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Abstract 
This paper focuses ocular artifacts separation of EEG signals using Noise Assisted Bi-

variate adaptive based filtering. In order to facilitate clinical diagnosis and/or implement so-
called brain computer interface (BCI), detecting the rhythmic activity from EEG data 
recorded in a noisy environment is crucial. The pre-processing of EEG signal is mandatory 
due to highly interference with the EEG signal. Electro-oculogram (EOG) is the most 
important interference that misinterpret significantly of the EEG signal for brain activity 
measurements. To suppress EOG data, we have used a newly developed model with empirical 
mode decomposition (EMD) named as noise assisted EMD (NEMD). Because the complex 
signals have a mutual dependence between the real and imaginary parts, so it is possible to 
analyses both parts simultaneously using NEMD. Here, the EEG signal and white Gaussian 
noise (reference signal) are combined to produce complex signal which is decomposed using 
NEMD to extract complex intrinsic mode functions (IMFs). Then the low frequency trend 
(EOG) and high frequency components (purified EEG) of recorded EEG signals are obtained 
partial reconstruction on the basis of the energy distribution of their intrinsic mode functions. 
The experimental results show that the NEMD based data adaptive filtering technique 
performs better. 
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1. Introduction 

The most familiar example of source separation problem in acoustics named as 
‘Cocktail Party Problem’ where a listener attempting to pay attention to one speaker in 
a party environment. A similar problem appears in the context of an experimenter 
recording electromagnetic signals emitted by a neural source in a human brain. An 
electroencephalogram (EEG) represents complex signals is a sum of the large number 
of neurons potentials that measures and records the electrical activity in the brain. 
Special sensors are attached to the scalp surface by wires and the brain's electrical 
activity represents complex irregular signals that may provide information about neural 
activities in the brain [1]. EEG is a very popular brain activity test and analysis tool for 
many applications in Neuroscience. EEG signals are recorded from the head are 
contaminated by external interferences such as electric power or electromagnetic 
radiation. This interference is usually easy to separate from EEG signals based on 
signals electrical characteristics. Moreover, human body contains multiple 

mailto:ekram_hamid@yahoo.com


International Journal of Bio-Science and Bio-Technology 

Vol. 5, No. 4, August, 2013 

 

 

118 

electrophysiological signals which are non-linear in nature and their spectral properties 
can be correlated may exhibit a time-varying non-stationary response. These processes 
are serious obstacles to many neurological problem detection and identifications [2].  

In cognitive neuroscience research, researchers are motivated in recovering signals 
associated with ocular activity from specific brain regions. To separate EOG 
interference features from recorded EEG signals, method based on frequency analysis 
and statistical signal processing using independent component analysis (ICA) have been 
proposed [3]. But the frequency domain filtering makes spectral distortion while 
separating EOG interference. However, recently a number of researchers [4-6] have 
turned to ICA aiming to decompose the recorded EEG data into independent 
components utilizing higher order statistics but main problem is that the extracted 
components do not confirm the original scale and sequences. Knuth in [7] demonstrated 
that the Bayesian methodology provides a natural and logically consistent means by 
which prior information can be incorporated into a specific neuroelectromagnetic 
separation problem.  

In this paper, a fully data adaptive technique named noise assisted empirical mode 
decomposition (NEMD) is employed. The basis functions of NEMD called intrinsic 
mode functions (IMFs) are derived directly from the recorded raw EEG data without 
any prior information [8]. Recently, it is shown that NEMD approach is the best for 
non-linear signal analysis and provides more efficient results than others. The fractional 
Gaussian noise (fGn) has interesting characteristics with EMD [9]. The EMD on fGn 
acts as dyadic filterbanks [10]. The energies of the IMFs decrease almost linearly with 
increasing their order. It implies that the higher frequency IMFs contain more energies 
than that of the lower frequencies. The fGn is used as the reference signal to implement 
different applications of NEMD. The analyzing EEG signal and fGn are decomposed 
together with NEMD in which fGn is used as the reference signal. Several tuning 
parameters are selected from some previous experiments on fGn and are used to 
separate the fGn type noise to extract the trend in the signals. We use fGn in a different 
way to fix the energy reference to extract the trend. In NEMD two signals (EEG and 
fGn) are decomposed simultaneously based on their rotating properties. The trend of 
EEG signal is detected by comparing the energy of individual IMF with that of the 
reference signal. In this paper we have successfully implemented the scheme of 
separation of EEG signal using EMD and NEMD approaches.  

This paper is organized as follows: the Noise assisted EMD on EEG signal is 
described in Section 2, the NEMD based time domain filtering is explained in Section 3, 
different types of experimental results are illustrated in Section 4 and finally Section 5 
contains some concluding remarks.  
 
