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Abstract 

Remote monitoring of cardiopulmonary activities using quadrature direct conversion 

Doppler radar shows remarkable promise in medical and security applications. One major 

challenge for such monitoring is demodulation of the IQ signals and heart and respiration 

rate determination. This paper presents a rate finding algorithm based on extended kalman 

filter (EKF) and principal component analysis. We present a state space model of the 

quadrature IQ signals and use it with the EKF to simultaneously estimate and track heart and 

respiration rate by a unified statistical approach. We evaluate the performance of the 

algorithm for practical data obtained from the implemented hardware and present the results 

to illustrate the feasibility and accuracy of the algorithm. Results are compared with 

reference ECG results which clearly demonstrate that the proposed algorithm can be 

successfully applied for heart and respiration rate detection. 

 

Keywords: Remote monitoring, Doppler radar, Cardiopulmonary, Extended Kalman filter, 

Quadrature receiver 

 

1. Introduction 

Microwave Doppler radar with quadrature direct conversion is a promising method 

for non-contact detection and monitoring of human cardiopulmonary activities. This 

monitoring system can be efficient for regular health care, emergency, military, security 

as well as in the case of neonates, infants or burn victims where contact sensors are not 

suitable. Microwave Doppler radar has been used for physiologic sensing since the 

early 1970s [1]. This system included bulky, heavy and expensive waveguide 

components which were not practicable everywhere. However, integration of Doppler 

radar transceivers on a single chip is now achievable due to the recent advancements of 

micro-fabrication and wireless technology. Further, robust digital signal processors 

have opened up enormous possibilities for processing and extracting the information 

from noisy data. Several research works are published on remote sensing and 

monitoring of cardiopulmonary activities using quadrature direct conversion Doppler 

radar [2-5]. Demodulation of the noisy quadrature (IQ) outputs of the direct conversion 
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Doppler radar is a great challenge for accurate monitoring. A significant work done by 

Park et al. [4] suggested arctangent demodulation to solve the problem of demodulation 

sensitivity to target position. They combined the quadrature outputs using arctangent 

demodulation with DC offset compensation. Successful arctangent demodulation of 

quadrature channels depends on correction of channel imbalances and removal of 

unwanted DC. Channel imbalance can be corrected using Gram-Schmidt procedure. 

However, accurate prior knowledge of the amplitude and phase errors is required. 

Further, removal of unwanted DC offsets from the quadrature signal is also difficult. A 

frequency tuning technique with double-sideband transmission has been proposed for 

Ka-band radar [6]. However, this technique might have limitations in practical use  due 

to the requirement of complex hardware with a tunable intermediate frequency. Kalman 

filters (KF) and extended Kalman filters (EKF) have been widely used in biomedical 

signal processing of electrocardiogram (ECG) and electroencephalogram (EEG) signals  

[7-10]. In addition to various estimation and processing problems, KF and EKF have 

been used successfully for heart and respiration rate estimation [7, 8] from ECG and 

arterial blood pressure (ABP) signals. Hence, due to the remarkable success of EKF and 

model-based signal processing framework to solve processing and tracking problems in 

biomedical signal processing, we are motivated to utilize the power of EKF in Doppler 

radar monitoring system. In our previous work [11], we presented the algorithm and 

simulation results for EKF estimation of heart and respiration rates from Doppler radar 

IQ signals, which is updated and verified for the practical data in the present work. To 

the best of our knowledge, EKF has not been applied by any other research group to 

solve the estimation and tracking problems in Doppler radar cardiopulmonary 

monitoring system. IQ signals from the Doppler radar monitoring system contain the 

heart and respiration rate information that must be estimated, but have a complicated 

nonlinear relationship with the observed signal. We design the statistical state -space 

model for IQ signals which incorporates the significant state variables of the system. 

The model is used for EKF to estimate the heart and respiration rate monitoring. 

Although there are other Bayesian filters such as the unscented Kalman filter (UKF), in 

this work, we have chosen the EKF for its simplicity and better numerical stability. In 

our proposed algorithm, channel selection is performed using principle component 

analysis.  

