
International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

13

Efficient Storage Construction for Semi-Structured Microarray

Data Exploiting Structural Similarity

Dongkyoo Shin and Dongil Shin

Department of Computer Engineering, Sejong University

98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Korea

{shindk, dshin}@sejong.ac.kr

Abstract

To promote molecular biology studies, public repositories for microarray data need to be

constructed; the minimum contents for analysis of microarray experiment have been defined

and standardized. Public repositories have been constructed by some researches which follow

the standards such as MIAME-compliant data and MAGE-OM/ML. However, enough

consideration has not been taken into the design of storage structure for the hierarchy of

microarray data. In this paper, we propose alternative mapping strategy to mine the

structural similarity and an advanced mapping rule from the algorithm. Object-relational

mapping technique is used for extracting advanced storage design schema for microarray

data and structural similarity of elements is evaluated for efficient storage construction. The

mapping strategy reduced the number of relational tables remarkably. The strategy will

contribute to design of the storage structure of microarray data and performance

enhancement of a public repository.

Keywords: structural similarity, decision tree, microarray database, XML, schema mining

1. Introduction

To promote molecular biology studies, microarray data must be shared among

researchers. Hence, the minimum contents for analysis microarray experiment have

been defined and standardized. With the definitions, a standard protocol such as

MAGE-ML (Microarray Gene Expression - Markup Language) has been announced to

make microarray contents exchangeable among the application programs of the research

groups. To promote the interoperable foundation that enables microarray data to be

exchanged in application level, it is necessary to construct infrastructure complying

with the standard. Researchers have paid their efforts to construct public repositories

that follow the standard. As a result, the implementation of the standard-compliant

storage has become the main issue of related research [1, 2, 3].

Even though public repositories have been constructed successfully, not enough

consideration has been given to the design of storage structure for the hierarchy of

microarray data. For advanced database design, DTD-dependent database design

scheme was introduced by many researchers. This scheme supports hierarchy-oriented

searching system and perfect parsing method for XML (eXtensible Markup Language)

documents because DTD (Document Type Definition) reflects the hierarchy of a

structured data. In the research, RDBMS (Relational DataBase Management System) is

used as XML storage because it has the advantages on storage space and speed. The

main idea is how to preserve the structural integrity of semi-structured data in RDBMS.

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

14

Two obstacles to achieving the idea exist. The first is difficulty in mapping object data

into relational data, and the other is deterioration of database performance that is

involved in the mapping process. To overcome these difficulties, several XML storage

methods were proposed [4, 5, 6]. These approaches reduced the complexity of DTD or

XML instance prior to the creation of database schema. They analyzed a graph that

represents XML elements and attributes, and edges which represents relationship

between parent and children elements.

In this paper, we propose an algorithm to mine the structural similarity and an

advanced mapping rule from the algorithm. Object-relational mapping technique is used

for extracting advanced storage design schema for microarray data in our method, but

unlike previous works structural similarity of elements is evaluated for efficient storage

construction. Using the proposed algorithm, we designed a MAGE-compliant database

system and evaluated its performance.

2. Background Study

For the purpose of managing semi-structured data, commercial RDBMSs provide the

object-relational mapping methods [4, 7, 8]. Commonly, these methods treat XML

documents as a tree form of objects and transform it into several relational tables. This

makes queries to XML data set have a number of joins. As a result, the performance of

a database adopting this method is potentially deteriorated [4]. To overcome this

problem, several studies have proposed alternative XML storage mapping techniques:

DTD-dependent [4], Edge-dependent [5], and data mining-dependent [6]. The research

[5] stores graph and edges in a single Edge table to handle all graph and edge

information of XML data. The research [6] proposed STORED system adopted a data-

mining algorithm [9] to extract relations from XML data and then transform it to

relational database schema. These approaches [5, 6] remarkably improved the database

performance but only one structure can be handled because they require only an

instance of XML data in the transformation process. In managing the structural variety

of an XML instance, simplifying DTD would be the fundamental measure. The research

[4] proposed in-line technique focusing on simplifying DTD prior to object-relational

mapping. This technique eliminated omissible elements from DTD. Where, the

omissible elements are the elements with only a role of a linker between an ancestor

element and a descendant one. By removing such elements, ancestors can be directly

linked to descendants.