2. Noise Assisted EMD of Signal 

The empirical mode decomposition (EMD) decomposes a signal into waveforms 
modulated in both amplitude and frequency i.e., at the scale of its local oscillation. The idea 
behind is a signal with high frequencies superimposed on low frequencies. In order to handle 
bivariate time series, the ordinary EMD is extended to complex EMD is called bivariate EMD 
[11] here we named as noise assisted EMD (NEMD). In NEMD, two variables are 
decomposed simultaneously (without losing mutual dependency) based on their rotating 
properties. The algorithm of the NEMD, as proposed in [11], is as follows: 
 
1. Let the complex signal is s(n) 
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2. For 1 <m<M 
(a) Projectionsof M signal in direction of is given by , so project the 

complex signal s(n) by using a unit complex number in the same direction is 
given by 

 
   

 R(.) is the real part of the complex signal 
(b) Find the locations corresponding to the maxima of ; 
(c) Interpolate between the maxima points , to obtain the partial envelope 

curve in direction named  ; 
3. Compute the mean of all tangents: , 
4. Subtract the mean from input signal to obtain , 
5. Test if d(n) is an IMF; 

(a) If yes, repeat procedure from the step (1) on the residual signal, 
(b) If no, replace s(n) with d(n) and repeat the procedure from step (1). 

 

 
  

Figure 1. Noise Assisted Empirical Mode Decomposition of Recorded EEG 
Signal 

Once the first IMF is derived, define d1(n)=s(n), which is the smallest temporal scale in 
s(n). The rest of the IMF components are generated the residue r1(n) of the data by subtracting 
d1(n) from the signal s(n) as: The sifting process will be continued until the final residue is a 
constant which is a monotonic function means a function with only one maxima and one 
minima from which no more IMF can be derived. The subsequent basis functions and the 
residues are computed as 

)()()(,),()()( 1212 ndnrnrndnrnr MMM −=⋅⋅⋅−= −   (1) 
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where rM(n) is the final residue. At the end of the decomposition the signal )(ns  is 
represented as: 

∑
=

+=
M

m
Mm nrndns

1
)()()(

     (2) 

where dm(n) is the mthIMF and rM(n) is the final residue which can be either the mean trend or 
a constant, and functions dm(n) are nearly orthogonal to each other, and all have zero means. 
In NEMD, s(n) is modeled as a complex  [11], where 1−=j  , x(n) 
and  represents EEG signal and fGn respectively. The fGn is generated on the basis of 
overall noise level estimated from the EEG signal. The fGn is a versatile model of 
homogeneously spreading broadband noise without any dominant frequency band although it 
is a generalization of ordinary white noise. Its statistical properties are entirely determined by 
its second –order structure, which depends solely upon one single scalar parameter and Hurst 
exponent [12]. The decomposition produces two separate sets of IMFs (real and imaginary) 
corresponding to individual signals as shown in Figure 1.  
 
3. NEMD based Time Domain Filtering 

The Noise assisted empirical mode decomposition (NEMD) based data adaptive filtering is 
implemented to separate the high frequency part (purified EEG) and low frequency trend 
(EOG interference) of the analyzing EEG signal. The original EEG signal s(n) is decomposed 
into IMFs using NEMD. The decomposition produces two separate sets of IMFs (real and 
imaginary) corresponding to individual signals as shown in Figure 1. It is noted that s(n) 
consists of slowly varying trend superimposed to a high frequency fluctuating process y(n). 
The trend is expected to be captured by IMFs of large indices (plus the final residue). A 
process of de-trending s(n), which corresponds to estimating y(n), may therefore relate to 
compute the partial, fine-to-coarse reconstruction as 

∑
=

=
D

k
k ndnh

1

)()(
     (3) 

where D is the largest IMF index prior the remaining IMFs representing signal trend 
contamination. For the IMFs dk(n); k =1,2,...,D a rule of thumb, so the choice of D is based of 
observation of the evolution of the h(n) energy as a function of a test order k. The optimized 
k=D is chosen when the energy index departs significantly from the energy of the reference 
signals [11]. 

A toy example of the NEMD approach to separate EOG interference from EEG signal in 
the case of an oscillatory low frequency waveform embedded in Gaussian noise (fGn) is 
shown in Figure 2. This Figure suggests that a dual strategy can be used for detrending fGn 
type noise process by computing the complementary partial reconstruction based on only 
those IMFs whose energy is below the threshold. The 95% confidence interval (CI) is used as 
the boundary limit of the energy based detrending technique. The 6th IMF is selected as the 
starting point of low frequency component. All the lower order IMFs (of recorded EEG 
signal) starting from the obtained lower limit up to the residue are summed up to construct the 
low frequency trend y(n) representing the EOG artifacts. The high frequency components i.e., 
the original EEG signal h(n) is obtained as 

)()()( nynsnh −=      (4) 
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Figure 2. Amplitude Modulated Low Frequency Oscillation Embedded in 

Gaussian Noise (fGn) is Plotted in (b). The Estimated Energies of the 7 IMFs 
are Plotted in (a) together with the “Noise Only” Model and the 95% Confidence 
Interval. The Partial Reconstruction obtained by Adding the Residual and IMFs 
6 to 7 is Plotted in (c). The Partial Reconstruction of IMFs 1 to 5 is Plotted in (d) 

Yeilding the fGn 
      

  
Figure 3. The Selection of Starting IMF (the 8th IMF) to Extract the Low 

Frequency Component of Recorded EEG Signal. Its Energy exceeds the Upper 
Limit (95% of CI) of the IMFs’ Energies of fGn, using EMD (left) and NEMD 

