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Abstract 

To promote molecular biology studies, public repositories for microarray data need to be 

constructed; the minimum contents for analysis of microarray experiment have been defined 

and standardized. Public repositories have been constructed by some researches which follow 

the standards such as MIAME-compliant data and MAGE-OM/ML. However, enough 

consideration has not been taken into the design of storage structure for the hierarchy of 

microarray data. In this paper, we propose alternative mapping strategy to mine the 

structural similarity and an advanced mapping rule from the algorithm. Object-relational 

mapping technique is used for extracting advanced storage design schema for microarray 

data and structural similarity of elements is evaluated for efficient storage construction. The 

mapping strategy reduced the number of relational tables remarkably. The strategy will 

contribute to design of the storage structure of microarray data and performance 

enhancement of a public repository. 
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1. Introduction 

To promote molecular biology studies, microarray data must be shared among 

researchers. Hence, the minimum contents for analysis microarray experiment have 

been defined and standardized. With the definitions, a standard protocol such as 

MAGE-ML (Microarray Gene Expression - Markup Language) has been announced to 

make microarray contents exchangeable among the application programs of the research 

groups. To promote the interoperable foundation that enables microarray data to be 

exchanged in application level, it is necessary to construct infrastructure complying 

with the standard. Researchers have paid their efforts to construct public repositories 

that follow the standard. As a result, the implementation of the standard-compliant 

storage has become the main issue of related research [1, 2, 3].  

Even though public repositories have been constructed successfully, not enough 

consideration has been given to the design of storage structure for the hierarchy of 

microarray data. For advanced database design, DTD-dependent database design 

scheme was introduced by many researchers. This scheme supports hierarchy-oriented 

searching system and perfect parsing method for XML (eXtensible Markup Language) 

documents because DTD (Document Type Definition) reflects the hierarchy of a 

structured data. In the research, RDBMS (Relational DataBase Management System) is 

used as XML storage because it has the advantages on storage space and speed. The 

main idea is how to preserve the structural integrity of semi-structured data in RDBMS. 
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Two obstacles to achieving the idea exist. The first is difficulty in mapping object data 

into relational data, and the other is deterioration of database performance that is 

involved in the mapping process. To overcome these difficulties, several XML storage 

methods were proposed [4, 5, 6]. These approaches reduced the complexity of DTD or 

XML instance prior to the creation of database schema. They analyzed a graph that 

represents XML elements and attributes, and edges which represents relationship 

between parent and children elements. 

In this paper, we propose an algorithm to mine the structural similarity and an 

advanced mapping rule from the algorithm. Object-relational mapping technique is used 

for extracting advanced storage design schema for microarray data in our method, but 

unlike previous works structural similarity of elements is evaluated for efficient storage 

construction. Using the proposed algorithm, we designed a MAGE-compliant database 

system and evaluated its performance. 

 

2. Background Study 

For the purpose of managing semi-structured data, commercial RDBMSs provide the 

object-relational mapping methods [4, 7, 8]. Commonly, these methods treat XML 

documents as a tree form of objects and transform it into several relational tables. This 

makes queries to XML data set have a number of joins. As a result, the performance of 

a database adopting this method is potentially deteriorated [4]. To overcome this 

problem, several studies have proposed alternative XML storage mapping techniques: 

DTD-dependent [4], Edge-dependent [5], and data mining-dependent [6]. The research 

[5] stores graph and edges in a single Edge table to handle all graph and edge 

information of XML data. The research [6] proposed STORED system adopted a data-

mining algorithm [9] to extract relations from XML data and then transform it to 

relational database schema. These approaches [5, 6] remarkably improved the database 

performance but only one structure can be handled because they require only an 

instance of XML data in the transformation process. In managing the structural variety 

of an XML instance, simplifying DTD would be the fundamental measure. The research 

[4] proposed in-line technique focusing on simplifying DTD prior to object-relational 

mapping. This technique eliminated omissible elements from DTD. Where, the 

omissible elements are the elements with only a role of a linker between an ancestor 

element and a descendant one. By removing such elements, ancestors can be directly 

linked to descendants. 

Many MGED (Microarray Gene Expression Data) standard-compliant repositories 

have adopted RDBMS, which enables the repositories to take advantage of the RDBMS 

engine for its stability, convenient management, and good performance [1, 2]. The goal 

of the research is to implement storage following the MGED standard.  Although the 

research [1] improved performance of common queries through local modification of 

object model, it is difficult to expect the efficient database design scheme from it 

because its database design scheme adheres to the straightforward mapping technique. 

