based ablation technique may not be for other type to have a chance at having 
their problem cured. Indeed, various energy sources have been used as the radiofrequency 
energy, the microwave, the laser, the cryothermia, and the high-intensity focused ultrasound 
[2, 13]. However, all procedures have one common involved risk: that of damage to nearby 
healthy tissue. The physiological problem is that the internal tissue temperature itself must be 
predicted. The main objective of this work is to improve thermal ablation technique by 
assuring exact calculations of the temperature. The established bio-heat transfer problem 
consists of an initial-boundary value problem to a system of parabolic equations, in coupled 
physiologically distinct regions. An accurate heat transfer model in blood perfused tissues can 
contribute to reduce treatment time, to control the size of the coagulative necrosis, and to 
predict the better geometry of the ablation setup.  

Over the past decade, a large number of modeling approaches aimed at elucidating the 
radio-frequency (RF) ablation which is the technique that applies hyperthermia through 
electrical current in order to destroy portions of tissue and causes a scar in that region [5, 20, 
19, 24]. As cardiac application, cells lose electrical excitability and the reentrant pathways are 
interrupted. Then the scar tissue cannot transmit electrical impulses, and the abnormal 
electrical pathway may no longer be able to generate cardiac arrhythmias [8, 25]. Thus, the 
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RF ablation procedure can also permanently cure atrioventricular nodal reentrant tachycardia, 
atrial fibrillation, accessory pathway mediated tachycardia, atrial flutter, atrial tachycardia or 
idiopathic ventricular tachycardia [15].  

Experimental studies have revealed that during percutaneous RF ablation, damage can 
occur in the lungs, phrenic nerves, and pulmonary venous tissue [2]. The most significant 
complication of left atrium (LA) catheter ablation is atrioesophageal fistula formation. This 
complication (although rare) is associated with significant mortality and morbidity, including 
air embolism, sepsis, endocarditis, and gastrointestinal exsanguination [11]. Possible clinical 
solutions include development of real-time esophageal location, temperature monitoring, the 
use of lower-power or alternative energy sources when ablation near the esophagus is 
necessary, and improved early detection of esophageal injury [22, 26]. The esophageal 
injuries occur with unipolar radiofrequency and microwave energies [16].  

Numerical studies have been focused upon the prediction of lesion formation, as well as, 
the heat transfer effects on lesion dimension during the treatment (see [12, 17, 35] and the 
references therein). In those works the problem under study has been solved by means of 
finite element method, and the existence of solution was not proved. In [14], an exact solution 
is obtained by the successive application of the methods of superposition, separation of 
variables and multi-region Green’s function. Previous exact solutions introduced by [3] had 
made the rather limiting assumptions that the domain of the model is defined as two 
concentric spherical regions, the inner representing the diseased tissue and the outer the 
healthy tissue. Hence, the heat equation is only dependent on one radial direction, i.e. the 
physiological material exhibits a 1D behavior.  

In this work, we present an analytical temperature solution for the zone of active heating 
from the LA posterior wall to the esophagus during the RF cardiac catheter ablation. Two 
different positions of the ablating electrodes are considered: (1) one ablating electrode placed 
on the endocardium; and (2) two ablating electrodes equidistantly placed on the endocardial 
interface from the one of case 1. To this end, we respectively propose two analytical solutions 
to the bio-heat transfer problem in sagittal multi-region. To evaluate the high temperatures 
that arrive near the esophagus is of particular concern in order to avoid damage to the 
esophagus. Therefore, the present formulated problem plays a crucial role in preventing the 
cascade of events that eventually result in the development of LA-Eso fistula.  

Specific physiological measurements are not made during the study. Anthropometric 
measurements are selected from the literature to enable the numerical simulations. The 
closed-form solutions are computationally evaluated. The theoretical predictions agree with 
previously reported findings. The development of physiologically accurate, yet 
mathematically rigorous theoretical models may lead to an improvement in predictive 
capability.  

Next section briefly outlines the cardiac catheter ablation model, directional catheters at the 
endocardial approach, and the framework that incorporates the heat transfer. Having 
described the model itself, attention is next focused upon the utilization of the model for a 
particular multi-region in Section 2.1. In Section 3, the assumptions on the data are stated. 
Section 4 is devoted to a few, but relevant, different numerical simulations, and identifying 
the main results. The paper concludes with offering directions for future model development 
and study. An analytical solution is determined in Appendix. 
 
