Prediction of Body Mass Index from Facial Features of Females and Males

Bum Ju Lee, Jun-Su Jang and Jong Yeol Kim[†]

Division of Constitutional Medicine Research, Korea Institute of Oriental Medicine, Republic of Korea jupiter-lee@hanmail.net, junsu.jang@kiom.re.kr, ssmed@kiom.re.kr [†]Corresponding Author

Abstract

Human obesity has become a global epidemic. Body mass index (BMI) is clinically useful data for the diagnosis of overall adiposity. The purpose of this study was to identify normal and overweight patients based on facial characteristics extracted from subject image data, irrespective of the measurement of weight and height. In this paper, we propose a prediction method for normal and overweight from morphological facial characteristics that are associated with overweight and normal BMI statuses. A total of 1244 subjects participated in this study. The subjects were divided into 6 groups based on age- and gender-specific differences. The area under the receiver operating characteristics curve (AUC) and kappa of the prediction model ranged from 0.760 to 0.931, and from 0.401 to 0.586, respectively, for all groups, except for the group comprising females aged ≥ 61 years. Statistical analysis revealed many features that were significantly different between overweight and normal in the 6 groups. Furthermore, compact and useful feature sets were identified for BMI prediction using facial features in gender- and age-specific groups. We identified a relationship between facial morphology and BMI status, and the possibility of predicting the BMI status of individuals. Our results will facilitate the development of improved applications for age- and gender-specific groups in the fields of adiposity, facial recognition, and medicine.

Keywords: Classification, Body mass index (BMI), Machine learning, Relationship, Facial morphology

1. Introduction

Body mass index (BMI) is an indicator of the degree of obesity of individuals. The BMI of patients with obesity-associated diseases is more important as a risk factor for health problems. Thus, BMI is clinically significant datum for medical therapy and disease prediction. BMI, invented by Lambert Adolphe Jacques Quetelet, is calculated from the height and weight of individuals [1]. The principal cut-off points for underweight (<18.50 kg/m²), normal range (18.50–24.99 kg/m²), overweight or pre-obese (25.00–29.99 kg/m²), and obese (\geq 30.00 kg/m²) have been set by the World Health Organization (WHO).

The prevalence of obesity is increasing worldwide. Obesity is associated with health problems, including hypertension, cardiovascular disease (CVD), dyslipidemia, breathlessness, type 2 diabetes, and insulin resistance [2], and is an important risk factor for mortality related to CVD and other chronic diseases [3-8]. Therefore,

numerous studies have attempted to determine the relationship between BMI, obesity, and disease [9-15] in the research fields of genetics, medicine, and facial morphology [16-27]. The human face offers important clues for the diagnosis of diseases and genetic conditions [20, 28]. For example, in genetics, Medved and Percy [29] reported that Prader-Willi syndrome (PWS) is associated with diabetes and obesity, and patients with PWS exhibit a tendency toward narrow face, narrow nasal bridge, and almond-shaped eyes. Patients with obstructive sleep apnea (OSA), a risk factor for CVD, exhibit shorter maxilla and mandible [30, 31], and thus facial characteristics such as mandibular distance are used in OSA diagnosis [31]. Further, Tobin and Beales [32] suggested that facial characteristics of patients with Oral-facial-digital (OFD) type I syndrome include broad nasal bridge, buccal frenulum, lingual hamartomas, cleft palate, and hypertelorism. The facial features of patients with Bardet-Biedl syndrome (BBS) include small mandible, deep-set eyes, small cheek bones, small mouth, a flat nasal bridge with anteverted nares, thin upper lip, and long philtrum [32-34].

In our previous study [35], we used facial characteristics to classify normal and overweight female subjects. The study did not include male subjects. Furthermore, statistical analysis of facial characteristics between male and female and between age groups was not performed. In the present study, we focused on identifying normal and overweight in age- and gender-specific subject groups using facial features, and analyzed the differences between age groups and/or between gender groups in normal and overweight. The results from this study will provide better discriminatory characteristics for studies in obesity, facial morphology, face recognition, and forensic and medical sciences. Additionally, this method may be useful in developing alternative diagnosis methods for BMI status in telemedicine (U-healthcare), emergency medical service, and real-time monitoring of patients with chronic illnesses directly related to BMI.

2. Methods

2.1. Subjects and Data Acquisition

Frontal and profile images were acquired from 1244 subjects in various hospitals. To acquire photographs and weight and height information of subjects, we used a Nikon D700 with an 85-mm lens, a ruler, a color chart, and an LG-150 (G Tech International Co., Ltd). The BMI of each subject was calculated using the formula weight (kg)/height (m²), and 86 features were extracted from profile, frontal, and eye photographs based on the feature points designated by a physician. The feature points in images, the extracted features, and brief descriptions are presented in Figure 1 and the Appendix Table which are quoted from our previous paper [35]. To set normal and overweight cut-off values, we used the Asia-Pacific region guidelines of WHO [36]: normal (BMI = 18.5–22.9 kg/m²) and overweight (BMI \geq 23 kg/m²).

Figure 1. Feature Points in Frontal Photograph, Profile Photograph, Right Eye Photograph, and Left Eye Photograph

For age- and gender-specific analysis and classification, the full dataset was divided into 6 groups: Female-21-40 (women aged 21–40 years), Female-41-60 (women aged 41–60 years), Female-61-over (women aged \geq 61 years), Male-21-40 (men aged 21–40 years), Male-41-60 (men aged 41–60 years), and Male-61-over (men aged \geq 61 years). Detailed data and the basic statistics of each group are presented in Table 1.

Group		Normal		Overweight				
Oloup	Ν	Age (years)	BMI	 Ν	Age (years)	BMI		
Female-21-40	189	32.1 (5.64)	22.2 (2.97)	77	32.91 (5.29)	26.0 (2.75)		
Female-41-60	193	50.0 (5.42)	23.6 (2.86)	229	50.31 (5.44)	25.6 (2.31)		
Female-61-over	36	67.7 (6.37)	21.3 (1.15)	85	67.4 (4.51)	25.3 (1.71)		
Male-21-40	54	30.7 (5.66)	21.2 (1.19)	90	32.5 (5.22)	25.6 (2.16)		
Male-41-60	79	50.2 (6.11)	21.3 (1.13)	134	50.3 (5.55)	25.9 (2.16)		
Male-61-over	24	67.1 (4.50)	21.4 (1.25)	54	67.5 (4.73)	25.4 (1.71)		
Total	575	-	-	669	-	-		

Table 1. Basic statistics of subjects in the 6 groups. Data are expressed as mean (Std, standard deviation); N, total number of subjects in each group; BMI, body mass index.