Many MGED (Microarray Gene Expression Data) standard-compliant repositories

have adopted RDBMS, which enables the repositories to take advantage of the RDBMS

engine for its stability, convenient management, and good performance [1, 2]. The goal

of the research is to implement storage following the MGED standard. Although the

research [1] improved performance of common queries through local modification of

object model, it is difficult to expect the efficient database design scheme from it

because its database design scheme adheres to the straightforward mapping technique.

Similarly, the research [2] did not provide an answer for understanding the object-

relational impedance mismatch [10], which occurs when tree-based XML documents

are stored in the standardized relational database tables. Although the research [3]

presented the concrete mapping rule to transform MAGE objects into XML documents ,

it aimed to export XML documents from relational tables rather than to consider the

advances in the efficient design of relational database for microarray data set.

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

15

2.1. Microarray Data and MAGE (Microarray Gene Expression)

By sharing microarray experimental information, research groups can acquire the

various experimental techniques performed by others and use them to solve their own

biological questions. For necessity, the MGED society [11] has been leading several

working groups to develop standards. MIAME (Minimum Information About a

Microarray Experiment), one of the workgroups, has defined the necessary data for

analyzing microarray experimental. Another workgroup, MAGE (Microarray Gene

Expression) has announced the standard protocols for the exchange of MIAME data:

MAGE-OM/ML (Object Model/Markup Language) [12]. The MAGE-OM is an object-

oriented class diagram stated by UML (Unified Modeling Language). MAGE-OM has a

complex and huge hierarchy consisting of 132 classes, 123 kinds of attributes, and 223

kinds of associations. MAGE-ML also has a structural complexity that has made its

format impractical and its creation impossible by hand [13, 14]. The structures of

MAGE-ML defined in DTD have similar structure patterns. This feature allowed us to

establish an efficient storage construction scheme for microarray data sets.

2.2. Decision Tree

The decision tree that makes rules for classifying the patterns is to be determined in a

set of attributes. The expression of the decision tree is very simple but its classifier has

good accuracy [15]. The decision tree is constructed by calculating information gain of

each attribute. For example, if a training set of classes, D is {C1, C2,…, Cm}, the

information gain of the training set is given by

 Info(D) =-)(log

1

2

m

i

ii PP (1)

where, pi is the probability that an arbitrary tuple in D belongs to class Ci.

The information gain of an attribute with different values such as {a1, a2,..., av} is

given by

Gain(A)=Info(D) jD

v

j

j
Info

D

D

1

 (2)

The decision tree has been widely adopted in various research fields such as

document classification, detection of illegal intrusion, and classification of protein and

diseases [16, 17].

3. Design of Decision Tree for Establishing Classification Rules

Processes show how classification rules are established. First, we define the

structural similarity among elements. Terminology is defined as well. Second, we select

the splitting criterion for constructing the decision tree. Finally, we construct the

decision tree from which classification rules are extracted. We state algorithms for

realizing those rules as well.

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

16

3.1. The Basic Object-Relational Mapping Technique for XML Storage

For illustration purpose, we introduce an example XML schema that shows how the

classification rules apply, as shown in Figure 1. The classification rules also perform

well on MAGE-compliant data.

<xsd:element name="A">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="B"/>
<xsd:element ref="C"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="B">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="D"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="C">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="E"/>
<xsd:element ref="F"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="D">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="G"/>
<xsd:element ref="H"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="E">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="I"/>
</xsd:sequence>

 <xsd:attribute name=”identifier”/>
</xsd:complexType>

</xsd:element>
<xsd:element name="F">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="I"/>
<xsd:element ref="J"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="G">
<xsd:complexType>

<xsd:attribute name="identifier" use="required"/>
<xsd:attribute name="name"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="H">

<xsd:complexType>
<xsd:attribute name="identifier" use="required"/>
<xsd:attribute name="name"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="I">

