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Abstract 

Motion of thoracic and abdominal tumors induced by respiratory motion often exceeds 

more than one centimeter which can compromise dose conformality significantly. Motion-

adaptive radiotherapy aims to deliver a conformal dose distribution to a tumor with minimal 

normal tissue exposure, by compensating for the tumor motion in real time. This requires 

prediction of respiratory motion to estimate the respiratory movement that has occurred 

during the system latency due to measurement and control. One of the most successful models 

for predicting respiratory motion is the local circular motion (LCM) model. It characterizes 

the local respiratory behavior with a circular motion in an augmented plane and captures the 

natural evolution of respiratory motion. In this paper, we utilize the first and second-order 

extended Kalman filters based on LCM model for predicting respiratory motion. We also 

optimize the parameters of the extended Kalman filters for each trace in an attempt to 

improve prediction accuracy. Numerical experiments are performed to evaluate and compare 

prediction accuracy of four different prediction schemes. 
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1. Introduction 

Motion of thoracic and abdominal tumors induced by respiratory motion often exceeds 

more than 1 cm which can compromise dose conformality significantly [1, 2]. Motion-

adaptive radiotherapy aims to deliver a conformal dose distribution to a tumor with minimal 

normal tissue exposure, by compensating for the tumor motion in real time. There is system 

latency between acquisition of tumor position and repositioning of the treatment beam. This 

system latency can be up to several hundred milliseconds and it is required to predict the 

movement that has occurred during the system delay for the motion compensation. The 

problem of predicting respiratory motion has been intensively studied [2-6]. Nonparametric 

methods do not assume an explicit model on motion dynamics and learn the respiratory 

patterns to predict the future behavior from previous observations [3, 4]. The nonparametric 

inference models often require intensive training on a large data set. Parametric methods rely 

on a mathematical model that characterizes a local motion [5, 6]. The parametric approaches 

often have an advantage that can be implemented using efficient recursive prediction 

algorithms.  

Recently, the use of MV treatment beam imaging combined with kV imaging has been 

investigated for real-time tracking of tumor position during the radiation delivery [7-10]. The 

use of the MV beam for acquisition of tumor position reduces the total imaging dose required 
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for precise tracking. It provides geometric information of tumor to reduce kV imaging rate 

and dose. The advantages make the combined use of the MV and kV imagers a viable 

solution to the real-time tracking problem [9]. The sampling rates of the MV and kV imagers 

are maintained relatively low to comply with imaging system hardware and to limit kV 

imaging dose. For this case of low sampling rates where training data set is limited, 

parametric approaches have advantages over nonparametric methods. One of the most 

accurate parametric models for predicting respiratory motion is the local circular motion 

(LCM) model proposed in [6]. The first-order extended Kalman filter (EKF) was 

implemented based on the LCM model and the prediction of the EKF was most accurate up to 

0.5 sec prediction length region for 5 Hz sampling rate. In this paper, we utilize the first-order   

and second-order extended Kalman filters based on the LCM model and optimize filter 

parameters for each individual trace in an attempt to further improve its prediction accuracy. 

Numerical experiments were performed to evaluate and compare prediction accuracy of 

different prediction schemes. Results of the experiments show that the first-order EKF is 

comparable with the second-order EKFs in prediction accuracy and the accuracy can be 

improved through use of parameters optimized for each trace. 
 

2. LCM Model and Prediction of Respiratory Motion 

The first and second-order EKFs are utilized to predict respiratory motion in order to 

compensate for system latency induced by measurement and control. The EKFs are 

implemented based on the LCM model, which characterizes the local respiratory behavior 

with a circular motion in an augmented plane [6]. Defining the discrete-time state vector 

by
Tkkykxkxk ])()()()([)(  x , we can write a discrete-time state equation to 

characterize the evolution of )(kx as 

)())((1)( kkk vxfx  ,     (1) 
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The evolution of position )(kx  is the projection of the planar circular motion onto the 

x-coordinate. The y-axis is an auxiliary axis augmented to define the circular motion.  

We assume that the process noise vector )(kv  is a zero-mean white sequence with its 

covariance matrix given by 

 

























Tq

Tq

TqTq

TqTq

kkk T

3

2

1
2

1

2
1

3
1

000

000

00
2

1

00
2

1

3

1

)()()( vvEQ .   (3) 

Here, the parameters q1 , q2  and q3  are the power spectral densities of the 

continuous counterparts of the last three components of )(kv . These parameters each 
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characterize the strength of possible changes in  )( ),( kykx   and )(k   over the sampling 

interval T. The measurement equation of position )(kx  is 

)()()( kwkxkz  ,     (4) 

where )(kz  is the observation at time k  and )(kw  denotes the corresponding 

additive measurement noise. 