2.2. Experimental Design

For feature selection in each group, only features that exhibited a p-value less than 0.05 in an independent two-sample t-test were selected. Furthermore, only the selected features were used in classification experiments and statistical analysis.

Our experiments were carried out using 2 methods. In the first method, we applied normalization (ranging from 0 to 1) to the datasets of the 6 groups. In the second method, for superior classification performance, we applied normalization and discretization to the datasets of the 6 groups. Fayyad and Irani's MDL method [37] (Entropy-based multi-interval discretization) was used for discretization. The core of the discretization method is to discover the cut point to minimize the average entropy of the class. Let us assume that an example set S, a feature F, and a cut point T are given. The class information entropy of the partition derived from E(F,T;S) is given by:

$$E(F,T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2).$$

Discretization for *F* is decided by the cut point T_F , through minimization of the entropy function over all the candidate cut points [37, 38]. All experiments were carried out using the Naive Bayes classifier in the Waikato Environment for Knowledge Analysis (Weka) tool [39]. Naive Bayes estimates class-conditional probability based on the assumption that all attributes are conditionally independent, given the class [40]. Classification results are based on 10-fold cross-validation.

2.3. Area Under the Receiver Operating Characteristics Curve (AUC) and Kappa

We selected the area under the receiver operating characteristics curve (AUC) and kappa as major evaluation criteria. The AUC value can be obtained by calculating the area under the receiver operating characteristics (ROC) curve, because an ROC curve is a two-dimensional graph [41]. AUC is widely used in medical sciences, signal detection, bioinformatics, medicine statistics, and biology to quantify the quality of a prediction or classification model, because it is a threshold-independent measure [41, 42]. AUC values of 1, 0.5, and 0 indicate a perfect diagnosis model, random diagnosis, and perfectly wrong diagnosis, respectively.

Cohen's kappa, introduced by Cohen, is considered a more accurate and robust evaluation criterion to measure the accuracy of binary and multi-classification, based on theoretical merits in statistics and medical sciences [40, 43]. The means of performance according to ranges of kappa values are as follows: 0 (poor); 0-0.2 (slight); 0.2-0.4 (fair); 0.4-0.6 (moderate); 0.6-0.8 (substantial, good); 0.8-1 (almost perfect, very good). Measures are defined as follows [44]:

$$Kappa = \frac{P_a - P_c}{1 - P_c},$$

where P_a is the overall agreement probability, and P_c is the probability that the agreement occurred by chance. For specific performance analysis, we determined precision, *F*-measure, accuracy, sensitivity, and 1-specificity.

3. Results and Discussion

3.1. Classification Results

For performance analysis of all experiments, the kappa and AUC of the 6 datasets (groups) are shown in Figure 2.

In AUC evaluation, the best classification performance among overall experiments was an AUC of 0.931 in the Male-61-over group. AUC values of the method with MDL discretization in all groups except for the Female-61-over group ranged from 0.760 to 0.931, while those of the method without MDL discretization ranged from 0.730 to 0.860. The classification performance of the second method with MDL discretization was better than that of the first method without MDL discretization, but in the Female-60-over group, the performance of the first method was higher than that of the second method.

In kappa evaluation, the performances of the method with MDL in Female-21-40, Female-41-60, Male-21-40, and Male-41-60 were higher than the performances of the method without MDL, while performances of the method without MDL in older groups were superior to those of the method with MDL. For instance, in Male-21-40, AUC and kappa values of the method with MDL showed improvements of 0.052 and 0.126, respectively, whereas in the Female-61-over group, AUC and kappa values of the method without MDL showed decreases of 0.208 and 0.195, respectively.

Although our results showed that the normal/overweight classification was more successful with MDL discretization than without, we cannot guarantee that the classification using MDL would always produce superior results. Specific results of the classification performance in the 6 groups are presented in Tables 2 and 3. Particularly, the classification of normal and overweight classes in the Female-61-over group is very difficult, compared to the other groups. This phenomenon is discussed in Section 3.4.

Figure 2. Performance Evaluations based on AUC and Kappa of the 6 Groups Derived with MDL Discretization (AUC-MDL and Kappa-MDL) and without MDL Discretization (AUC and Kappa)

Group	Class	Sensitivity	1-specificity	Precision	F-Measure	Accuracy
Eamala 21 40	Normal	0.884	0.377	0.852	0.868	<u> 20 20/</u>
remate-21-40	Overweight	0.623	0.116	0.686	0.653	00.0%
Famala 41.60	Normal	0.653 0.253 0.		0.685	0.668	70.40/
remaie-41-00	Overweight	0.747	0.347	0.718	0.732	/0.4%
Famala 60 ouar	Normal	0	0	0	0	70.2%
Female-60-over	Overweight	1	1	0.702	0.825	70.2%
Mala 21 40	Normal	0.704	0.233	0.644	0.673	74.20/
Male-21-40	Overweight	0.767	0.296	0.812	0.789	74.3%
Mala 41 60	Normal	0.747	0.224	0.663	0.702	76 50/
Male-41-00	Overweight	0.776	0.253	0.839	0.806	70.5%
Male-61-over	Normal	0.958	0.278	0.605	0.742	70.5%
	Overweight	0.722	0.042	0.975	0.83	19.3%

Table 2. Specific	Evaluation of	Experimental D	Data using MDL	Discretization

Table 3. Specific Evaluation of Experimental Data without MDL Discretization

Group	Class	Sensitivity	1-specificity	Precision	F-Measure	Accuracy
Eamala 21 40	Normal	0.788	0.364	0.842	0.814	74 404
remaie-21-40	Overweight	0.636	0.212	0.551	0.59	74.4%
Eamola 41.60	Normal	0.684	0.354	0.62	0.65	66 10/
remaie-41-00	Overweight	0.646	0.316	0.708	0.676	00.4%
Famala 60 avar	Normal	0.472	0.271	0.425	0.447	65 20/
Female-60-over	Overweight	0.729	0.528	0.765	0.747	05.5%
Mala 21 40	Normal	0.685	0.333	0.552	0.612	67 40/
Male-21-40	Overweight	0.667	0.315	0.779	0.719	07.4%
Mala 41 60	Normal	0.734	0.269	0.617	0.671	72 204
Wale-41-00	Overweight	0.731	0.266	0.824	0.775	13.2%
Male-61-over	Normal	0.833	0.167	0.69	0.755	92 20/
	Overweight	0.833	0.167	0.918	0.874	03.3%

3.2. Statistical Analysis of BMI and Facial Characteristics

Results from the statistical analysis of the 6 groups according to age and gender are presented in Tables 4-9. We considered only features with p-values less than 0.05; therefore, features shown for each age- and gender-group are different. The statistical analysis data are expressed as mean (standard deviation [Std]).