<xsd:complexType>
<xsd:attribute name="width" use="required"/>
<xsd:attribute name="hight" use=”required”/>
<xsd:attribute name="length" use=”required”/>

</xsd:complexType>
</xsd:element>
<xsd:element name="J">

<xsd:complexType>
<xsd:attribute name="identifier" use="required"/>
<xsd:attribute name="name"/>

</xsd:complexType>
</xsd:element>

A

B C

E FD

I JG H

Root

Parent

Group

Lowest

Child

Group

Figure 1. The Structural Expression using Tree Nodes and Its Example XML
Schema

In the example, the basic principle of object-relational mapping technique is briefly

represented. All elements are converted to classes. Among them, certain classes create

its instance and have a child element or attribute that is transformed into relational

tables. Figure 2 shows a part of such tables created from elements A to J. All fields of

class A have a value referencing an external object. This shows the relation between

classes A and J. To maintain the hierarchy of the example schema, each table exploits a

primary key and several foreign keys.

Object_id B

identifier

Primary key
Foreign

key

String

Class A
C

Foreign

key

Object_id D

Primary key
Foreign

key

Class B

Object_id G

Primary key
Foreign

key

Class D
H

Foreign

key

Object_id

Primary key

Class G
name

String

identifier

String

Object_id

Primary key

Class H
name

String

Figure 2. Tables Derived from complexType from A to H

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

17

3.2. The Definition of Structural Similarity among Elements

As shown in Figure 1, every element has a complexType that defines components

such as sub-element(s) and attribute(s). Each component can be expressed as a part of a

set with properties. Assuming that a certain element x has a complexType, each

complement set of x can be defined as follows:

SEx = {e1, e2, … , en}, SAx = {Ae1, Ae2, … , Aen}

complexType(x) = {SEx, SAx}

To help to understand the above summary, we defined some terminologies as

follows:

 e: an element defined in XML schema

 E: an elements set of e

 SE: a sub-elements set of e

 a: an attribute of e

 A: an attributes set of e

 SA: an attributes set for all sub-elements of e

 complexType: Structural information that consists of SE and (or) A of e.

 Lowest Child: an element without any sub-element.

 LCG (The Lowest Child Group): a set of lowest child elements

 PG (Parent Group): a set of elements with sub-element.

 Root: an element without parent element.

Whether one complexType is similar to another complexType will depend on the

comparison of sequence and attribute set between two complexType. For example,

when SEx and (or) SAx in the complexType of a certain element x exactly match SEy

and (or) SAy in the complexType of another element y, x and y have the structural

similarity. Note that in evaluating structural similarity between a complexType(x) and a

complexType(y), the criterion of the similarity is data type not the name of each

comparison object. Where the comparison object is each factor arranged in sub-

elements set or attributes set.

3.3. Selection of Splitting Criterion

Element name, attribute, and child element are the factors of a complexType that

define the structure of an element. In evaluating the structural similarity of elements,

the most important factors are data types which are arranged in individual set of

attributes sub-elements. We selected hasParent, hasChild, and PG as the test predicates

for each elementName. These predicates are used in comparing structural information

among complexTypes. The predicate PG decides whether an element belongs to PG

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

18

(Parent Group) class. For the construction of the decision tree, the training set of these

items needs to be organized (Table 1). Table 1 presents the training set, D, of class-

labeled tuples parsed from all complexTypes in the example schema of Figure 1.

Table 1. Class-labeled Training Tuples from an Example XML Schema

|Element| hasParent hasChild Class: PG

A False True Yes

B True True Yes

C True True Yes

D True True Yes

E True True Yes

F True True Yes

G True False No

H True False No

I True False No

J True False No

In Table1, PG has two distinct values ({yes, no}); therefore, there are two distinct

classes (that is, m=2). Let class C1 correspond to yes and class C2 correspond to no

(refer to equation (1)). There are six tuples of class yes and four tuples of class no. A

(root) node N is created for the tuples in D. To find the splitting criterion for these

tuples, we compute the information gain of each attribute. We first use Equation (1) to

compute the expected information needed to classify a tuple in D:

Info(D)=

10

4
log

10

4

10

6
log

10

6
22

=0.971 bits

Next, we need to compute the expected information requirement for each attribute:

hasParent. We need to look at the distribution of yes and no tuples for each category of

hasParent and hasChild. For the hasParent, category false, there is one yes tuple and

zero no tuples. For the category true, there are five yes tuples and four no tuples. Using

equation (2) the expected information needed to classify a tuple in D if the tuples are

portioned according to hasParent is

InfohasParent(D)=

1

0
log

1

0

1

1
log

1

1

10

1
22

+

9

4
log

9

4

9

5
log

9

5

10

9
22

=0.891 bits

Similarly, we can compute InfohasChild(D)=0 bits. Hence, each of gains in

information from such partitioning would be

 Gain(hasParent)=Info(D)− InfohasParent(D)=0.971− 0.891=0.08 bits

 Gain(hasChild)=Info(D)− Info hasChild(D)=0.971− 0=0.971 bits

Since hasChild has the highest information gain between the attributes, it is selected

as the splitting attribute. Tuples in Table 1 can be partitioned as shown in Figure 3.

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

19

true

false

hasChild Class: PG

true yes

true yes

true yes

true

true

true

yes

yes

yes

hasParent

false

true

true

true

true

true

true false no

true false

true false

true false

hasParent hasChild Class: PG

no

no

no

hasChild?
true

false

hasParent?

hasChild Class: root

true yes

true yes

true

true

true

yes

yes

yes

hasParent

true

true

true

true

true

hasChild Class: root

true no

hasParent

false

elementName

A

elementName

B

C

D

E

F

elementName

A

B

C

D

E

F

G

H

I

J

elementName

Figure 3. The Splitting Attribute at the Root Node of the Decision Tree

A further branching will be done in each partitioned class when an element is a

parent element. Hence, a new splitting criterion for PG class needs to be calculated

recursively. We can compute gains of hasParent and hasChild predicates:

Gain(hasParent)=0.971-0=0.971 bits and Gain(hasChild)=0.971-0=0.971. Since they have the

same information gain, one or the other can be selected as the splitting attribute. Briefly,

this implies that the partitioned results must be same regardless of what the splitting

attribute is. So we selected hasParent as the splitting attribute.

3.4. Classification Rules from the Decision Tree

Figure 4 shows the decision tree shaping idea for classifying elements with structural

similarity. As an individual set of similar elements, each branching point has a

condition by which an element is classified into a specific target node.

PG1

No2: hasParent?

No3: LCGs

No4: PGs

PG3

LCG1

LCG2

PG2

No5: root

No1: hasChild? yes

no

yes

no●

●

●
●

●

Figure 4. The Decision Tree from the Training Set of the XML Schema for
Example

From each of branching points in the decision tree, we extracted rules for classifying

elements with the structural similarity. Each of rules is expressed into IF-THEN

statements respectively. Table 2 presents IF-THEN statements at each node.

Table 2. The Rules for Classifying LCGs, PGs, and Root Element

|No| If Then

2 hasChild=yes Go to node No. 4

3 hasChild=no LCGs

4 hasChild=yes AND hasParent=yes PGs

5 hasChild = yes AND hasParent = no root

Note that Node No. 3 and 4 are leaf nodes, which are sets of elements classified by

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

20

the conditions at No. 1 and 2, respectively. Each set of elements might be separated into

several groups for parent elements and lowest child elements with structural s imilarity.

Thus, it is required rules to evaluate the structural similarity of elements in No . 3 and

No. 4. To simplify the comparison of structural similarity, we expressed complexTypes

of elements to Classification_codes with string value.

Figure 5. Classification Code with the Decision Tree Example

A Classification_code shows a structure of an element as shown in Figure 5, where

we attached the classification code to each training set tuple in the example decision

tree of Figure 4. An element might have several sub-elements and attributes. Under this

assumption, a Classification_code has two factors, one for sub-elements and the other

for attributes. We can analyze the structural similarity among elements using these

factors. The first factor arranges sub-elements set and has the fixed string value

“Object”. The value “Object” means a sub-element is managed in an external relational

table. In other words, the first factor is a set of foreign keys referencing external

relational tables. The second factor arranges data types built in XML schema, where,

the symbol ‘@’ used for indicating data type of the attribute. The following is the

summary of a complexType of the element E (see Section 3.1).