The goal is to predict the position at time 0)(  kT , based on the measurement set 

of observations up to time k . Note that the state equation is nonlinear. The prediction 

of the future position )( kTx  requires a nonlinear estimation. The first-order and 

second-order EKF is one of the simplest structures for implementing a nonlinear 

estimator. They rely on a first-order expansion and a second-order expansion of the 

nonlinear state dynamics ))(( kxf , respectively, and calculate the state estimate at time 

k , denoted )|(ˆ kkx , and its covariance matrix, denoted )|( kkP , recursively. One cycle 

of the second-order EKF, evolving  )|(ˆ kkx and )|( kkP  into 1)|1(ˆ  kkx and 

1)|1(  kkP  can be summarized as follows. 

 

Step 1: Evaluate the one-step predicted states and its covariance: 
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where  )(kxf is the Jacobian of the vector function  )(kf evaluated at )(ˆ)( k|kk x x  , )(ki

xxf  is 

the Hessian matrix of the i-th component of  )(kf evaluated at )(ˆ)( k|kk x x  , and 
ie  is 

the unit vector with the i-th component of unity. The Jacobian matrix is given by 
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Here, the partial derivatives with respect to )(k , )(kf1 , )(kf2 , and )(kf3  are given 

by 
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The Hessian matrices 3, 2, 1,  i ,)( ki

xxf  are given by 
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and the second-order derivatives of the i-th component of  )(kf with respect to )(k  are 

given by 
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Step 2: Evaluate the one-step predicted measurement and its covariance: 

 

)1(ˆ)1(ˆ k|kk|kz  x H ,     (11) 

1)()1(1)(  kRk|kkS T
HP H ,    (12) 

 

Step 3: Evaluate the state update with new measurement )1( kz  and its covariance: 

 

 )|1( ẑ-1)1)(z(()|1(ˆ1)|1(ˆ kkkkkkkk  Kxx ,   (13) 
TkkSkkkkk 1)( 1)( 1)( -)|1(1)|1(  KKPP ,   (14) 

where  1)( kK  is the Kalman gain given by -11)( -)|1(1)(  k Skkk T
HPK . 
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By using the state estimates obtained in Step 3, we can evaluate the predicted position with 

prediction length  . The position prediction is given by 
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Note that we can obtain the first-order EKF by removing the second-order terms in (5) and 

(6). 

 

3. Numerical Experiments 

The clinical data of 10 traces were used in our experiments. The data were obtained with 

the real position management system (RPM system, Varian Medical, Palo Alto, CA) by 

measuring position of fiducial markers placed on the patient's chest wall [4]. We adopt the 

normalized root mean squared error (nRMSE) as the performance measure for each trace 

defined by RMSE divided by the standard deviation of the sample values [6]. 
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where 
iN  denotes the number of sample points of trace i. The performance measure 

removes the adverse impact of the arbitrary scaling in RPM amplitude. Population nRMSE is 

also computed by averaging the individual trace nRMSE over all traces as 

 
1
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where N  denotes the number of traces. The first and second-order EKFs were implemented 

based on the LCM model. Firstly, numerical experiments were performed to evaluate 

prediction accuracy of the first-order EKF (denoted LCM-1) and of the second-order EKF 

(denoted LCM-2) for 0.6 sec prediction length and 5 Hz and 10 Hz sampling rates. The 

experimental results are listed in Tables 1 and 2. The tables present the prediction accuracy of 

LCM-1 and LCM-2 in terms of nRMSE. They indicate that the improvement in accuracy of 

LCM-2 over LCM-1 is marginal, regardless of sampling rates. In the experiments the 

parameters in (3), 
1q , 

2q and 
3q , of LCM-1 and LCM-2 were set to 0.2, 2*10-4 and 2*10-3, 

respectively. These parameters were optimized to minimize population nRMSE of (17) on a 

coarse grid in the parameter space.  
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Table 1. Comparison of Prediction Accuracy of LCM-1 and LCM-2 in Terms of 
nRMSE (prediction length 0.6 sec, sampling rate 5 Hz) 

Trace ID 1 2 3 4 5 6 7 8 9 10 nRMSE 

LCM-1 .44 .37 .51 .69 .50 .69 .65 .31 .48 .66 .543 

LCM-2 .43 .37 .51 .69 .50 .68 .64 .31 .48 .65 .541 

Error reduction (%) 0.2 0.3 0.2 0.3 0.4 0.7 0.9 0.0 0.6 0.3 0.37 

 

Table 2. Comparison of Prediction Accuracy of LCM-1 and LCM-2 in Terms of 
nRMSE (prediction length 0.6 sec, sampling rate 10 Hz) 