2. Cardiac Catheter Ablation 

The heart consists of two pumps (the right and the left) connected in series that pump 
blood through the circulatory system. The left ventricle is a thick-walled body composed of 
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myocardium between a thin outer membrane (epicardium) and an inner membrane 
(endocardium); and receives the most attention in the literature because most infarcts occur in 
this chamber. The hyperthermia technique consists of placing the ablating electrodes into a 
heart chamber via percutaneous peripheral venous or arterial conduits and of placing an 
indifferent electrode on the skin at the back of the patient. Current is applied between each 
catheter electrode and the ground one creating an electromagnetic field. Then by ionic 
agitation, electromagnetic energy is transformed into heat, causing tissue dehydration, and 
irreversible injury occurs. In this study, we take into account two different positions of the 
ablating electrodes: (case 1) one thin electrode is placed in perpendicular contact with the 
endocardium; and (case 2) two electrodes (or one umbrella electrode) are placed parallel to 
each other at a close distance in order to create a similar situation to the ideal case of two 
parallel plates.  

Although at the initial instant of time (t = 0 s) only a thin rim of tissue adjacent to the 
catheter tip is heated by the Joule effect and heat conduction, and the surrounding region is 
mainly heated by the conduction from above region, there exists an instant of time t0 such that 
the electric current flow through the tissue causes resistive heating (Joule effect) of a small 
three dimensional domain. For the sake of simplicity t0 = 0 is assumed. Let Ω be the 3D 
domain such that its sagittal cross-section being of the rectangular form ]0,L[×]0,H[ with L 
and H denoting the total distance between the endocardial surface of the LA and 
midesophagus lumen and the height of the heated region, respectively (see Figures 1 and 2). 
The zone of active heating caused by RF ablation has a controlled size in order to protect the 
healthy cells. 

 
Figure 1. Schematic Representation of the Domain, where the Inner surface Γ0 

Represents the Endocardial Surface in Contact with the Blood in the Heart 
Chamber, and the Outer Surface ΓL Represents the Esophageal Surface in 

Contact with the Air 
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Figure 2. Schematic Representation of the Sagittal Cross-sectioned Domain in 

the Plane Oxz 

The bio-heat transfer problem is constituted by the Pennes’ bioheat equation [28], in the 
domain Ω,  

                           ρc ∂tT = kΔT + J•E − ρbcbw (T −Tb) + Qm ,                                    (1) 

where T is the temperature, ρ is the density, c is the specific heat capacity per unit mass, k is 
the thermal conductivity, Tb represents the temperature of the blood (assumed to be 38 °C) 
and ρb, cb, and w denote the density, the specific heat capacity, and the volumetric flow of the 
blood, respectively. Moreover, ω = ρbw (kg•m−3•s−1), represents the blood perfusion that 
occurs in the capillary bed, and cbω accounts for the heat conducted in direction of the 
contribution of flowing blood to the overall energy balance, i.e. the energy exchange by the 
flowing blood was modeled as a non-dimensional (non-directional) heat source [1, 23]. The 
perfusion ceases (w = 0) whenever the concentration c of living cells verifies c(t)≤
c(0)exp[−1]. This corresponds to Ω(t)≥  1, with Ω being the degree of tissue injury such that, 
at each instant of time, the cumulative damage integral is computed using the Arrhenius 
equation [9] 

Ω(t)=ln[c(0)/c(t)]= A ʃt exp[−(RT(τ))−1E] dτ,                            (2) 

where R is the universal gas constant, A is a frequency factor, and E is the activation 
energy for the irreversible damage reaction.  

The left-hand side of (1) represents the heat accumulated within the tissue control 
volume. On the right-hand side of the Pennes’ equation, the term J•E represents the 
power density p of the electromagnetic field, which is converted into thermal energy, 
with J and E being the current density and the electric field intensity, respectively. 
Finally, the energy generated by the metabolic processes Qm can be neglected, i.e., Qm 
=0 W•m−3.  