 SEE={I}, SAE={identifier}

 complexType(E)={[SEE], [SAE]}={[I], [identifier]}

The above summary is simplified as follow:

 Classification_code(E)={[Object], [@String]}

Note that, the sameness of Classification_code means that the compared elements

have the structural similarity.

Using the Classification_code, we created IF-THEN statements at node No3 and No4

in Table 3. As shown in Table 3, at node No3 in Figure 4, LPGs might be divided into

several groups according to the Classification_Code. Therefore, an algorithm to exactly

expect the number of LPGs is required. Similarly, an algorithm for PGs is required at

node No. 4.

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

21

Table 3. The Rules for Evaluating the Structural Similarity among Elements in
Each Group

|No| If Then

3

hasChild=no AND hasParent=yes AND

Classification_Code={@String, @String}
LCG1

hasChild=no AND hasParent=yes AND

Classification_Code={@String, @String, @String}
LCG2

4

hasChild=yes AND hasParent=no AND

Classification_Code={Obj}
PG1

hasChild=yes AND hasParent=no AND Classification_Code={Obj,

Obj}
PG2

The following four rules are the comprehensive algorithms to seek the root element

and expect the number of LCGs and PGs. For the implementation of the algorithms, all

statements in Table 2 and 3 are generalized into four rules: Rule1, Rule2, Rule3, and

Rule4. These rules are performed at node No. 1, No. 2, No. 3, and No. 4 respectively.

Rule1: if an element has no sub-elements then the element is classified into LCG.

Otherwise, the element is classified into PG. That is, Rule1 decides that an element

should belong to group LCG or PG. The following pseudo code expresses this rule.

For each ei E {

if(number of elements in SEei == 0){

ei is classified into LCG;

}else{

ei is classified into PG;

}

}

Rule2: If a certain element in PGs has the parent element, then the element is

classified into PGs. Otherwise, the element is the root element. That is, Rule2 seeks the

root element in PGs.

For each ei PGs {

 if (ei has parent) {

ei is classified into PGs;

}else{

ei is Root

}

}

Rule3: Let PG from Rule1 be PG0. When several elements in PG0 have complexType

in which one or more attributes are defined, the elements that have the same

complexType are separated into a new group PGp (p>0). If there is already a group PGp

with the same complexType, the element comes to the group PGp. That is, Rule2

classifies multiple sets of PG: PG1…PGn

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

22

p = 0;

For each ei PG0 {

 Flag=0;

 If (p>0) {

 For q=1 to p

 If (complexType(ei) == complexType(element in PGq)) {

ei is classified into PGq;

 Flag=1;

}

 }

 If (Flag==0) {

For each ej PG0

if(complexType(ei) == complexType(ej) {

p=p+1;

 ei and ej are classified into a new group of PGp;

}

}

}

Rule4: Let LCG from Rule1 be LCG0. When several elements in LCG0 have

complexType in which one or more attributes are defined, the elements, which have the

same complexType, are separated into a new group LCGp (p>0). If there is already a

group LCGp with the same complexType, the element comes to the group LCGp. That is,

Rule2 classifies multiple sets of LCG: LCG1…LCGn

p = 0;

For each ei LCG0 {

 Flag=0;

 If (p>0) {

 For q=1 to p

 If (complexType(ei) == complexType(element in LCGq)) {

ei is classified into LCGq;

 Flag=1;

}

 }

 If (Flag==0) {

For each ej LCG0 {

if(complexType(ei) == complexType(ej) {

p=p+1;

 ei and ej are classified into a new group of LCGp;

}

}

}

4. Database Implementation using the Proposed Decision Tree

Using the decision tree illustrated in the previous section, we reduced the complexity

of XML schema for MAGE-ML and implemented database tables from it. The database

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

23

consists of three levels as the tree node in Figure 1: root, PGs, and LCGs. Although the

associations among LCGs are clear, PGs have associations too complex to complete the

relations among parent elements and lowest child elements. To simplify the complexity,

we created the BigbrotherType table with 15 columns for PGs and LCGs. Since each of

columns is allowed to have null value, the table can handle all relations possible to be

occurred under the root element. In addition, it is possible to cover the mutual

references between parent elements because all PGs have a foreign key referencing the

BigbrotherType table. All columns in each table are for the attribute value except

columns for foreign keys.