Trace ID 1 2 3 4 5 6 7 8 9 10 nRMSE 

LCM-1    .42 .38 .49 .66 .50 .68 .61 .31  .48  .61 .526 

LCM-2 .43 .38 .48 .66 .50 .67 .61 .36  .48     .61 .524 

Error reduction (%) -0.9 0.3 0.0 0.3 0.6 0.9 0.5 0.0 0.6 0.0 0.38 

 

Table 3. Comparison of Prediction Accuracy of LCM-1(opt) and LCM-2(opt) in 
Terms of nRMSE (prediction length 0.6 sec, sampling rate 5 Hz) 

Trace ID 1 2 3 4 5 6 7 8 9 10 nRMSE 

LCM-1(opt) .42 .37 .47 .66 .49 .58 .60 .30 .48 .61 .509 

LCM-2(opt) .42 .36 .47 .65 .47 .57 .61 .30 .47 .62 .505 

Error reduction (%) 0.0 2.4 0.2 0.5 4.5 1.5 -0.3 0.0 1.0 -0.5 0.78 

 
Table 4. Comparison of Prediction Accuracy of LCM-1(opt) and LCM-2(opt) in 

Terms of nRMSE (prediction length 0.6 sec, sampling rate 10 Hz) 

Trace ID 1 2 3 4 5 6 7 8 9 10 nRMSE 

LCM-1(opt) .41 .36 .47 .63 .48 .58 .59 .30 .46 .60 .498 

LCM-2(opt) .41 .36 .47 .61 .48 .58 .59 .30 .43 .60 .494 

Error reduction (%) 0.2 0.3 0 2.5 -0.8 0.5 -0.2 0. 7 6.5 -0.2 0.80 

 

Table 5. Comparison of Prediction Accuracy of LCM-1 and LCM-1(opt) in Terms 
of nRMSE (prediction length 0.6 sec, sampling rate 5 Hz) 

Trace ID 1 2 3 4 5 6 7 8 9 10 nRMSE 

LCM-1(opt) .44 .37 .51 .69 .50 .69 .65 .31 .48 .66 .543 

LCM-2(opt) .42 .37 .47 .66 .49 .58 .60 .30 .48 .61 .509 

Error reduction (%) 4.6 0.0 7.5 4.6 2.6 15.1 6.6 3.2 0.4 6.3 6.26 

 

Table 6. Comparison of Prediction Accuracy of LCM-1 and LCM-1(opt) in Terms 
of nRMSE (prediction length 0.6 sec, sampling rate 10 Hz) 

Trace ID 1 2 3 4 5 6 7 8 9 10 nRMSE 

LCM-1(opt) .42 .38 .49 .66 .50 .68 .61 .31 .48 .61 .526 

LCM-2(opt) .41 .36 .47 .61 .48 .58 .59 .29 .43 .60 .498 

Error reduction (%) 2.4 3.7 4.3 4.1 4.6 14.0 3.1 2.3 3.5 3.0 5.32 
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Additional experiments were performed for the EKFs with parameters optimized for each 

individual trace to minimize nRMSE of the corresponding trace. Let LCM-1(opt) and LCM-

2(opt) denote the first and second-order EKFs with the optimized parameters, respectively. 

The experimental results are presented in Tables 3 and 4. They shows that LCM-2(opt) does 

not improve prediction accuracy over LCM-1(opt). This implies that the uncertainty in the 

prediction cannot be characterized effectively with the second-order nonlinear estimation 

model. The results indicate that the first-order EKF is the better scheme as a predictor, taking 

into account the computational cost. In order to compare prediction accuracy of LCM-1 and 

LCM-1(opt), the above experimental results are rearranged to list in Tables 5 and 6. The error 

reduction of LCM-1(opt) over LCM-1 is approximately 5 to 6% in terms of the population 

nRMSE. The reduction, however, is not uniform over traces. It was null for trace 2 and 15% 

for trace 6 at sampling rate 5 Hz. Although the error reduction depends on traces, the results 

suggest that the best predictor scheme is the first-order EKF with parameters optimized for 

each trace. 
 

4. Conclusion 

In this paper, the first and second-order EKFs were utilized to predict respiratory motion in 

order to compensate for system latency due to measurement and control. The EKFs were 

implemented based on the LCM model. The parameters of the first and second-order EKFs 

were optimized to minimize the average of normalized RMSE values over all traces. The 

parameters were also optimized for each trace to minimize the normalized RMSE. Results of 

numerical experiments show that the first-order EKF is comparable with the second-order 

EKFs in terms of prediction accuracy and the accuracy can be improved through use of 

parameters optimized for each trace. 
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