Remaining of this paper is organized as follows. We explain the operation principle 

of quadrature direct conversion Doppler radar cardiopulmonary monitoring system. 

Then, we present and describe the proposed algorithm. Next section contains the review 

of EKF followed by the state-space model of the IQ signals in the later section. 

Performance evaluation of the proposed algorithm from experimental results is 

described. Finally, we give our conclusion. 
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2. Qudrature Doppler Radar Transceiver  
 

 

Figure 1. Doppler radar cardiopulmonary monitoring system block 
diagram. The LO and RF output signals are provided from the same 

source. The LO signal is split by a two-way 90 power splitter to obtain in- 
and quadrature phase signals. These two signals are mixed with the 

reflected RF signal and lowpass filtered to get I and Q signals.  
 

According to Doppler theory, if a radio signal is reflected from a target with a time -

varying position but with zero net velocity, it will be phase modulated (PM). In that 

case, the modulation is proportional to the time varying target position. If the change in 

target position is small compared to the wavelength of the radio signal, the phase 

change will be small and the PM signal can be directly demodulated by mixing it with 

the original signal. Human chest has a periodic motion for heart beat and respiration 

with a net zero velocity, and therefore, a Doppler radar with the chest as a target will 

receive a signal similar to the transmitted signal with its phase modulated by the time 

varying chest position. Figure 1 shows the block diagram of the Doppler radar  

cardiopulmonary monitoring system. Typically the transceiver transmits a radio wave 

and receives a phase modulated signal reflected from the target. The LO and RF output 

signals are generated from the same source. A 90º  power splitter is used to divide the 

LO signal. These two LO signals are mixed with the reflected RF signal to provide two 

orthonormal baseband output signals. Use of quadrature receiver eliminates the problem 

of null points in single channel receivers [3]. For 2.4 GHz radar operating frequency, 

the null points occur at every 3 cm which is difficult to avoid by adjusting the target 

position. Use of quadrature channels ensures that at least one output would not be in 

null point. In order to represent the IQ signals mathematically, let us consider 

)(th and )(tr to be the heart beat and respiration frequencies of the target, 

respectively. After mixing the reflected and LO signals and lowpass filtering the mixed 

signals, the baseband I and Q signals can be expressed as follows, respectively [3] : 

))(/)(sin4/)(sin44/cos()( tttAttAAtB hHrRI     (1) 

))(/)(sin4/)(sin44/cos()( tttAttAAtB hHrRQ                 (2) 

 where, is the constant phase shift related to the nominal distance between the antenna 

and the target, the phase change at the target surface, and the phase delay between the 
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mixer and the antenna. )(t is the residual phase noise. When 4/  is an integer 

multiple of  , I channel signal will be in null point [3]. At the same time, the Q 

channel signal will be in optimum point. On the other hand, the condition will be 

reversed if 4/  is odd multiple of 2/ . At a frequency of 2.4 GHz, I or Q channel 

null points occur at every 3 cm. By using the quadrature receiver, it can be assured that 

at least one output would not be in null point. If   becomes integer multiple of  , both 

I and Q channel will neither be in null nor in optimum points. However, still the heart 

rate can be detected provided that target displacement due to heart beat and respiration 

is smaller than the wavelength of the radio signal. We have implemented the quadrature 

Doppler radar monitoring hardware with operating frequency 2.4 GHz which is shown 

in Figure 2. 