Table 4 shows the comparisons of the number of classes, tables, table joins, and

database sizes among three schemas: Raw Schema from direct object-relational

mapping, Optimized Schema from our proposed algorithm, In-Lined Schema from [4].

The number of tables produced by Optimized Schema is only 3% of the number of

tables produced by Raw Schema. From comparison of the number of records, table join

and database size between Raw Schema and Optimized Schema, we know that the

number of tables affects performance of the database.

Table 4. The Complexity of XML Documents

 Raw schema Optimized schema In-Lined schema

Class 455 15 203

Table 455 15 203

Record 2012 156 -

Table join 1033 24 -

Database size (KB) 4270 192 -

As the mapping technique for the comparison with our algorithm, we chose the in-

line technique [4], because it has provided related research results on the efficient

storage approaches. We presented only the number of classes and tables created from

in-lined schema in Table 4, since we can calculate them for the literature. The

comparison of two techniques proves that the consideration of the structural similarity

is very effective as a scheme for acquiring the optimized database design against

complex and huge hierarchy such as microarray data set.

5. Conclusion

This paper proposed a new approach for the efficient XML storage structure for

microarray data, exploiting the structural similarity of elements that usually belong to a

complex type and comprise of sub-elements and attributes. Unlike previous works,

which focused on finding omissible elements between ancestor and descendant

elements and removing them from DTD or XML schema, we paid attention to the

structural similarity of elements in MAGE-ML schema. Microarray data have very

complex hierarchies that are organically linked to other hierarchies , and just a few

specific core values repeatedly occur at similar structures in such hierarchies. We

suggested an algorithm to extract core features that repeatedly occur in an XML schema

for biological information and explained how to improve classification speed and

efficiency by using decision tree algorithm. The results of the performance evaluation

proved from our scheme show the proper way to construct XML storage for microarray

data. Additionally, the constructed database and middleware supports transformation

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

24

from MAGE-ML file into the storage and vice versa by importing and exporting. Our

scheme comply MAGE standard and improves relational database performance for

microarray data.

Acknowledgements

This research was supported by the MKE(The Ministry of Knowledge Economy),

Korea, under IT/SW Creative research program supervised by the NIPA(National IT

Industry Promotion Agency)" (NIPA-2012-H0502-12-1011

References

[1] U. Sarkans, H. Parkinson, G. G. Lara, A. Oezcimen, A. Sharma, N. Abeygunawardena, S. Contrino, E.

Holloway, P. Rocca-Serra, G. Mukherjee, M. Shojatalab, M. Kapushesky, S. A. Sansone, A. Farne, T. Rayner

and A. Brazma, "The ArrayExpress gene expression database: a software engineering and implementation

perspective", Bioinformatics, vol. 21, no. 8, (2005), pp. 1495-1501.

[2] C. A. Ball, I. A. B. Awad, J. Demeter, J. Gollub, J. M. Hebert, T. Hern, H. Jin, J. C. Matese, M. Nitzberg, F.

Wymore, Z. K. Zachariah, P. O. Brown and G. Sherlock, "The Stanford Microarray Database accommodates

additional microarray platforms and data formats", Nucleic Acids Research, vol. 33, (2005), pp. 580-582.

[3] W. Martin and R. M. Horton, "Magebuilder: a schema translation tool for generating MAGE-ML from

tabular microarray data", In 2003 IEEE Internation Conference on Computational System Bioinformatics

Conference (CSB), (2003), pp. 431-432.

[4] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. Detwitz and J. Naughton, "Relational databases for

querying xml documents: Limitations and opportunities", In 25th International Conference on Very Large

Data Bases (VLDB), (1999), pp. 302-314.