The existence of on one side the blood and on other side the air near the heated tissue 
implies that heat is carried away from that heated zone. This heat exchange at the 
blood-tissue and air-tissue interfaces reads 

−k ∇T•n = h (T −Tb)              on   Γ0     (inner surface);                             (3)  

−k ∇T•n = hL (T −Tair)           on    ΓL    (outer surface),                             (4) 
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where hL is the heat transfer coefficient accounting for the esophageal lumen, and Tair 
represents the temperature of the air in the esophagus canal (assumed to be 36.2 °C, the 
baseline esophagus luminal temperature in [11]). The endocardial convective heat 
transfer coefficient h is known [33]. The no outflow is assumed 

                      k  ∇T•n =0                        on     Γ := int(∂Ω\(Γ0 ∪ΓL)).                      (5) 

A few comments should be added regarding to the domain. The domain is the multi-
region constituted by the posterior wall of the LA from endocardium to epicardium, the 
fatty tissue, and the esophageal wall adjacent to the posterior LA that is constituted by 
muscular, submucosal and mucosal layers together [30]. Then L = La +Lf +Le, where La, 
Lf and Le denote the thickness of atrial wall, fat pad and esophageal wall, respectively, 
and there are three subdomains, namely atrial, fat and esophageal (see Table 1, and 
Figures 1 and 2). 

Table 1. Physiological Parameters [18] 
 blood atrial wall fat pad esophageal wall 
L (mm)  2.5 1.0 3.0 
k (W•m−1• °C−1) 0.52 0.53 0.21 0.56 
ρ (kg• m−3) 1060 1080 910 1040 
c (J•kg−1• °C−1) 3600 3690 2350 3500 
w (kg•m−3• s−1)  1 0 0.2 

 
2.1. The Mathematical Model 

In order to find exact solutions for the temperature let us consider some finite time t∗ > 0, 
and an annular domain  

Ω = {(x,y,z)∈ IR×]−W/2,W/2[×]0,H[:  r2< (x + r)2 + y2< (r + L)2},  

with L, W, H, r > 0 stand for the length, width, height, and inner radius, respectively. 
Hereafter, the subscripts a, f and e stand for the atrial, fat and esophageal designations, 
respectively. In particular, set  

Ωa = {(x,y,z)∈ Ω:  r 2 < (x + r)2 + y2< (r + La)2},  

Ωf = {(x,y,z)∈ Ω:  (r + La)2 < (x + r)2 + y2< (r + Lw)2},  

Ωe = {(x,y,z)∈ Ω:  (r + Lw)2 < (x + r)2 + y2< (r + L)2},  

where Lw = La + Lf . The model in the multi-region domain reads 

                          ρaca ∂tTa = ka ΔTa + J•E − cbωa (Ta −Tb),         in   Ωa×]0,t∗[;                         (6) 

                         ρfcf ∂tTf  = kf ΔTf + J•E,                                    in   Ωf×]0,t∗[;                         (7) 

                         ρece ∂tTe = ke ΔTe + J•E − cbωe (Te −Tb),          in   Ωe×]0,t∗[.                         (8) 

Since the main thermal equilibration process that takes place in the fatty pad, Ωf , does not 
account for the capillaries, we use the heat equation instead of the Pennes’ bioheat equation.  

In cylindrical coordinates, (6)-(8) read as follow:  

                   ρici ∂tTi = ka  (∂ρ
2 Ti +ρ−1 ∂ρTi  +ρ−2  ∂θ

2 Ti   + ∂z
2 Ti  )  + J•E − cbωi (Ti −Tb),        
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                     ρfcf ∂tTf = kf  (∂ρ
2 Tf+ρ−1 ∂ρTf  +ρ−2  ∂θ

2 Tf  + ∂z
2 Tf )   + J•E,                                   

for all (ρ,θ,z,t)∈]r,r+L[×]arcsin(−W/(2ρ)),arcsin(W/(2ρ))[×]0,H[×]0,t∗[, and i=a,e. The heat 
transfer mechanisms (3)-(4) read, respectively, 

      −ka ∂ρTa = h (Ta −Tb)         if     ρ = r,                                         (9)  

         ke ∂ρTe = hL (Te −Tair)         if     ρ = r + L,                                (10) 

for any (θ,z,t)∈ ]arcsin(−W/(2ρ)),arcsin(W/(2ρ))[×]0,H[×]0,t∗[. Here the coefficient hL is 
unknown. The continuity conditions are at the atrial-fat and wall of the esophagus interfaces 
(La =∂Ωa ∩ ∂Ωf, and  Lw = ∂Ωf ∩ ∂Ωe), respectively, 

Tf = Ti,             kf ∂xTf = ki ∂xTi          for       i = a, e.                        (11) 

The noflux boundary condition (5) reads 

∂zTa = ∂zTf = ∂zTe =0              if      z = 0, H;                                   (12) 

                                       ∂θTa = ∂θTf = ∂θTe =0             if      ρ sin(θ) = ±W/2,                       
for any (ρ,z,t)∈]r,r+L[×]0,H[×]0,t∗[.  