 

 

Figure 2. 2.4 GHz Doppler Radar Cardiopulmonary Monitoring System 
Hardware 

 

3. Signal Processing Technique 

Figure 3 shows the block diagram of the proposed digital signal processor. IQ signals 

obtained from the Doppler radar monitoring hardware are A/D converted. Prior to A/D 

conversion, the signals are lowpass filtered to avoid aliasing effect and out of band 

noise. The quadrature IQ signals are then fed into EKF module for state estimation. In 

order to avoid null case mentioned in the previous section, PCA channel selection is 

done. For the channel selection purpose, a 5-sec sliding window is passed over the 

signal. PCA is done on the data inside the window. The sliding window is shifted over 

the samples in one-sample increment. The mean is subtracted from the quadrature 

channel data. Covariance matrix for I and Q channel data, eigenvalues and eigenvectors 

of the covariance matrix are calculated. The channel with the largest eigenvalue is then 

selected for heart and respiration rate estimation. In the rate determination process, 

EKF state estimation of heart and respiration rate from I and Q signals are compared. If 

they are identical, then the channel selection is not utilized. However, if they differ, rate 

estimation is done from PCA selected channel. 
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Figure 3. Block Diagram of Digital Signal Processor for Heart and 
Respiration Rate Estimation 

 

4. Extended Kalman Filter Review  

Kalman filter  is an optimal state estimation method for stochastic signals that estimates the 

state of a discrete time-controlled process by using a form of feedback control [12]. The filter 

estimates the process state at some time and then obtains feedback in the form of noisy 

measurements. The equations for the Kalman filter fall into two groups: time update 

equations and measurement update equations. The time update equations are responsible for 

projecting forward the current state and error covariance estimates to obtain the a priori 

estimates for the next time step. The measurement update equations are responsible for the 

feedback i.e. for incorporating a new measurement into the prioria estimate to obtain an 

improved posterioria  estimate. The time update equations can also be thought of as 

predictor equations, while the measurement update equations can be thought of as corrector 

equations. The EKF is a nonlinear extension of the conventional KF, which has been 

developed particularly for systems having nonlinear dynamic models. For a discrete nonlinear 

system with the state vector nx and observation vector ny , the dynamic model and its linear 

approximation near a desired reference point may be formulated as follows [13]: 
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where nx̂  is posterioria  estimate of the state at step n . The random variables nw  and nv  

represent the process and measurement noises, respectively, with covariance  
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The time update and measurement update equations can be summarizes as follows: 
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where  12111 ,,,ˆ yyyyxEx nnnnn 

   is the prioria estimate of the state vector, nx , 

at the thn  update, using the measurements 1y  to ny , and  121 ,,,ˆˆ yyyyxEx nnnnn   is 

the posteroria  estimate of the state vector after adding the thn  observation, ny . 
nP  

and  nP  are defined in the same manner as the prioria  and posteroria  estimates of the 

error covariance matrix in the thn  step, before and after using the thn  measurements, 

respectively. 

 

5. System Model 

In order to apply EKF recursion, we have expressed the relationship between the variables 

of interest and the observed signal in state space form. 

 
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where )(nx  and )(ny  are the state and observation vectors of the system, )(nw  is the process 

noise with a covariance matrix Q  and )(nv  is the observation or measurement noise with a 

covariance of R . Our observation model of (1) and (2) can be represented as follows: 
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where )(n  is the instantaneous frequency in units of radians per sample,   is the phase, and 

sT  is the sampling interval. 

The state vector )(nx  includes the unknown parameters of the system. 
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Instantaneous phases are represented by first-order difference equations.  
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where ][s  is a function to limit the range of the instantaneous frequency to known limits. A 

simple clipping function is used as ][s . 
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Variations in the respiratory rate )(nr  and heart rate )(nh  are both modeled as first 

order autoregressive process with mean and soft nonlinearity that limits the frequencies to 

some known physiologic ranges [8].  
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where r  and h  are the prioria estimates of the expected respiratory and heart rates, 

respectively; r  and h  are the controlling factors of the bandwidths of the frequency 

fluctuations and )(nwr  and )(nwh  are white noise processes that model the random variation 

in the respiratory and heart rates, respectively. The instantaneous respiratory and heart rates in 

units of Hz can be written as: 
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Table 1 lists the numerical values of the parameters that are used in our model. 