Similarly, the research [2] did not provide an answer for understanding the object-

relational impedance mismatch [10], which occurs when tree-based XML documents 

are stored in the standardized relational database tables. Although the research [3] 

presented the concrete mapping rule to transform MAGE objects into XML documents , 

it aimed to export XML documents from relational tables rather than to consider the 

advances in the efficient design of relational database for microarray data set. 
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2.1. Microarray Data and MAGE (Microarray Gene Expression) 

By sharing microarray experimental information, research groups can acquire the 

various experimental techniques performed by others and use them to solve their own 

biological questions. For necessity, the MGED society [11] has been leading several 

working groups to develop standards. MIAME (Minimum Information About a 

Microarray Experiment), one of the workgroups, has defined the necessary data for 

analyzing microarray experimental. Another workgroup, MAGE (Microarray Gene 

Expression) has announced the standard protocols for the exchange of MIAME data: 

MAGE-OM/ML (Object Model/Markup Language) [12]. The MAGE-OM is an object-

oriented class diagram stated by UML (Unified Modeling Language). MAGE-OM has a 

complex and huge hierarchy consisting of 132 classes, 123 kinds of attributes, and 223 

kinds of associations. MAGE-ML also has a structural complexity that has made its 

format impractical and its creation impossible by hand [13, 14]. The structures of 

MAGE-ML defined in DTD have similar structure patterns. This feature allowed us to 

establish an efficient storage construction scheme for microarray data sets. 
 

2.2. Decision Tree 

The decision tree that makes rules for classifying the patterns is to be determined in a 

set of attributes. The expression of the decision tree is very simple but its classifier has 

good accuracy [15]. The decision tree is constructed by calculating information gain of 

each attribute. For example, if a training set of classes, D is {C1, C2,…, Cm}, the 

information gain of the training set is given by 

 Info(D) =- )(log

1

2


m

i

ii PP                                  (1) 

where, pi is the probability that an arbitrary tuple in D belongs to class Ci. 

The information gain of an attribute with different values such as {a1, a2,..., av} is 

given by 

Gain(A)=Info(D)  jD

v

j

j
Info

D

D


1

                    (2) 

The decision tree has been widely adopted in various research fields such as 

document classification, detection of illegal intrusion, and classification of protein and 

diseases [16, 17]. 

 

3. Design of Decision Tree for Establishing Classification Rules 

Processes show how classification rules are established. First, we define the 

structural similarity among elements. Terminology is defined as well. Second, we select 

the splitting criterion for constructing the decision tree. Finally, we construct the 

decision tree from which classification rules are extracted. We state algorithms for 

realizing those rules as well. 
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3.1. The Basic Object-Relational Mapping Technique for XML Storage 

For illustration purpose, we introduce an example XML schema that shows how the 

classification rules apply, as shown in Figure 1. The classification rules also perform 

well on MAGE-compliant data.  
 

<xsd:element name="A">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="B"/>
<xsd:element ref="C"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="B">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="D"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="C">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="E"/>
<xsd:element ref="F"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="D">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="G"/>
<xsd:element ref="H"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="E">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="I"/>
</xsd:sequence>

                               <xsd:attribute name=”identifier”/>
</xsd:complexType>

</xsd:element>
<xsd:element name="F">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="I"/>
<xsd:element ref="J"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="G">
<xsd:complexType>

<xsd:attribute name="identifier" use="required"/>
<xsd:attribute name="name"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="H">

<xsd:complexType>
<xsd:attribute name="identifier" use="required"/>
<xsd:attribute name="name"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="I">

<xsd:complexType>
<xsd:attribute name="width" use="required"/>
<xsd:attribute name="hight" use=”required”/>
<xsd:attribute name="length" use=”required”/>

</xsd:complexType>
</xsd:element>
<xsd:element name="J">

<xsd:complexType>
<xsd:attribute name="identifier" use="required"/>
<xsd:attribute name="name"/>

</xsd:complexType>
</xsd:element>

A

B C

E FD

I JG H

Root

Parent

Group

Lowest

Child 

Group

 

Figure 1. The Structural Expression using Tree Nodes and Its Example XML 
Schema 

In the example, the basic principle of object-relational mapping technique is briefly 

represented. All elements are converted to classes. Among them, certain classes create 

its instance and have a child element or attribute that is transformed into relational 

tables. Figure 2 shows a part of such tables created from elements A to J. All fields of 

class A have a value referencing an external object. This shows the relation between 

classes A and J. To maintain the hierarchy of the example schema, each table exploits a 

primary key and several foreign keys. 
 