The initial condition is such that T reaches its maximum with value of T1, at the exact 
positions of the electrodes. Here, we consider z = H/κ, and z =(κ −1)H/κ, with κ =2 (case 1), 
and κ =3 (case 2).  

This boundary value problem to the bio-heat transfer system (6)-(8) admits the 2D solution 
established in Appendix. 
 
9. Method 

In the simulations carried out here, the physiological values are in accordance with Table 
1. Among the clinical variables of age, sex, body weight, and LA size, there are no 
independent predictors of the presence or thickness of the fat pad between the esophagus and 
the posterior LA nor spatial relations of the thickness of the posterior atrial wall [21]. The 
position of the esophagus relative to the LA varies considerably between patients and varies 
even in a single patient during an ablation procedure. The cross-sectioned fatty pad is 
assumed 1 mm thick [21]. Additionally, the mean thickness of the posterior LA wall ranges 
from 1.9 to 4.0 mm, and the mean thickness of the esophageal wall (from mucosa to 
adventitia) adjacent to the LA ranges from 1.5 to 4.5 mm [2, 11, 30]. In the presence of these 
factors, we take average values for the physiological parameters in Table 1.  

Here RF energy is applied initially at 23 W, the power is titrated up in 2-W increments 
every 5 seconds to a maximum of 35 W, in accordance with that the current clinical strategy 
to minimize esophageal thermal injury during AF ablation involves limiting the magnitude of 
power (25 to 35 W), as well as the duration (<30 s), of RF applications placed along the 
posterior wall of the LA [31]. Joule heating arises when energy dissipated by the electric 
current flowing through the conductor is converted into thermal energy [34].  

We impose the blood perfusion parameters for the atrial and the esophageal tissues to be 
both constant, since there is no coagulation zone beyond the time t = 30 s. Indeed, Ω(t)< 1 for 
all t ∈]0,30[, considering that  (2)  implies  

∀t ∈]0,30[    Ω(t)≤  Ω(30) ≤  30Aexp[ −E (RT(x,z,30))−1] < 1, 
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for temperatures T(x,z,30) < E/(R ln[30A]) ≃ 58 °C under values for the atrial tissue, A 
=2.94× 1039 s−1  and E =2.596× 105 J•mol−1 [27]. 
 
4. Results and Discussion 

The simulations displayed in Figure 3 correspond to x = 0 and x = L (i.e., the functions z 
→ Ta (0,z,0) and z → Te (L,z,0) in accordance with Appendix). Figure 3 indicates the 
discrepancy between the two shapes, which is attributed to the different positions of the 
electrodes. The temperature has its maximum values at the point (x,z) = (0,H/2) in case 1 and 
at the points (x,z) = (0,H/3) and (x,z) = (0,2H/3) in case 2 which coincide with the locations at  
the endocardial surface of the target ablation region where the catheters are placed. These 
mean that the electrodes create a distribution of temperature that is large only under the 
electrode(s). Their shape is maintained over time, it is the amplitude that is strongly reduced. 
The temperature Te has reduced amplitude along the esophagus course as monitored in [11].  

 
Figure 3. Graphical Representation of the Temperature versus the Height 

Distance z. Case 1: Solid Lines. Case 2: Dashed Lines 

Figure 4 displays the solution to (6)-(12) for cases 1 and 2, respectively in (a) and (b), at 
the instant of time t =30 s, plotted against the sagittal region ]0,L[×]0,H[, with L = 6.5×10−1 
cm denoting the total distance between the blood and the air, and H = 3 cm the height of the 
heated region. Their configurations almost coincide, which does not afford relevant 
information about one ideal position of the electrode. However, this agreement confirms that 
the temperature stabilizes with time as recorded in [7].  

