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Abstract 

In recent years, comparative genomic hybridization arrays (aCGH) techniques have 

been developed rapidly, and aCGH data analysis can identify chromosomal aberrations 

that are related to the development of many complex diseases. Currently, Chronic 

Obstructive Pulmonary Disease (COPD) is predicted to become the third most common 

cause of death and the fifth most common cause of disability in the world by 2020. 

Unfortunately, So far the studies to COPD have not been well characterized despite the 

well-documented role that cigarette smoking plays in the genesis of COPD. Therefore, in 

this study, we used comparative genomic hybridization arrays (aCGH) techniques to detect 

COPD related susceptibility regions (potential genomic aberrations) which will provide 

the support for COPD clinical study. Furthermore, the SW-ARRAY algorithm was used to 

detect the copy number variable (CNV) regions, and these regions were compared between 

patients with COPD and patients without COPD. Our results can help understand the 

disease etiology of COPD. 
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1. Introduction 

Chronic obstructive pulmonary disease (COPD) is an inherently heterogeneous disorder. 

Within a given individual, there may be varying contributions of emphysema, chronic 

bronchitis, and long-term smoking. Although smoking is the important environmental risk 

factor, the existing reports show that only 10% of the chronic heavy smokers develop 

symptomatic COPD [1-2]. Recently, a series of studies have implicated that COPD 

represents a complex disease with genetics contributions from multiple genes. It is 

therefore suggested that there must be some genetic predisposing risk factors contributing 

to COPD susceptibility. 

Recently, it was reported that large, rare deletions within gene regions might be the 

causal loci for multiple complex phenotypes, and an increasing number of genomic 

aberrations has been observed in the progression from normal sample to disease sample. A 

recent study has identified the some chromosomal aberrations in squamous cell carcinoma 

(SCC) samples by using aCGH data analysis [3]. Previous whole-genome analyses of copy 

number and gene expression have led to the identification of global cellular processes 

underlying malignant transformation and progression [4]. Some early aCGH studies on 
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breast cancer found that the highly amplified genes were over-expressed and the highly 

over-expressed genes were amplified [5-7]. Therefore, DNA copy number might influence 

gene expression across a wide range of DNA copy number alterations. Although few 

similar studies on COPD were performed, we hypothesize this phenomenon might exist in 

many complex diseases. 

In this paper, to characterize genomic alterations associated with COPD disease, we 

performed a bioinformatics analysis using aCGH profiles from patients with and without 

COPD. The most common genomic aberrations in different group were assessed. As a 

result, we found three common high copy amplifications regions (3q25.2-3q27.1, 5p15.3-

p13.1 and 8q24.1-q24.3) and two high copy deletions regions (3p26.3-12.1 and 5q11.1-

q35.2) shared by patients with and without COPD. Specially, we found the copy 

amplification of 2p16.2-p13.22 was only detected for patients with COPD. Similarly, a 

significantly higher frequency of losses of 8p23 was only detected for patients with COPD. 

These regions may possibly act as a predictor for a relatively prognosis of COPD patients. 
 

2. Materials and Methods 
 

2.1. Data source  

In this study, we used GEO data (GSE12280) to implement our analysis. This gene 

expression dataset includes 34 patients who presented with centrally located primary 

squamous cell lung carcinoma (SCC), including 15 patients without lymph node or distant 

organ metastases within 5 years after surgery; 8 patients with lymph node metastases at the 

time of surgery, but no distant metastases within 5 years after surgery; 11 patients 

presenting with distant metastases within 2 years after surgery but without lymph node 

metastases
 
[3]. Different from previous study, we classified the patients into two groups: 

patients with COPD (17 patients including 8 no metastases, 4 lymph node metastasis and 5 

distant metastasis), and patients without COPD (17 patients including 7 no metastases, 4 

lymph node metastasis and 6 distant metastasis). The aim of this classification is to detect 

the potential chromosomal aberrations difference between patients with and without COPD. 
 

2.2. aCGH analysis according to probes and samples 

In this analysis, thresholds for gains and losses were set at log-ratios of 0.3 (gain) and -

0.3 (loss), respectively [3]. Thresholds for amplifications were set at log-ratios of 0.8 and 

thresholds for homozygous deletions were set at -0.8. We analyzed the genomic 

aberrations according to probes and samples, respectively. 