Object_id B

identifier

Primary key
Foreign 

key

String

Class A
C

Foreign 

key

Object_id D

Primary key
Foreign 

key

Class B

Object_id G

Primary key
Foreign 

key

Class D
H

Foreign 

key

Object_id

Primary key

Class G
name

String

identifier

String

Object_id

Primary key

Class H
name

String

 

Figure 2. Tables Derived from complexType from A to H 
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3.2. The Definition of Structural Similarity among Elements 

As shown in Figure 1, every element has a complexType that defines components 

such as sub-element(s) and attribute(s). Each component can be expressed as a part of a 

set with properties. Assuming that a certain element x has a complexType, each 

complement set of x can be defined as follows: 

 

SEx = {e1, e2, … , en},  SAx = {Ae1, Ae2, … , Aen} 

complexType(x) = {SEx, SAx} 

To help to understand the above summary, we defined some terminologies as 

follows: 

 e: an element defined in XML schema 

 E: an elements set of e 

 SE: a sub-elements set of e 

 a: an attribute of e 

 A: an attributes set of e 

 SA: an attributes set for all sub-elements  of e 

 complexType: Structural information that consists of SE and (or) A of e. 

 Lowest Child: an element without any sub-element. 

 LCG (The Lowest Child Group): a set of lowest child elements 

 PG (Parent Group): a set of elements with sub-element. 

 Root: an element without parent element. 

Whether one complexType is similar to another complexType will depend on the 

comparison of sequence and attribute set between two complexType. For example, 

when SEx and (or) SAx in the complexType of a certain element x exactly match SEy 

and (or) SAy in the complexType of another element y, x and y have the structural 

similarity. Note that in evaluating structural similarity between a complexType(x) and a 

complexType(y), the criterion of the similarity is data type not the name of each 

comparison object. Where the comparison object is each factor arranged in sub-

elements set or attributes set. 

 

3.3. Selection of Splitting Criterion 

Element name, attribute, and child element are the factors of a complexType that 

define the structure of an element. In evaluating the structural similarity of elements, 

the most important factors are data types which are arranged in individual set of 

attributes sub-elements. We selected hasParent, hasChild, and PG as the test predicates 

for each elementName. These predicates are used in comparing structural information 

among complexTypes. The predicate PG decides whether an element belongs to PG 
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(Parent Group) class. For the construction of the decision tree, the training set of these 

items needs to be organized (Table 1). Table 1 presents the training set, D, of class-

labeled tuples parsed from all complexTypes in the example schema of Figure 1. 

 

Table 1. Class-labeled Training Tuples from an Example XML Schema 

|Element| hasParent hasChild Class: PG 

A False True Yes 

B True True Yes 

C True True Yes 

D True True Yes 

E True True Yes 

F True True Yes 

G True False No 

H True False No 

I True False No 

J True False No 

 

In Table1, PG has two distinct values ({yes, no}); therefore, there are two distinct 

classes (that is, m=2). Let class C1 correspond to yes and class C2 correspond to no 

(refer to equation (1)). There are six tuples of class yes and four tuples of class no. A 

(root) node N is created for the tuples in D. To find the splitting criterion for these 

tuples, we compute the information gain of each attribute. We first use Equation (1) to 

compute the expected information needed to classify a tuple in D: 

Info(D)= 


















10

4
log

10

4

10

6
log

10

6
22

=0.971 bits 

Next, we need to compute the expected information requirement for each attribute: 

hasParent. We need to look at the distribution of yes and no tuples for each category of 

hasParent and hasChild. For the hasParent, category false, there is one yes tuple and 

zero no tuples. For the category true, there are five yes tuples and four no tuples. Using 

equation (2) the expected information needed to classify a tuple in D if the tuples are 

portioned according to hasParent is 

InfohasParent(D)= 









1

0
log

1

0

1

1
log

1

1

10

1
22

+ 









9

4
log

9

4

9

5
log

9

5

10

9
22

=0.891 bits 

Similarly, we can compute InfohasChild(D)=0 bits. Hence, each of gains in 

information from such partitioning would be 

 Gain(hasParent)=Info(D)− InfohasParent(D)=0.971− 0.891=0.08 bits 

 Gain(hasChild)=Info(D)− Info hasChild(D)=0.971− 0=0.971 bits 

Since hasChild has the highest information gain between the attributes, it is selected 

as the splitting attribute. Tuples in Table 1 can be partitioned as shown in Figure 3. 
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Figure 3. The Splitting Attribute at the Root Node of the Decision Tree 
 

A further branching will be done in each partitioned class when an element is a 

parent element. Hence, a new splitting criterion for PG class needs to be calculated 

recursively. We can compute gains of hasParent and hasChild predicates: 

Gain(hasParent)=0.971-0=0.971 bits and Gain(hasChild)=0.971-0=0.971. Since they have the 

same information gain, one or the other can be selected as the splitting attribute. Briefly, 

this implies that the partitioned results must be same regardless of what the splitting 

attribute is. So we selected hasParent as the splitting attribute.  