The differences between the normal and overweight classes were analyzed with the independent two-sample t-test using the SPSS data analysis program for Windows (version 19, SPSS Inc., Chicago, IL, USA).

A total of 42 features exhibited statistically significant differences between the normal and overweight classes (p < 0.05), and 11 of these features exhibited highly significant differences (p < 0.0000) in the Female-21-40 group. In the Female-41-60 group, differences in 8 of 21 features with p-values less than 0.05 were highly significant (p < 0.0000). Detailed analysis of the Female-21-40 and Female-41-60 groups was presented in our previous study [35].

None of the features in Female-61-over had a p-value <0.0000, and only 2 features in this group had p-values less than 0.005: EUL_L_*el5* (t = 3.157, p = 0.0020) and FA18_17_43 (t = 0.0043, p = 0.0043). Thus, the classification performance of the Female-61-over group was poor compared to those of the other groups. In Male-21-40, differences in 7 of 19 features with p-values less than 0.05 were highly significant (p < 0.0000). In Male-41-60, differences in 6 of 36 features with p-values less than 0.05 were highly significant. Further, in Male-61-over, differences in 4 of 20 features were highly significant.

Several features were observed only in particular groups. The features EUL_R_St, FD117_126, EUL_R_RMAX, Fh_Cur_Max_Distan, EUL_L_*el2*, EUL_R_*er7*, FDH12_14, EUL_L_*el3*, EUL_R_DH, and EUL_R_Khmean were found only in the Female-21-40 group. The feature FDH14_21 was found in Female-41-60, and FDH18_118 and FDH6_7 were found in the Female-61-over group. Only FA17_25_43 was found in Male-21-40, and SA12_09, Fh_Angle_73_72, FA17_25, FDV9_12, EUL_L_Sb, and EUL_R_*er5* were found in the Male-41-60 group. FDV52_50, FDV52_81, FD12_21, and FDV81_50, in particular, were found in the Male-60-over group.

Many features with a broad range of applicability and significant differences between the normal and overweight status were found in the age- and gender-specific groups. FD43_143 and FD94_194 were significantly different in all the 6 groups. This is not surprising because if the distances between points 43 to 143 and between points 94 to 194 in certain frontal images are wide, the individual is generally considered overweight. The features FA118_117_143, FA18_17_43, FD43_143, FD94_194, FR02_psu, FR05_psu, and FR08_psu were commonly found only in 3 female groups, and the features FArea02, FArea03, FD43 143, FD53 153, FD94 194, FDH25 125, FDH33 133, and FDV14 21 were found only in 3 male groups. FA118 117 143 and FA18_17_43 were significantly different in all groups, except Male-61-over. FA18_17_43 represents the angle of points 18, 17, and 43 in a frontal image. We think that these features are useful for discriminating normal from overweight. In previous studies, Levine et al. [21] argued that the quantity of buccal (cheek) fat is strongly related to visceral abdominal fat. Similarly, the results from the current study showed that the difference in the feature FAarea 03 (cheek area) was highly significant between normal and overweight in Female-21-40 (t = -5.637 and p < 0.0000), Female-41-60 (t = -4.245 and p < 0.0000), Male-21-40 (t = -3.293 and p < 0.0013), Male-41-60 (t = -4.207and p < 0.0000), and Male-61-over (t = -3.602 and p < 0.0006), indicating that cheek area or cheek fat is strongly associated with normal and overweight statuses.

In addition, there were common features that were significantly different between the same age groups of females and males. Fifteen features, FA118_117_143, FA118_125_143, FA17_18, FA18_17_43, FA18_25_43, FArea02, FArea03, FD43_143, FD53_153, FD94_194, FDH25_125, FDH33_133, FR05_psu, FR06_psu, and

FR08_psu, were common to females and males aged 21–40 years. Further, 16 features, including FA118_117_143, FA18_17_43, FArea02, FArea03, FD17_25, FD18_25, FD43_143, FD53_153, FD94_194, FDH25_125, FDH33_133, FDV12_14, FR02_psu, FR05_psu, FR06_psu, and FR08_psu, were common between females and males aged 41–60 years. In females and males aged 61–over, only FD43_143, FD94_194, and FR02_psu were common.

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
1	ED17 26	Normal	189	9.473	1.317	264.0	2 1 1 0	0.0020
1	FD1/_20	Overweight	77	8.941	1.115	165.4	5.118	0.0020
2	ED117 126	Normal	189	9.483	1.303	264.0	2 2 1 0	0.0010
2	FD117_120	Overweight	77	8.904	1.257	145.8	- 3.319	0.0010
3	EDH25 125	Normal	189	96.53	5.116	264.0	2 600	0.0076
5	FDH25_125	Overweight	77	98.52	6.320	118.6	-2.090	0.0070
4	EDH36 136	Normal	189	23.57	2.469	264.0	2 750	0.0064
4	101100_100	Overweight	77	24.46	2.191	157.9	-2.750	0.0004
5	ED18 25	Normal	189	29.94	2.675	264.0	2 036	0.0428
5	FD18_25	Overweight	77	30.68	2.753	137.5	-2.030	0.0428
6	ED43 143	Normal	189	125.2	7.101	264.0	8 625	0.0000
0	11045_145	Overweight	77	133.6	7.384	136.2	-8.023	0.0000
7	ED53 153	Normal	189	145.4	5.941	264.0	5 001	0.0000
/	FD35_135	Overweight	77	150.7	7.642	115.2	3.991	0.0000
Q	ED04 104	Normal	189	140.1	6.022	264.0	8 875	0.0000
0	1074_174	Overweight	77	147.6	6.934	125.1	-0.075	0.0000
0	EDH33 133	Normal	189	147.2	5.630	264.0	7 261	0.0000
9	грнээ_155	Overweight	77	153.1	7.020	117.8	-7.201	0.0000
10	EA19 17 25	Normal	189	126.2	6.591	264.0	2 691	0.0077
10	FA10_17_23	Overweight	77	128.6	6.750	138.1	-2.064	0.0077
11	EA119 117 125	Normal	189	125.0	7.339	264.0	2 560	0.0004
11	FAI10_117_123	Overweight	77	128.3	6.199	165.7	3.300	0.0004
12	EA18 25 43	Normal	189	95.38	5.104	264.0		0.0002
12	TA16_25_45	Overweight	77	97.91	4.896	146.6	-3.122	0.0002
13	EA118 125 143	Normal	189	96.16	4.753	264.0	3 306	0.0008
15	FAI10_123_145	Overweight	77	98.39	5.082	133.0	-3.390	0.0008
14	EA18 17 43	Normal	189	76.97	6.255	264.0	_ 1 300	0.0000
14	TA10_17_43	Overweight	77	80.66	6.108	144.2	-4.390	0.0000
15	FA118 117 1/3	Normal	189	76.82	6.824	264.0	1 611	0.0000
15	1/110_117_145	Overweight	77	80.90	5.583	171.1	-4.044	0.0000
16	FA117 125	Normal	189	21.24	3.645	264.0	- 3 083	0.0001
10	14117_125	Overweight	77	19.19	4.142	126.4	3.705	0.0001
17	FA17 18	Normal	189	34.01	5.091	264.0	- 2 002	0.0463
17	1/11/_10	Overweight	77	32.61	5.320	135.7	2.002	0.0405
18	FR02 psu	Normal	189	0.318	0.044	264.0	- / 100	0.0000
10	rito2_psu	Overweight	77	0.293	0.041	148.4	4.177	0.0000
10	FR05 psu	Normal	189	1.178	0.055	264.0	- 1 183	0.0000
19	rico_psu	Overweight	77	1.148	0.048	160.4	4.165	0.0000
20	FP06 psu	Normal	189	2.039	0.117	264.0	- 5 334	0.0000
20	rikoo_psu	Overweight	77	2.123	0.115	142.4	-5.554	0.0000
21	FR08 psu	Normal	189	1.736	0.151	264.0	-5 783	0.0000
<u></u>	ricoo_psu	Overweight	77	1.854	0.147	144.4	-3.765	0.0000
22	EArea02	Normal	189	6470	644.4	264.0	_2 106	0.0362
	17416402	Overweight	77	6654	652.2	139.5	-2.100	0.0302
23	FArea03	Normal	189	3596	364.9	264.0	-5.637	0.0000