 

Table 1. Model Parameters 

Parameter Symbo

l 

Valu

es 

Minimum respiratory 

rate 
min,rf  

0.15 

Maximum respiratory 

rate 
max,rf  

0.40 

Mean respiratory rate 
rf

 
0.25 

Minimum heart rate min,hf  
1.00 

Maximum heart rate max,hf  
2.00 

Mean heart rate 
hf

 
1.40 
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6. Results and Discussion 

In this section, we demonstrate the results of the proposed algorithm and compare the 

heart rate estimation with the reference ECG results. The algorithm is implemented 

using Matlab on a computer with AMD Athlon dual core processor of 3 GHz speed and 

1 GB RAM. To test the performance of our algorithm, we choose 5 volunteers and 

performed the experiment on each person for 30 minutes. The test IQ signals from the 

hardware were taken using a directional antenna facing the test target seated at varying 

distances of 10 to 50 cm. The raw IQ signals were initially lowpass filtered with cutoff 

frequency 30 Hz, to minimize out of band noise and aliasing error. Analog to digital 

conversion was done using AD7888 12bit ADC with a sampling frequency of 125 Hz. 

Figure 4 shows sample IQ signals obtained from the Dopplar radar monitoring system 

for a stationery target seated 50 cm away from the antenna and the reference ECG 

signal for a time period of 10 sec. Figure 5 shows EKF estimation tracking results of 

the heart and respiration rate for 600 seconds. Heart rate for the ECG signal is 

calculated from time interval between two consecutive peaks and the calculated value is 

assumed constant for that interval. Since the amplitude corresponding to the respiration 

signal is typically about 100 times greater than that of the heart rate signal, the 

respiration rate estimation process is not so much difficult as heart rate detection. 

Hence, our analysis is mainly concerned with heart rate monitoring.  Figure 5(a) shows 

the eigenvalues of the windowed IQ signals, which is used for channel selection. Since, 

Q signals show larger eigenvalues than I signals, we can assess that the Q channel is 

closer to optimum point than I channel and would give better information for EKF 

estimation. As a result, our algorithm chooses the EKF estimation from the Q signals 

for the whole duration of 600 seconds presented here. From Figures 5(b) and 5(c), we 

can observe that the heart rate estimation from I and Q signals has some dissimilarit ies 

between them in some places of the tracking while they agree elsewhere. For the 600 

sec data, the standard deviations of the difference between the EKF and ECG heart rates 

are found to be 0.0299 and 0.021 Hz (1.794 and 1.26 BPM) for I and Q signals, 

respectively. These results manifest that the EKF estimation can follow the ECG 

reference heart rate well with some acceptable fluctuations. This experiment was 

repeated for different target positions ranging from 10 to 50 cm with EKF output 

consistently providing better agreement with ECG results. Similar results were obtained 

for all test persons. The experimental results demonstrate the ability of EKF to track the 

heart and respiration rate, to an acceptable level of accuracy, from the quadrature 

Doppler radar cardiopulmonary monitoring system IQ signals without using any other 

beat detection algorithm. 
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Figure 4. Raw IQ signals obtained from the Doppler radar cardiopulmonary 
monitoring system and reference ECG signal. Data are normalized along 

the y axis. 
 

 

Figure 5. Heart and respiration rate estimation results. Eigenvalues  

of windowed IQ signals are shown in a), which represents the IQ signal 

variances. Respiration rate is found to be identical both  

from I and Q signals 
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3. Conclusion 

In the present study, we proposed a digital signal processor using EKF to extract the 

respiration and heart rate information from I and Q quadrature signals of the direct conversion 

Doppler radar cardiopulmonary monitoring system. The algorithm is able to decompose the 

IQ signals and track the heart and respiration rate information continuously. Experimental IQ 

data collected from the implemented hardware are analyzed using the proposed algorithm and 

results are compared with the reference ECG results for heart rate detection. The 

representative results demonstrate the feasibility and accuracy of the algorithm to extract the 

rate information from IQ signals. Future works include improvement of the EKF dynamic 

model by incorporating residual phase noise, phase delay between the mixer and antenna, and 

other constant phase shift related to the nominal distance to the target and phase change at the 

surface of the target. In addition, we need to compare the performance of the proposed 

algorithm against the current practices in order to assess its ability. 
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