 
Figure 4. Graphical Representation of the Temperature versus the Sagittal 

Domain in the Plane Oxz, at Power Output of 35 W: (a) when one Electrode is 
taken into Account (case 1); (b) when Two Electrodes are Taken into Account 

(case 2) 
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In the both modalities, T first increases and next decreases as a function of distance from 
the catheter surface. Its maximum is not attained at the boundary but it is reached ≈ 3 mm 
from the ablating electrodes, which agrees with the experimental findings in [6]. This is 
consistent with the so-called blood cooling effect. This effect acts as an additional dissipation 
due to the higher electrical conductivity of the blood. We remark that the electric field 
intensity E can be expressed as E = J/σ, where σ is the electrical conductivity, then p = σ|E|2. 
Indeed, there are two collateral effects: the proximity of the blood flow rate to the probe, and 
the blood perfusion term in the Pennes’ bioheat equation.  

The results of the previous simulations clarify how the model can be used to suggest 
additional experimental studies in order to help, justify, or refute various model assumptions. 
 
5. Conclusions 

A simple 2D analytical solution that solves the bio-heat transfer problem is established. 
This proposed solution accounts for the variability in the thickness of the posterior LA wall 
and the presence of periesophageal connective tissue: factors that potentiate the esophageal 
injury. Indeed, all local properties of the ablation site can easily be changed in the present 
mathematical model as per each ablation. Such minor changes can have impact upon transport 
issues. For instance, the mathematical model reveals that Lf contributes to diminish the 
temperature along the esophageal course. This agrees with the interpretation that La and Lf, in 
very thin persons, are one of the concerns of the surgeons [16].  

The major contribution of the solution is that it is sufficiently explicit (cf. Appendix) to be, 
in turn, applied to different performances of one ablation procedure, or even to other thermal 
techniques. In addition, the dependence of the temperature as function of RF power delivery 
during AF ablation, and of duration of RF applications, is other of the upgrades. Since the 
data are of extreme importance on the convergence tests in numerical methods (see [4, 10] 
and the references therein), the presented solution maybe a tool before getting into highly 
detailed and more anatomically appropriate numerical models to design therapy. Moreover, it 
allows a quantitative study.  

In conclusion, the model presents several advantages: (1) its simplicity; (2) its capacity to 
perform a large range of different simulations; (3) the possibility of qualitatively studying the 
effect of different geometric and operational parameters; and (4) its negligible computational 
cost.  

In the sequence of our achievements, the following developments remain as open problems 
to be studied in the future. First, seek an analytical solution with the dependence of the 
myocardial conductivity on the temperature via the Kirchhoff transformation applied to the 
Pennes’ bioheat equation. In particular, ka increases if the temperature increases. Thus, it 
raises the temperature (in other regions) and causes a larger boundary lesion. The excessive 
temperature results in dehydrated tissue. The dehydrated myocardium is both an electrical and 
thermal insulator. Therefore, safety requires that the depth of tissue injury must be controlled 
during ablation and the delivery of energy must be directed to avoid collateral damages.  

Finally, extend the model to a new one defined on a domain that includes a small volume 
of the blood pool in the cardiac chamber, where the Pennes’ bioheat equation is replaced by 
the heat advection-diffusion equation instead of using the Newton’s law of cooling at the 
blood-tissue interface with h being assumed constant. 
 
6. Appendix 

The power is assumed constant, uniform in space and in time over every interval of 5 
seconds, as mentioned in Section 3. Thus, for each interval of time ]5i,5(i+1)[ (i =0,••• ,5) we 
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seek one analytical solution of (6)-(8). For the sake of simplicity in notations, we will omit 
the index i, keeping in mind that J • E corresponds to a well-determined interval of time. We 
find the atrial, fat and esophageal temperatures, adapting the Fourier method of separation of 
variables [29], as  

Ta (x,z,t) = a0 cos(a1 x + a2) cos(a3 z +a4) exp(a5 t) + a6 exp(a7 x) + a8 exp(−a7 x) + a9 ; 

Tf (x,z,t) = b0 cos(b1 x +b2) cos(b3 z + b4) exp(b5 t) + b6x2 + b7 x + b8 ; 

Te (x,z,t) = c0 cos(c1 x + c2) cos(c3 z +c4) exp(c5 t) + c6 exp(c7 x) + c8 exp(−c7 x) + c9. 