Table 4. Statistical Analysis of Female-21-40 using Independent Two-sample ttest (N, number of subjects; Std, standard deviation; Df, degree of freedom)*

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
		Overweight	77	3873	361.9	142.1		
24	El Cun Man Distan	Normal	189	3.654	1.564	264.0	1.004	0.0492
24	Fn_Cur_Max_Distan	Overweight	77	3.233	1.585	139.4	- 1.984	0.0485
25	ED1110 14	Normal	189	18.58	2.713	264.0	2.000	0.0020
25	FDH12_14	Overweight	77	19.69	2.817	136.4	3.000	0.0029
26	Nara Anala 14 10	Normal	189	61.07	4.611	264.0	2.046	0.0025
20	Nose_Angle_14_12	Overweight	77	59.29	4.108	157.3	- 2.940	0.0035
27	Nosa Angla 12 14 21	Normal	189	106.7	4.634	264.0	2 207	0.0172
27	Nose_Angle_12_14_21	Overweight	77	105.1	5.237	127.0	- 2.397	0.0172
20		Normal	189	-0.637	0.095	264.0	2 1 2 5	0.0010
28	EUL_L_el2	Overweight	77	-0.597	0.087	152.4	5.155	0.0019
20		Normal	189	-0.220	0.118	264.0	2 206	0.0015
29	EUL_L_els	Overweight	77	-0.170	0.110	151.2	5.200	0.0015
20		Normal	189	0.483	0.105	264.0	2 172	0.0006
50	EUL_L_ <i>el</i> 0	Overweight	77	0.432	0.113	131.4	- 3.473	0.0006
21		Normal	189	3.178	0.248	264.0	2 5 2 0	0.0120
51	EUL_L_DH	Overweight	77	3.268	0.292	123.0	2.330	0.0120
22	EIII I CF	Normal	189	0.408	0.106	264.0	2 4 4 2	0.0152
52	EUL_L_SI	Overweight	77	0.371	0.132	117.8	- 2.442	0.0155
22		Normal	189	-0.630	0.087	264.0	2 057	0.0001
55	EUL_K_er2	Overweight	77	-0.582	0.095	129.8	3.937	0.0001
24	ELIL D an2	Normal	189	-0.208	0.112	264.0	2 822	0.0051
54	EUL_K_ers	Overweight	77	-0.167	0.100	156.4	-2.822	0.0031
25	ELIL D and	Normal	189	0.466	0.106	264.0	2 402	0.0122
33	EUL_K_ ero	Overweight	77	0.430	0.111	134.8	- 2.492	0.0133
26	EIII D or7	Normal	189	0.647	0.235	264.0	- 2 422	0.0165
30	EUL_K_err	Overweight	77	0.556	0.290	118.6	- 2.432	0.0105
37		Normal	189	3.188	0.226	264.0	4 202	0.0000
37	EUL_K_DII	Overweight	77	3.322	0.241	133.3	-4.292	0.0000
38	FIII D DMAY	Normal	189	0.443	0.069	264.0	- 2.061	0.0403
- 38	LUL_K_KWAA	Overweight	77	0.424	0.066	146.2	2.001	0.0403
20	EIII D St	Normal	189	-0.633	0.117	264.0	2 5 2 5	0.0122
39	EUL_K_SI	Overweight	77	-0.592	0.123	135.1	2.323	0.0122
40	EIII D Sf	Normal	189	0.395	0.106	264.0	2 452	0.0140
40	EUL_K_SI	Overweight	77	0.360	0.104	143.7	- 2.432	0.0149
41	ELII P Khmoon	Normal	189	0.024	0.007	264.0	2 868	0.0045
41	EUL_K_KIIIIean	Overweight	77	0.022	0.007	156.3	2.000	0.0043
42	DDU14 52	Normal	189	89.38	6.081	264.0	2 017	0.0028
42	гDП44_33	Overweight	77	91.79	5.527	154.3	3.017	0.0028

* quoted from our previous paper [35].