(right) 

The limit of the IMF to separate the trend (EOG) i.e., the low frequency components 
(EOG) of the recorded EEG signal is determined by comparing the IMF (real) energy with 
that of the reference (imaginary) signal. The Gaussian noise (fGn) is used here as the 
reference signal which is estimated from the imaginary IMFs. When the energy of any IMF of 
EEG signal exceeds the upper limit of 95% confidence interval of the fGn, that IMF is 
selected as the lower limit of the low frequency trend (EOG) of EEG as shown in Figure 3. 
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(a)  

 
                 (b) 
 
Figure 4. Separation of EOG Artefact (top) and the EEG Signal (bottom) using 

EMD (a) and NEMD (b) Based Data Adaptive Method 

The proposed NEMD based algorithm for EOG separation is given bellow: 

1. EEG signal and Gaussian noise (fGn) are combined producing complex signal s(n). 
Both of the signals are normalized in amplitude 

2. Apply NEMD on the complex signal.  
3. Compute Log energy of individual imaginary fGn IMF and its upper and lower bound 

with 95% confidence interval. 
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4. Compute the Log energy of the real IMF. Find the real IMF with energy exceeding 
the upper limit of 95% confidence interval derived in step 1 say it mth IMF. The selected mth 
(in Figure 4, m=9) IMF is the starting index of constructing EOG signal. The EOG effect is 
separated by summing up the IMFs starting from mth up to the residue of the NEMD of EEG 
signals. 
 
4. Experimental Results and Discussions 

The first step of the experiment is to separate EOG artifacts from recorded EEG signals 
using EMD and NEMD based time domain filtering method. To evaluate the performance of 
the proposed approaches, we analyzed 13 channels (12 EEG channel and 1 reference EOG 
channel termed as vEOG) of EOG data.  

 

 
Figure 5. Recorded EEG Signal for 13 Channels (12 EEG Channel and 1 ref. 

vEOG) of EOG Data 
 

In the first step, this article presents two procedures for separating successfully EOG 
interference from multiple channel EEG recordings-using data adaptive de-trending approach 
where a mixing model was not trivial as it is presented in Figure 5. The EEG signals are 
recorded (at the Advanced Brain Signal Processing Laboratory, RIKEN, Japan) from head 
surface and electrodes were connected to the appropriate head channels and sampled with 
2.4kHz frequency using bio signal amplifier. 
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Figure 6. The Result of EMD (left) and NEMD (right) Approach to the Recorded 
EEG (left), Separated EOG (middle) and Purified EEG (right) of 9 Channels 

The results of separated purified EOG and EEG signals using EMD are shown in Figure 6 
(left). The reference EOG signal extracted from the reference channel vEOG is demonstrated 
in the figure. The reference EOG is used to determine the spectral limits of the EOG artifacts 
contaminating other EEG signals. From the experiments it is clear that the contamination of 
any EEG channel with EOG artifact also depends on the spatial distribution of the channels. 
The EOG and EEG separation results using NEMD for the mentioned 9 channels are also 
shown in Figure 6 (right). 

In order to compare the performance of EMD with NEMD, experiments are conducted on 
the recorded EEG signals of size 9600 at different noise levels. The power spectrum results 
for separated EOG signal by EMD and NEMD approaches for 9 channels are illustrated in 
Figure 7. 
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Figure 7. Separation of EOG for 8 Channels (except vEOG). The Circle Line 
Spectra Represent Interferences were removed by EMD while the Cross Lines 

by NEMD 

From these figures, it is shown that in EMD approach, there are many higher frequencies 
signals components superimposed on lower frequency signal, that is, still remain information 
about neural activities in the brain with EOG signal which occur serious problem for 
neuroscience application or medical diagnosis. The main strength of the EOG below 0 to 0.8 
Hz range are understandable overlapping of both spectra is very common in all 9-channels 
and  after that range, whereas in NEMD approach, no neural activities in the brain  correlated 
with EOG artifacts. It is important to stress by analyzing frequency domain-analysis in figure 
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6 and visualizing time-domain signal that NEMD method separates very strong EOG 
interference more perfectly from broad frequency content of neuro physiological signals and 
so it is an efficient technique for improving the quality of EEG signals in biomedical analysis. 
 
5. Conclusion  

Empirical Mode Decomposition is an emerging new technique of signal decomposition 
having many interesting properties. In particular, EMD can be applied to non-linear; non-
stationary noisy signals and does not require any prior knowledge on the nature and number 
of modes embedded in a signal. Vocalization and cranial muscle movement artifacts are 
similar to EOG artifacts and thus also can be removed by adapting the present techniques. 
The resulting separated “purified” EEG and slow wave signals are very easy to visualize in 
time domain. The separation of ocular artifacts by EMD and NEMD based time domain 
filtering are demonstrated where NEMD performed better, without removing significant and 
useful information and produces a smooth denoised signal and does not change the property 
of the signals. The proposed method will be helpful to obtain the pure EEG signals for neuro 
physiological application development. 
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