Notice that some other forms of solutions of PDE clearly do not fulfill the transmission, 
boundary, and initial conditions. Indeed, it is upon the presence of our transmission, boundary, 
and initial conditions, that the choice of the above functions is suitable for the mathematical 
model. That is, they are solutions to (6)-(8) considering that the constants a1, a2, a5, a7, a9, b1, 
b3, b5, b6, c1, c2, c5, c7, c9 satisfy  

ρacaa5 = −ka (a1
2+ a3

2) − cbωa,       a7
2= cbωa /ka,              a9 = Tb + (cbωa)-1 J•E;               (13)  

ρfcfb5 = −kf (b1
2+ b3

2),                   b6 = − (2kf)-1 J•E;                                                        (14)  

ρecec5 = −ke (c1
2+ c3

2) − cbωe,        c7
2= cbωe /ke,              c9 = Tb + (cbωe)-1 J•E.               (15)  

From (9) and using (13) it follows that 

a2 = arctan[ − h(kaa1)-1],          (kacbωa)1/2(a6 −a8)= h(a6 + a8 +  (cbωa)-1 J•E ). 

From (11) it follows that  

ai= bi = ci                (i =3,4,5);                                                                                           (16) 

a0 cos(a1La + a2) = b0 cos(b1La + b2); 

a6 exp(a7La) + a8 exp(−a7La) + a9 = b6La 2 + b7La + b8; 

ka a0a1 sin(a1La + a2) = kf b0b1 sin(b1La + b2); 

ka a7 (a6 exp(a7La) − a8 exp(−a7La)) = kf (2b6La + b7);  

c0 cos(c1Lw + c2) = b0 cos(b1Lw + b2); 

c6 exp(c7Lw) + c8 exp(−c7Lw) + c9 = b6Lw 2 + b7Lw + b8; 

ke c0c1 sin(c1Lw + c2) = kf b0b1 sin(b1Lw + b2); 

ke c7 (c6 exp(c7Lw) − c8 exp(−c7Lw)) = kf (2b6Lw + b7). 

Thus, using (13)-(15) and (16) it follows that 

(ka  (a1
2+ a3

2)  − cbωa) (ρaca)-1 = kf  (b1
2+ a3

2)  (ρfcf)-1 = (ke  (c1
2+ a3

2)   − cbωe) (ρece)-1. 

From (10) it follows that  

 kec1 tan(c1L+ c2)= hL, 

−kec7 (c6 exp(c7L) − c8 exp(−c7L)) = hL (c6 exp(c7L) + c8 exp(−c7L) + c9 −Tair).  

The initial condition at the catheter-tissue electrode interface is 

case 1: cos(a3H/2+ a4) = 1, and Ta (0,H/2,0) = T1, i.e.,  

a0 cos(a2) + a6 + a8 + a9 = T1, 

with an initial temperature T1 =50 °C. Moreover, (12) is solved by  
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a3 = b3 = c3 = 2π/H,                    a4 = b4 = c4 = −π. 

case 2: Ta (0,H/3,0) = Ta (0,2H/3,0) = T1, and  

a3,1 sin(a3,1H/3+ a4,1) + a3,2 sin(a3,2H/3+ a4,2) = 0;  

a3,1 sin(a3,12H/3+ a4,1) + a3,2 sin(a3,22H/3+ a4,2) = 0. 

From (12) it follows that  

a3,1 sin(a4,1) + a3,2 sin(a4,2) = 0; 

a3,1 sin(a3,1H + a4,1) + a3,2 sin(a3,2H + a4,2) = 0. 

Therefore, we may take  

a3,1 = 2π/H,               a3,2 = 4π/H,           a4,1 = a4,2 = −π. 

Finally, Te (L,0,0) = Te (L,H,0) = Tair implies  

c0 cos(c1L+ c2) cos(±π) + c6 exp(c7L) + c8 exp(−c7L) + c9 = Tair. 

Note that the constants a3, a4, a7, a9, b3, b4, b6, c3, c4, c7, c9 can be calculated directly from 
the data. Observe that (17) yields b1 and c1 in function of a1. The remaining constants 
(including hL) are well determined since they solve the remaining equations (a system of 17 
equations). 
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