Table 5. Statistical Analysis of Female-41-60 using Independent Two-sample ttest (N, number of subjects; Std, standard deviation; Df, degree of freedom)*

Num	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
1	1 FDH25_125	Normal	193	94.63	5.466	420.0	2 007	0.0021
1		Overweight	229	96.29	5.493	408.6	3.097	0.0021
2	EDU26 126	Normal	193	24.84	2.283	420.0	2.055	0.0405
2 FDH30_130	FDH30_130	Overweight	229	25.36	2.805	419.5	-2.033	0.0405
2	ED19 25	Normal	193	29.37	3.287	420.0	2 100	0.0284
3	FD18_23	Overweight	229	30.04	2.923	388.0	2.199	0.0284
4	ED17 25	Normal	193	17.83	2.717	420.0	2 076	0.0285
4 I	FD17_23	Overweight	229	18.36	2.471	392.4	-2.070	0.0385
5	FD43_143	Normal	193	127.4	6.471	420.0	-8.184	0.0000

Num	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
		Overweight	229	133.1	7.721	420.0		
6	ED52 152	Normal	193	143.9	6.343	420.0	4 0 4 0	0.0000
0	FD55_155	Overweight	229	147.2	7.141	418.8	-4.848	0.0000
7	ED04 104	Normal	193	141.8	6.010	420.0	0 205	0.0000
/	ГD94_194	Overweight	229	146.9	6.485	416.2	-0.303	0.0000
0	EDH22 122	Normal	193	146.8	6.057	420.0	6 6 1 5	0.0000
0	FDH35_155	Overweight	229	150.9	6.582	416.7	-0.015	0.0000
0	EA18 25 42	Normal	193	99.88	5.308	420.0	2 580	0.0100
9	FA16_23_43	Overweight	229	101.2	4.954	397.1	-2.389	0.0100
10	EA110 105 142	Normal	193	99.74	4.776	420.0	1 2 1 2	0.0000
10	FAI16_125_145	Overweight	229	101.9	5.373	418.8	4.343	0.0000
11	EA117 105 142	Normal	193	124.7	5.380	420.0	2 120	0.0152
11	FAIT/_125_145	Overweight	229	126.0	5.471	410.2	-2.438	0.0132
12	EA19 17 42	Normal	193	81.11	6.753	420.0	2676	0.0077
12	FA16_1/_45	Overweight	229	82.85	6.574	404.1	-2.070	0.0077
12	EA110 117 142	Normal	193	80.69	6.449	420.0	3.632	0.0002
15	FA118_117_145	Overweight	229	83.16	7.350	419.3		0.0005
1.4	ED02 mm	Normal	193	0.295	0.044	420.0	2 1 9 2	0.0207
14	rk02_psu	Overweight	229	0.285	0.051	419.6	- 2.162	0.0297
15	ED05 peu	Normal	193	1.154	0.046	420.0	2 066	0.0001
15	rko5_psu	Overweight	229	1.135	0.049	414.8	- 5.900	0.0001
16	ED06 man	Normal	193	2.006	0.104	420.0	5 600	0.0000
10	rkoo_psu	Overweight	229	2.068	0.121	419.7	3.088	0.0000
17	ED09 man	Normal	193	1.743	0.134	420.0	5 025	0.0000
17	rkuo_psu	Overweight	229	1.827	0.157	419.9	3.935	0.0000
19	$E\Lambda rac{0}{2}$	Normal	193	6358	618.3	420.0	2 212	0.0275
18	FAIea02	Overweight	229	6501	696.7	418.9	-2.212	0.0275
10	EAroo()3	Normal	193	3886	397.6	420.0	4 245	0.0000
19	T'Alea03	Overweight	229	4052	402.6	409.6	-4.245	0.0000
20	EDV12 14	Normal	193	33.85	3.313	420.0	2 516	0.0122
20	FDV12_14	Overweight	229	33.00	3.571	416.1	- 2.310	0.0125
21	EDU14 21	Normal	193	12.90	1.633	420.0	2.163	0.0211
21	101114_21	Overweight	229	12.53	1.889	419.7		0.0311
22	Nosa Angla 14 21	Normal	193	45.73	4.983	420.0	2 402	0.0168
22	22 Nose_Angle_14_21	Overweight	229	46.98	5.765	419.7	-2.402	0.0108

* quoted from our previous paper [35].

Table 6. Statistical Analysis of Female-61-over using Independent Two-sample t-test (N, number of subjects; Std, standard deviation; Df, degree of freedom)

Num.	Feature	Class	N	Mean	Std.	Df.	t	p-value
1	ED110 110	Normal	36	36.76	4.471	119.0	2 125	0.0257
1	FDH18_118	Overweight	85	34.97	4.129	61.50	- 2.125	0.0557
2	ED42 142	Normal	36	126.4	8.192	119.0	2 720	0.0072
2	ГD43_143	Overweight	85	130.7	8.000	64.59	-2.129	0.0073
2	ED04_104	Normal	36	141.4	6.726	119.0	2 124	0.0240
3	ГD94_194	Overweight	85	144.6	7.720	75.20	-2.134	0.0349
4	EA118 117 125	Normal	36	128.1	7.290	119.0	- 2.080	0.0306
4	TATI6_117_125	Overweight	85	131.6	8.714	78.24	-2.080	0.0390
5	EA19 17 42	Normal	36	83.72	6.560	119.0	2 010	0.0042
5	FA10_17_45	Overweight	85	87.40	6.282	63.48	-2.910	0.0043
6	EA119 117 142	Normal	36	84.87	6.953	119.0	2 127	0.0255
6	ГАПО_П/_145	Overweight	85	88.00	7.568	71.44	-2.127	0.0355
7	FA17_18	Normal	36	27.99	6.148	119.0	2.094	0.0384

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
		Overweight	85	25.74	5.064	56.08		
0	8 ED02	Normal	36	0.259	0.045	119.0	1 09/	0.0406
8 FR02_psu	Overweight	85	0.240	0.050	72.97	1.964	0.0490	
0	ED05 man	Normal	36	1.156	0.049	119.0	2 502	0.0127
9 FR05_psu	Overweight	85	1.133	0.046	61.77	- 2.303	0.0137	
10	ED09 man	Normal	36	1.734	0.171	119.0	2.070	0.0208
10	rkuo_psu	Overweight	85	1.800	0.154	60.22	-2.079	0.0398
11	EDUC 7	Normal	36	14.91	4.836	119.0	2 107	0.0200
11	11 FDH6_7	Overweight	85	12.69	5.173	70.26	2.197	0.0299
12 EU		Normal	36	0.482	0.119	119.0	3 157	0.0020
	EUL_L_el5	Overweight	85	0.407	0.120	66.59	5.157	0.0020

Table 7. Statistical Analysis of Male-21-40 using Independent Two-sample t-test(N, number of subjects; Std, standard deviation; Df, degree of freedom)