 

2.3. Detecting CNV regions 

In this analysis, we used SW-ARRAY algorithm (Smith–Waterman algorithm adapted 

for Array CGH)
 
[8] provided by Genovar [9] to detect the copy number variable (CNV) 

regions. The SW-ARRAY algorithm is a technique originally applied in bioinformatics for 

the local alignment of DNA and protein sequences, and for the identification of sequence 

segments with unusual properties. The SW-ARRAY algorithm is described as following: 

1) A threshold value t0 is subtracted from the log ratios, ensuring that the mean of the 

adjusted scores is negative. The score of a segment of consecutive probes is the sum of the 

corresponding adjusted log ratios.  

2) Highscoring ‘islands’ are identified using the Smith–Waterman algorithm. A locally 

high-scoring segment or island is defined to be a positive-scoring segment whose score 

cannot be increased by shrinking or expanding the segment boundaries; let X(p) be the 
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adjusted score for the pth probe ordered along the genome. Let us define the score of the 

segment from p to q inclusive as 


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Define S(p) to be the score of the island ending at coordinate p, and B(p) to be the 

coordinate of the beginning of the island. Then it can be shown that the following Smith–

Waterman recursion will find the islands. Let S(0) = 0, and for p > 0 
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The boundaries max max{ ( ), }B p p  and score max( )S p  of the overall maximum-scoring 

island are output by the algorithm. The segment corresponding to the maximum-scoring 

island is replaced by a sequence of zeroes and the algorithm repeated until no positive-

scoring islands are detected. 

3) The statistical significance of an island was estimated by permutation, as the proportion 

of times that a higher-scoring island was found in 1000 runs in which the adjusted log 

ratios were permuted between the probes and the highest-scoring island in the shuffled data 

recorded in each run. 

4) The threshold value selection: Values near 1 at any particular position, it means that a 

copy-number change is indicated. Values near 0 mean that copy-number changes are not 

indicated. Intermediate values between 0 and 1 mean that the detection of copy-number 

changes is to some degree sensitive to the choice of threshold value. 
 

3. Results 
 

3.1. Common genomic regions in samples with gain and loss 

3.1.1 Frequency according to probes: According to the thresholds for gain and loss 

defined in the method section, the average gain (%) and loss (%) for patients with COPD 

(15.81 and 14.13) and patients without COPD (17.87 and 16.25) is very similar (See Figure 

1). Green and red colors indicate gain and loss, respectively. 

 

Figure 1. The gain (%) and loss (%) for two groups (patients with COPD and 
patients without COPD) 
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In addition, for patients with COPD, we found the highest frequency gain (%) presented 

in chromosome 14 (90.67) whereas the highest frequency loss (%) presented in 

chromosome 13 (80.86) (See Figure 2). Green and red colors indicate gain and loss, 

respectively. 

 

 

Figure 2. The highest frequency gain (%) and highest frequency loss (%) for 
patients with COPD 

 

3.1.2. Frequency according to samples: The copy number changes detected in at least 

50% of the COPD cases included 7 regions with a gain and 5 regions with a loss (See 

Table 1). The copy number changes detected in at least 50% of patients without COPD 

included 4 regions with a gain and 4 regions with a loss (See Table 1). Peak incidences 

were observed in a smaller sub-region for some of these regions for COPD cases; i.e. gains 

of 3q26.2-q27.3 (94%), and losses of 3p13-12.1(82%) (See Figure 3). Where, green and 

red colors indicate gain and loss, respectively. 

Indeed, PIK3CA (3q26.32) has been reported previously in SCC squamous cell lung 

carcinoma sample
 
[10]. For patients without COPD, peak incidences were observed in the 

same smaller sub-regions; i.e., gains of 3q25.2-3q27.1 (94%), and losses of 3p26.3-12.1 

(82%). Three common high copy amplifications (3q25.2-3q27.1, 5p15.3-p13.1 and 8q24.1-

q24.3) and two high copy deletions regions (3p26.3-12.1 and 5q11.1-q35.2) were found to 

be shared by these two groups. Specially, we found the copy amplification of 2p16.2-

p13.22 was only detected for COPD cases but not for patients without COPD. In addition, 

a significantly higher frequency of losses of 8p23 was also detected for COPD cases but 

not for patients without COPD. These regions may possibly act as a predictor for a 

relatively prognosis of COPD patients. 
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Table 1. Gains and losses of two groups according to samples (over 50%) 