 

3.4. Classification Rules from the Decision Tree 

Figure 4 shows the decision tree shaping idea for classifying elements with structural 

similarity. As an individual set of similar elements, each branching point has a 

condition by which an element is classified into a specific target node.  

 

PG1

No2: hasParent?

No3: LCGs

No4: PGs

PG3

LCG1

LCG2

PG2

No5: root

No1: hasChild? yes

no

yes

no●

●

●
●

●

 

Figure 4. The Decision Tree from the Training Set of the XML Schema for 
Example 

 

From each of branching points in the decision tree, we extracted rules for classifying 

elements with the structural similarity. Each of rules is expressed into IF-THEN 

statements respectively. Table 2 presents IF-THEN statements at each node. 
 

Table 2. The Rules for Classifying LCGs, PGs, and Root Element 

|No| If Then 

2 hasChild=yes Go to node No. 4 

3 hasChild=no LCGs 

4 hasChild=yes AND hasParent=yes PGs 

5 hasChild = yes AND hasParent = no root 

 

Note that Node No. 3 and 4 are leaf nodes, which are sets of elements classified by 
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the conditions at No. 1 and 2, respectively. Each set of elements might be separated into 

several groups for parent elements and lowest child elements with structural s imilarity. 

Thus, it is required rules to evaluate the structural similarity of elements in No . 3 and 

No. 4. To simplify the comparison of structural similarity, we expressed complexTypes 

of elements to Classification_codes with string value. 
 

 

Figure 5. Classification Code with the Decision Tree Example 
 

A Classification_code shows a structure of an element as shown in Figure 5, where 

we attached the classification code to each training set tuple in the example decision 

tree of Figure 4. An element might have several sub-elements and attributes. Under this 

assumption, a Classification_code has two factors, one for sub-elements and the other 

for attributes. We can analyze the structural similarity among elements using these 

factors. The first factor arranges sub-elements set and has the fixed string value 

“Object”. The value “Object” means a sub-element is managed in an external relational 

table. In other words, the first factor is a set of foreign keys referencing external 

relational tables. The second factor arranges data types built in XML schema, where, 

the symbol ‘@’ used for indicating data type of the attribute. The following is the 

summary of a complexType of the element E (see Section 3.1). 

 SEE={I}, SAE={identifier} 

 complexType(E)={[SEE], [SAE]}={[I], [identifier]} 

The above summary is simplified as follow: 

 Classification_code(E)={[Object], [@String]} 

Note that, the sameness of Classification_code means that the compared elements 

have the structural similarity.  

Using the Classification_code, we created IF-THEN statements at node No3 and No4 

in Table 3. As shown in Table 3, at node No3 in Figure 4, LPGs might be divided into 

several groups according to the Classification_Code. Therefore, an algorithm to exactly 

expect the number of LPGs is required. Similarly, an algorithm for PGs is required at 

node No. 4. 
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Table 3. The Rules for Evaluating the Structural Similarity among Elements in 
Each Group 

|No| If Then 

3 

hasChild=no AND hasParent=yes AND 

Classification_Code={@String, @String} 
LCG1 

hasChild=no AND hasParent=yes AND 

Classification_Code={@String, @String, @String} 
LCG2 

4 

hasChild=yes AND hasParent=no AND 

Classification_Code={Obj} 
PG1 

hasChild=yes AND hasParent=no AND Classification_Code={Obj, 

Obj} 
PG2 

 

The following four rules are the comprehensive algorithms to seek the root element 

and expect the number of LCGs and PGs. For the implementation of the algorithms, all 

statements in Table 2 and 3 are generalized into four rules: Rule1, Rule2, Rule3, and 

Rule4. These rules are performed at node No. 1, No. 2, No. 3, and No. 4 respectively. 

Rule1: if an element has no sub-elements then the element is classified into LCG. 

Otherwise, the element is classified into PG. That is, Rule1 decides that an element 

should belong to group LCG or PG. The following pseudo code expresses this rule. 

 

For each ei  E { 

if(number of elements in SEei == 0){  

ei is classified into LCG; 

}else{ 

ei is classified into PG; 

} 

} 

Rule2: If a certain element in PGs has the parent element, then the element is 

classified into PGs. Otherwise, the element is the root element. That is, Rule2 seeks the 

root element in PGs. 