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
1	EDU25 125	Normal	54	99.65	5.953	142.0	- 2.024	0.0438
1	FDH25_125	Overweight	90	101.7	5.633	106.9	-2.054	0.0458
2	ED42 142	Normal	54	131.6	8.371	142.0	6 207	0.0000
2	ГD45_145	Overweight	90	141.6	9.545	123.3	-0.387	0.0000
2	ED52 152	Normal	54	150.5	6.530	142.0	4 124	0.0001
3	FD35_135	Overweight	90	155.8	7.972	128.8	-4.124	0.0001
4	ED04 104	Normal	54	146.6	7.109	142.0	6 521	0.0000
4	ГD94_194	Overweight	90	155.4	8.146	123.7	-0.331	0.0000
5	ED1122 122	Normal	54	153.3	6.359	142.0	4 072	0.0000
5	FDH35_135	Overweight	90	159.5	7.731	128.5	-4.972	0.0000
(EA19 25 42	Normal	54	96.16	6.435	142.0	4 070	0.0000
0	FA18_25_45	Overweight	90	100.8	6.148	107.7	-4.278	0.0000
7	EA110 105 142	Normal	54	96.68	5.093	142.0	4 4 4 4	0.0000
/	FA118_125_145	Overweight	90	100.8	5.641	120.8	-4.444	0.0000
0	EA17 05 42	Normal	54	117.4	7.449	142.0	2 596	0.0107
8	FA17_25_43	Overweight	90	120.3	6.181	96.1	-2.586	0.0107
0	EA117 105 142	Normal	54	118.5	5.270	142.0	2 (12	0.0100
9	FAI1/_125_143	Overweight	90	121.1	6.056	123.9	-2.612	0.0100
10	EA10 17 42	Normal	54	82.37	6.350	142.0	4 100	0.0001
10	FA18_17_43	Overweight	90	87.32	7.912	130.4	-4.123	0.0001
1.1	EA110 117 142	Normal	54	82.31	5.621	142.0	4.044	0.0000
11	FAI18_11/_143	Overweight	90	86.82	6.469	124.1	-4.244	0.0000
10	EA17 10	Normal	54	29.35	4.013	142.0	0.640	0.0002
12	FA1/_18	Overweight	90	27.28	5.298	134.3	- 2.643	0.0092
12	ED05	Normal	54	1.168	0.057	142.0	4 1 4 1	0.0001
13	FR05_psu	Overweight	90	1.129	0.053	105.2	- 4.141	0.0001
1.4	ED04	Normal	54	2.024	0.124	142.0	2.007	0.0001
14	FR06_psu	Overweight	90	2.113	0.138	121.3	3.907	0.0001
1.7	ED 00	Normal	54	1.740	0.170	142.0	4 470	0.0000
15	FR08_psu	Overweight	90	1.879	0.187	119.9	4.4/3	0.0000
16	E4 02	Normal	54	6982	662.636	142.0	0.176	0.0212
16	FArea02	Overweight	90	7255	766.437	124.5	2.1/6	0.0312
17	E4 02	Normal	54	4023	561.8	142.0	2 202	0.0012
17	FArea03	Overweight	90	4313	480.9	98.5	3.293	0.0013
		Normal	54	13.37	2.025	142.0		0.0400
18	FDV14_21	Overweight	90	14.16	1.867	104.6	-2.377	0.0188
10		Normal	54	43.99	6.874	142.0	2.246	0 0 0 0 1 0
19	Nose_Angle_14_21	Overweight	90	46.42	5.810	97.5	-2.269	0.0248

Table 8. Statistical Analysis of Male-41-60 using Independent Two-sample t-test (N, number of subjects; Std, standard deviation; Df: degree of freedom)

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
1	ED17 06	Normal	79	8.134	1.451	211.0	2 276	0.0104
1	FD17_26	Overweight	134	7.666	1.351	154.4	- 2.376	0.0184
	ED1105 105	Normal	79	98.25	6.482	211.0	2.105	0.0017
2	FDH25_125	Overweight	134	101.1	6.312	160.2	3.185	0.0017
2	ED10.05	Normal	79	30.86	3.650	211.0	2 (10	0.0002
3	FD18_25	Overweight	134	32.56	3.057	141.6	3.649	0.0003
4	ED17 05	Normal	79	17.96	3.156	211.0	2 7 2 0	0.0070
4	FD17_25	Overweight	134	19.02	2.478	134.6	2.729	0.0069
	ED 42 142	Normal	79	134.5	8.123	211.0	6.064	0.0000
5	FD43_143	Overweight	134	143.2	9.144	179.4	6.964	0.0000
	ED 52 152	Normal	79	149.0	7.430	211.0	5 4 6 1	0.0000
0	FD53_153	Overweight	134	155.6	9.174	190.8	5.461	0.0000
7	ED04 104	Normal	79	148.6	6.720	211.0	7 570	0.0000
/	FD94_194	Overweight	134	156.8	8.199	189.4	/.5/8	0.0000
0	ED1122 122	Normal	79	153.0	6.685	211.0	(225	0.0000
8	FDH55_155	Overweight	134	160.0	8.460	193.6	0.323	0.0000
0	EA10 17 05	Normal	79	132.7	7.718	211.0	2 250	0.0010
9	FA18_17_25	Overweight	134	136.5	8.022	168.8	3.350	0.0010
10	EA110 117 105	Normal	79	132.1	7.077	211.0	2 224	0.0265
10	FAI18_11/_125	Overweight	134	134.5	7.945	179.0	2.234	0.0265
1.1	EA 10 17 42	Normal	79	86.16	7.782	211.0	2 400	0.0000
11	FA18_17_43	Overweight	134	89.54	6.528	141.8	3.400	0.0008
10	E4110 115 140	Normal	79	86.35	7.379	211.0	2 700	0.0056
12	FAI18_117_143	Overweight	134	89.01	6.248	142.9	2.799	0.0056
10	D. 15 05	Normal	79	21.29	4.353	211.0	2 (00	0.0004
13	FA17_25	Overweight	134	18.92	4.793	176.5	- 3.600	0.0004
1.4	EA117 105	Normal	79	22.36	3.972	211.0	2 5 1 7	0.0005
14	FAI1/_125	Overweight	134	20.26	4.351	175.8	- 3.317	0.0005
15	ED02	Normal	79	0.266	0.052	211.0	4 200	0.0000
15	FK02_psu	Overweight	134	0.237	0.045	146.8	- 4.290	0.0000
16	ED05	Normal	79	1.139	0.057	211.0	2 0 1 1	0.0054
16	FR05_psu	Overweight	134	1.119	0.047	141.5	- 2.811	0.0054
17	ED06 mm	Normal	79	2.007	0.134	211.0	2 725	0.0002
17	FR06_psu	Overweight	134	2.080	0.142	171.5	3.725	0.0003
10	ED 00	Normal	79	1.768	0.180	211.0	2 002	0.0001
18	FR08_psu	Overweight	134	1.864	0.168	154.7	3.903	0.0001
10	EA 03	Normal	79	6934	795.9	211.0	2 0 9 2	0.0022
19	FArea02	Overweight	134	7287	817.2	167.2	3.082	0.0023
20		Normal	79	4226	517.3	211.0	4 207	0.0000
20	FAIea05	Overweight	134	4560	585.0	180.0	4.207	0.0000
21	EDV0 12	Normal	79	28.66	4.056	211.0	4 022	0.0001
21	FDV9_12	Overweight	134	31.06	4.303	171.5	4.023	0.0001
22	EDV12 14	Normal	79	36.77	3.961	211.0	- 2 8/1	0.0040
22	FDV12_14	Overweight	134	35.21	3.797	158.2	2.041	0.0049
22	EDV14 21	Normal	79	13.96	2.177	211.0	- 2/12	0.0167
23	FDV14_21	Overweight	134	14.71	2.196	164.9	2.413	0.0107
24	Fh Angle 72 72	Normal	79	69.79	7.566	211.0	- 2 134	0.0340
24	Th_Angle_/3_/2	Overweight	134	67.60	7.070	154.9	2.134	0.0340
25	Nose Angle 14 12	Normal	79	58.38	4.560	211.0	2 0.96	0.0382
23	TNUSE_Aligle_14_12	Overweight	134	57.03	4.581	164.3	2.080	0.0382
26	SA12 09	Normal	79	86.03	6.427	211.0	_2 375	0.0185
20	5A12_07	Overweight	134	88.12	6.034	155.5	-2.373	0.0105
27	EUL_L_ el5	Normal	79	0.368	0.117	211.0	3.287	0.0012