 
 

 

Figure 3. Gains and losses of two groups (patients with COPD and patients 
without COPD) according to samples 

 

3.2. Detecting CNV regions according to samples 

We input parameters include median absolute deviation (MAD) and island block length 

to start the SW-ARRAY algorithm. Setting higher MAD value and island block length will 

result in stricter CNV region detection. In order to detect more CNVs, we selected 

MAD=0.6 and island block length=6. As a result, 439 CNV regions were found. These 

regions include 292 gain regions and 147 loss regions (See Table 2). From Table 2, we can 

see that except the gains at 18 chromosome regions (See Figure 4, green and red colors 

indicate gain and loss, respectively) were restricted to patients without COPD whereas the 

losses were restricted to COPD cases (Fisher: P=0.024), there were no significant 

differences in the prevalence of gains and losses between two groups at other chromosome 

regions. 
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Table 2. The number of CNV regions for patients with COPD and patients 
without COPD 

 
 

 

 

Figure 4. CNV regions (gain and loss) at 18 chromosome 

 

3.3. Detecting SNPs 

We used SNPnexus tool
 
[11] which provides a comprehensive set of annotations for 

genomic variation data by characterizing related functional consequences at different levels 

of several major annotation systems to detect SNPs within sub-regions with highest 

frequency gains or losses for COPD samples. 

These regions included 8 genes, PEX5L, TNIK, PYDC2, NLGN1, KCNMB3, CGNL1, 

GABRB2 and KCNK16 (See Table 3). Previous evidences have approved some of these 

genes are lung disease related. For example, it has been reported the possible target gene 

KCNMB3 (3q26.32) was significantly targeted in squamous cell carcinoma of the lung 

[12]. In addition, GABRB2 was also approved specifically to asthma [13]. 
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Table 3. The number of detected SNPs in CNV regions 

 
 

4. Discussions 

Chronic obstructive pulmonary disease (COPD) has been predicted to become the third 

most common cause of death and it remains under-recognized and under-diagnosed. In this 

study, we provided a bioinformatics analysis of the chromosomal regions with copy 

number changes in COPD cases compared to cases without COPD by using aCGH data. 

Application of aCGH allows a direct coupling to the copy number changes with the 

potential target genes. As a result, we found three common high copy amplifications 

regions (3q25.2-3q27.1, 5p15.3-p13.1 and 8q24.1-q24.3) and two high copy deletions 

regions (3p26.3-12.1 and 5q11.1-q35.2) shared by patients with COPD and patients 

without COPD. Specially, the copy amplification of 2p16.2-p13.22 was only detected for 

COPD cases but not for cases without COPD. These loci can be further explored for their 

potential use as predictive markers in COPD patients. In addition, candidate genes acquired 

by detecting SNPs in CNV regions, such as KCNMB3 and GABRB2, may contribute to 

the pathology of COPD. 

However, except the gains at 18 chromosome regions were restricted to cases without 

COPD whereas losses were restricted to COPD samples (Fisher: P=0.024), there were no 

significant differences in the prevalence of gains and losses between two groups at other 

chromosome regions. The most likely explanation for this result is that the samples used in 

this analysis were all patients who presented with centrally located primary squamous cell 

lung carcinoma, and COPD did not perform a major role in disease. Therefore, more aCGH 
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data about COPD case-control samples will be needed to perform further analysis. 

Furthermore, amplifications and homozygous deletions are relatively small regions, which 

may be missed by CGH techniques. The latest new technique-laser microdissection [3] 

applied for the vast majority of cases will get a much higher percentage of cells allowing a 

more reliable detection of copy number changes.  

 

5. Conclusions 

In conclusion, joint analysis of array comparative genomic hybridization (aCGH) copy 

number data and microarray gene expression data will uncover biological relationships 

relevant to our understanding of COPD [14-16]. Therefore, our future study is combining 

large-scale data from a variety of analyses at the SNP, gene and protein levels, which will 

help direct toward better understanding of COPD pathology. 
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