 

For each ei  PGs { 

 if (ei has parent) { 

ei is classified into  PGs; 

}else{ 

ei  is Root  

} 

} 

Rule3: Let PG from Rule1 be PG0. When several elements in PG0 have complexType 

in which one or more attributes are defined, the elements that have the same 

complexType are separated into a new group PGp (p>0). If there is already a group PGp 

with the same complexType, the element comes to the group PGp. That is, Rule2 

classifies multiple sets of PG: PG1…PGn 
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p = 0; 

For each ei  PG0 { 

 Flag=0; 

      If (p>0) { 

           For q=1 to p 

 If (complexType(ei) == complexType(element in PGq)) { 

ei is classified into  PGq; 

                      Flag=1;  

} 

      } 

           If (Flag==0) { 

For each ej  PG0  

if(complexType(ei) == complexType(ej) { 

p=p+1; 

               ei and ej are classified into a new group of PGp; 

} 

} 

} 

Rule4: Let LCG from Rule1 be LCG0. When several elements in LCG0 have 

complexType in which one or more attributes are defined, the elements, which have the 

same complexType, are separated into a new group LCGp (p>0). If there is already a 

group LCGp with the same complexType, the element comes to the group LCGp. That is, 

Rule2 classifies multiple sets of LCG: LCG1…LCGn 

 

p = 0; 

For each ei  LCG0 { 

 Flag=0; 

      If (p>0) { 

           For q=1 to p 

 If (complexType(ei) == complexType(element in LCGq)) { 

ei is classified into  LCGq; 

                      Flag=1;  

} 

      } 

           If (Flag==0) { 

For each ej  LCG0 { 

if(complexType(ei) == complexType(ej) { 

p=p+1; 

                              ei and ej are classified into a new group of LCGp; 

} 

} 

} 

 

4. Database Implementation using the Proposed Decision Tree 

Using the decision tree illustrated in the previous section, we reduced the  complexity 

of XML schema for MAGE-ML and implemented database tables from it. The database 
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consists of three levels as the tree node in Figure 1: root, PGs, and LCGs. Although the 

associations among LCGs are clear, PGs have associations too complex to complete the 

relations among parent elements and lowest child elements. To simplify the complexity, 

we created the BigbrotherType table with 15 columns for PGs and LCGs. Since each of 

columns is allowed to have null value, the table can handle all relations possible to be 

occurred under the root element. In addition, it is possible to cover the mutual 

references between parent elements because all PGs have a foreign key referencing the 

BigbrotherType table. All columns in each table are for the attribute value except 

columns for foreign keys. 

Table 4 shows the comparisons of the number of classes, tables, table joins, and 

database sizes among three schemas: Raw Schema from direct object-relational 

mapping, Optimized Schema from our proposed algorithm, In-Lined Schema from [4]. 

The number of tables produced by Optimized Schema is only 3% of the number of 

tables produced by Raw Schema. From comparison of the number of records, table join 

and database size between Raw Schema and Optimized Schema, we know that the 

number of tables affects performance of the database. 
 

Table 4. The Complexity of XML Documents 

 Raw schema Optimized schema In-Lined schema 

Class 455 15 203 

Table 455 15 203 

Record 2012 156 - 

Table join 1033 24 - 

Database size (KB) 4270 192 - 

 

As the mapping technique for the comparison with our algorithm, we chose the in-

line technique [4], because it has provided related research results on the efficient 

storage approaches. We presented only the number of classes and tables created from 

in-lined schema in Table 4, since we can calculate them for the literature. The 

comparison of two techniques proves that the consideration of the structural similarity 

is very effective as a scheme for acquiring the optimized database design against 

complex and huge hierarchy such as microarray data set. 
 

5. Conclusion 

This paper proposed a new approach for the efficient XML storage structure for 

microarray data, exploiting the structural similarity of elements that usually belong to a 

complex type and comprise of sub-elements and attributes. Unlike previous works, 

which focused on finding omissible elements between ancestor and descendant 

elements and removing them from DTD or XML schema, we paid attention to the 

structural similarity of elements in MAGE-ML schema. Microarray data have very 

complex hierarchies that are organically linked to other hierarchies , and just a few 

specific core values repeatedly occur at similar structures in such hierarchies.  We 

suggested an algorithm to extract core features that repeatedly occur in an XML schema 

for biological information and explained how to improve classification speed and 

efficiency by using decision tree algorithm. The results of the performance evaluation 

proved from our scheme show the proper way to construct XML storage for microarray 

data.  Additionally, the constructed database and middleware supports transformation 
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from MAGE-ML file into the storage and vice versa by importing and exporting. Our 

scheme comply MAGE standard and improves relational database performance for 

microarray data. 
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