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
		Overweight	134	0.314	0.114	160.1		
28	EUL_L_ <i>el</i> 6	Normal	79	0.457	0.112	211.0	- 3.109	0.0021
		Overweight	134	0.406	0.118	171.0		
20	EUL_L_Sb	Normal	79	0.015	0.071	211.0	- 2.417	0.0165
29		Overweight	134	-0.008	0.067	157.2		0.0105
20	EIII I SF	Normal	79	0.382	0.095	211.0	- 3.211	0.0015
50	EUL_L_SI	Overweight	134	0.339	0.095	163.9		
21	ELIL D and	Normal	79	-0.530	0.109	211.0	2.167	0.0313
51	EUL_K_er2	Overweight	134	-0.496	0.112	167.7		
20	EUL_R_ er3	Normal	79	-0.135	0.154	211.0	2.078	0.0396
32		Overweight	134	-0.093	0.122	135.0		
22	EUL_R_ er5	Normal	79	0.353	0.114	211.0	- 2.860	0.0047
33		Overweight	134	0.308	0.109	157.1		
34	EUL_R_ er6	Normal	79	0.464	0.117	211.0	2 805	0.0002
		Overweight	134	0.399	0.122	169.7	- 5.805	
35	EUL_R_Sf	Normal	79	0.387	0.093	211.0	- 3.901	0.0001
		Overweight	134	0.333	0.099	172.1		
36	PDH44_53	Normal	79	93.24	7.317	211.0	2.371	0.0196
		Overweight	134	95.76	7.610	168.9		0.0180

Table 9. Statistical Analysis of Male-61-over using Independent Two-sample ttest (N, number of subjects; Std, standard deviation; Df, degree of freedom)

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
1	FDH25_125	Normal	24	93.94	5.514	76.00	4 550	0.0000
		Overweight	54	100.7	6.216	49.47	4.558	0.0000
2	FDH36_136	Normal	24	26.10	4.186	76.00	0.249	0.0259
Z		Overweight	54	28.22	2.196	28.78	2.348	
2	FDV52_50	Normal	24	73.99	4.655	76.00	2 072	0.0040
3		Overweight	54	78.16	6.124	57.28	2.973	0.0040
4	FDV52_81	Normal	24	44.56	4.354	76.00	2 207	0.0228
4		Overweight	54	46.94	4.124	42.10	2.307	0.0238
5	EDV81 50	Normal	24	29.42	3.044	76.00	2 050	0.0438
5	FDV81_30	Overweight	54	31.22	3.780	54.28	2.030	0.0438
6	FD18_25	Normal	24	29.10	3.377	76.00	2.226	0.0018
0		Overweight	54	32.21	4.127	53.45	3.230	0.0018
7	FD17_25	Normal	24	17.03	2.749	76.00	2 600	0.0086
/		Overweight	54	19.06	3.194	50.92	-2.099	
0	FD43_143	Normal	24	132.5	9.063	76.00	4.096	0.0001
0		Overweight	54	141.1	8.288	40.83		
0	FD53_153	Normal	24	145.2	5.201	76.00	- 4.375	0.0000
9		Overweight	54	152.0	6.756	56.62		
10	FD94_194	Normal	24	144.8	7.094	76.00	5.595	0.0000
10		Overweight	54	154.3	6.883	43.01		
11	EDU22 122	Normal	24	148.6	5.250	76.00	- 5 532	0.0000
11	101155_155	Overweight	54	157.2	6.757	56.13	5.552	0.0000
12	FR02_psu	Normal	24	0.250	0.044	76.00	- 2.369	0.0204
12		Overweight	54	0.223	0.046	46.29		0.0204
13	FArea02	Normal	24	6385	697.9	76.00	3.870	0.0002
		Overweight	54	7115	797.1	50.09		
14	FArea03	Normal	24	4117	516.4	76.00	3.602	0.0006
		Overweight	54	4658	649.2	54.90		
15	FDV14_21	Normal	24	14.30	1.478	76.00	2 401	0.0188
		Overweight	54	15.46	2.135	62.21	-2.401	0.0100
16	FD12_21	Normal	24	50.70	3.118	76.00	-2.574	0.0120

Num.	Feature	Class	Ν	Mean	Std.	Df.	t	p-value
		Overweight	54	53.16	4.176	58.23		
17	Nose_Angle_12_	Normal	24	104.1	5.496	76.00	2.315	0.0233
	14_21	Overweight	54	106.9	4.664	38.37		
18	EUL_L_el6	Normal	24	0.431	0.164	76.00	- 2.480	0.0153
		Overweight	54	0.335	0.155	42.07		
19	EUL_L_DH	Normal	24	3.378	0.316	76.00	3.216	0.0019
		Overweight	54	3.615	0.292	41.19		
20	EUL_L_Sf	Normal	24	0.366	0.108	76.00	- 2.605	0.0110
		Overweight	54	0.301	0.100	41.26		0.0110