[5] A. Schmidt, M. L. Kersten, M. Windhouwer and F. Waas, "Efficient relational storage and retrieval of XML

documents", In ACM SIGMOD Workshop on the Web and Database (WebDB), (2000), pp. 47-52.

[6] A. Schdmidt, M. F. Fernandez and D. Suciu, "Storing Semistructured Data with STORED", In ACM

SIGMOD International Conference on Management of Data, (1999), pp. 431-442.

[7] H. Schoning, "Tamino - A DBMS designed for XML", In 17th IEEE International Conference on Data

Engineering (ICDE), (2001), pp. 149-154.

[8] I. Tatarinov and S. D. Viglas, "Storing and Querying Ordered XML Using a Relational Database System", In

ACM SIGMOD International Conference on Management of Data, (2002), pp. 204-215.

[9] K. Wang and H. Liu, "Discovering typical structures of documents: a road map approach", In ACM SIGIR

Conference on Research and Development in Information Retrieval, (1998) August, pp. 146-154.

[10] C. Ireland, D. Bowers, M. Newton and K. Waugh, "A Classification of Object-Relational Impedance

Mismatch", In First International Conference on Advances in Databases, Knowledge, and Data Applications

(DBKDA), (2009), pp. 36-43.

[11] MGED – Microarray Gene Expression Data Society, http://www.mged.org.

[12] P. T. Spellman, et al., "Design and implementation of microarray gene expression markup language (MAGE-

ML)", Genome Biology, vol. 3, Issue 9, (2002).

[13] T. Rayner, P. Rocca-Serra, P. T. Spellman, H. C. Causton, A. Farne, E. Holloway, J. Liu, D. S. Maier, M.

Miller and K. Petersen, "A simple spreadsheet-based, MIAME-supportive format for microarray data:

MAGE-TAB", BMC Bioinformatics, vol. 7, (2006), pp. 489.

[14] http://www.mged.org/Workgroups/MAGE/MAGEdescription2.pdf.

[15] I. H. Witten and E. Frank, “Data Mining-Practical Machine Learning Tools and Techniques (Third Edition)”,

Morgan Kaufmann Publishers, (2011).

[16] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho and A. A. Freitas, "A Survey of Evolutionary

Algorithms for Decision-Tree Induction", IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. PP, Issue 99, (2011), pp. 1-10.

[17] R. Hu and Y. Zhao, "Knowledge-Based Adaptive Decision Tree State Tying for Conversational Speech

Recognition", IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, Issue 7, (2007), pp.

2160- 2168.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Sarkans+U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=%22Parkinson+H%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Bioinformatics.');

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

25

Authors

Dongkyoo Shin received a B.S. in Computer Science & Statistics

from Seoul National University, Korea, in 1986, an M.S. in Computer

Science from Illinois Institute of Technology, Chicago, Illinois, in 1992,

and a Ph.D. in Computer Science from Texas A&M University, College

Station, Texas, in 1997. He is currently a Professor in the Department of

Computer Science & Engineering at Sejong University in Korea. From

1986 to 1991, he worked in Korea Institute of Defense Analyses, where

he developed database application software. From 1997 to 1998, he

worked in the Multimedia Research Institute of Hyundai Electronics Co.,

Korea as a Principal Researcher. His research interests include XML

Security, XML based middleware, multimedia application, biological

database, mobile Internet and ubiquitous computing.

Dongil Shin received a B.S. in Computer Science from Yonsei

University, Seoul, Korea, in 1988. He received an M.S. in Computer

Science from Washington State University, Pullman, Washington, U.S.A.,

in 1993, and a Ph.D. from University of North Texas, Denton Texas,

U.S.A., in 1997. He was a senior researcher at System Engineering

Research Institute, Deajun, Korea, in 1997. Since 1998, he has been with

the Department of Computer Science & Engineering at Sejong University

in Korea where he is currently a Professor. His research interests include

Mobile Internet, Computer Supported Cooperative Work, Object-

Oriented Database, Distributed Database, Data Mining and Machine

Learning.

International Journal of Bio-Science and Bio-Technology

Vol. 5, No. 1, February, 2013

26