3.3. Limitations

In the classification of BMI using facial features, classification performances were reasonable in 5 groups but poor in the Female-61-over group, such that features extracted from the faces of females aged ≥ 61 years did not reflect the females' BMI. Menopause may be one of the reasons for the issues with BMI classification in females aged ≥ 61 years. This hypothesis is supported by menopause and body composition studies [45-51]. Using Student t-test and univariate regression analysis, Douchi et al. [45] showed that body composition is statistically different between pre- and postmenopausal females, and trunk lean mass, in particular, exhibits a greater decrease after menopause than the lean mass in other parts of the body. Skrzypczak et al. [46, 47] showed that postmenopausal females have higher WHR, W/Ht, and BMI than premenopausal females because of hormonal changes, and showed that the difference in BMI between the 2 groups was statistically significant. Guo et al. [48] and Dobs et al. [49] argued that postmenopausal females have significantly higher total body fat, body weight, and BMI than premenopausal females. Because menopause leads to changes in fatty tissue distribution, we believe that BMI diagnosis using facial features in older female groups is difficult. Future studies will focus on establishing the cause of this problem.

As mentioned in Section 2.2, the diagnosis of normal, overweight, and obese using BMI values differs according to region, race, and national economic status. This is a problem with the BMI classification criteria of WHO. For example, morphological characteristics of the face differ according to race. Using anthropometric face analysis, Porter and Olson [52] showed that facial characteristics, such as nose length, nasal width, facial width, forehead height, and eye-fissure width, are significantly different between African-American and Caucasian females. This is one of the factors that hamper the successful classification of a broad range of patients or individuals. Thus, an ideal classification method should reflect the morphological characteristics of the face according to ethnic group, region, economic status, and BMI criteria.

4. Summary

Facial features of patients or potential patients offer clues to present and future health complications, particularly obesity-associated diseases, such as CVD, type 2 diabetes, and breathlessness. In this study, we examined the relationship between facial characteristics and BMI and proposed a method for the classification of normal and overweight based on facial features in age- and gender-specific groups. Our results may promote fast, cost-efficient, and automatic diagnosis of obesity in remote healthcare, and facilitate real-time monitoring of patients with chronic diseases associated with BMI.

Acknowledgements

This work was supported in part by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (20110027738).

References

- [1] D. Gallagher, M. Visser, D. Sepulveda and R. N. Pierson, Am. J. Epidemiol., vol. 143, (1996), pp. 228.
- [2] R. W. Jakes, N. E. Day, K. -T. Khaw, R. Luben, S. Oakes, A. Welch, S. Bingham and N. J. Wareham, Eur. J. Clin. Nutr., vol. 57, (2003), pp. 1089.
- [3] O. H. James and J. C. Peters, Science, vol. 280, (1998), pp. 1371.
- [4] A. G. Comuzzie and D. B. Allison, Science, vol. 280, (2003), pp. 1374.
- [5] J. P. Després and I. Lemieux, Nature, vol. 444, (2006), pp. 881.
- [6] H. Hirose, T. Takayama, S. Hozawa, T. Hibi and I. Saito, Comp. Biol. Med., vol. 41, (2011), pp. 1051.
- [7] L. L. Yan, M. L. Daviglus, K. Liu, A. Pirzada, D. B. Garside, L. Schiffer, A. R. Dyer and P. Greenland, Obes. Res., vol. 12, (2004), pp. 69.
- [8] Asia Pacific Cohort Studies Collaboration, Int. Epidemiol., vol. 33, (2004), pp. 751
- [9] T. Haas, S. Svacina, J. Pav, R. Hovorka, P. Sucharda and J. Sonka, Comput. Methods Programs Biomed., vol. 41, (**1994**), pp. 297.
- [10] C. M. Lee, S. Colagiuri, M. Ezzati and M. Woodward, Obes. Rev., vol. 12, (2011), pp. e454.
- [11] L. Li, A. Pinot de Moira and C. Power, Am. J. Clin. Nutr., vol. 93, (2011), pp. 1204.
- [12] E. Anuurad, K. Shiwaku, A. Nogi, K. Kitajima, B. Enkhmaa, K. Shimono and Y. Yamane, J. Occup. Health, vol. 45, (2003), pp. 335.
- [13] H. S. Park, Y. S. Yun, J. Y. Park, Y. S. Kim and J. M. Choi, Asia Pac. J. Clin. Nutr., vol. 12, (2003), pp. 411.
- [14] J. Y. Kim, H. M. Chang, J. J. Cho, S. H. Yoo, and S. Y. Kim, J. Korean Med. Sci., vol. 25, (2010), pp. 1560.
- [15] H. Fonseca, A. M. Silva, M. G. Matos and I. Esteves, Acta Paediatr., vol. 99, (2010), pp. 83.
- [16] K. Sobottka and I. Pitas, Signal Process-Image, vol. 12, (1998), pp. 263.
- [17] Y. Wang, C. S. Chua and Y. K. Ho, Pattern Recogn. Lett., vol. 23, (2002), pp. 1191.
- [18] C. L. Huang and Y. M. Huang, J. Vis. Commun. Image R., vol. 8, (1997), pp. 278.
- [19] M. H. Yang, D. J. Kriegman and N. Ahuja, IEEE T. Pattern Anal., vol. 24, (2002), pp. 34.
- [20] E. N. Reither, R. M. Hauser and K. C. Swallen, Demography, vol. 46, (2009), pp. 27.
- [21] J. A. Levine, A. Ray and M. D. Jensen, New Engl. J. Med., vol. 339, (1998), pp. 1946.
- [22] A. Sadeghianrizi, C. M. Forsberg, C. Marcus and G. Dahllöf, Eur. J. Orthodont., vol. 27, (2005), pp. 550.
- [23] K. Öhrn, B. Al-Kahlili, J. Huggare, C. M. Forsberg, C. Marcus and G. Dahllöf, Acta Odontol. Scand., vol. 60, (2002), pp. 193.
- [24] Y. F. Liao, M. L. Chuang, C. S. Huang and Y. Y. Tsai, The Laryngoscope, vol. 114, (2004), pp. 1052.
- [25] J. R. Paoli, F. Lauwers, L. Lacassagne, M. Tiberge, L. Dodart and F. Boutault, Brit. J. Oral Max. Surg., vol. 39, (2001), pp. 40.
- [26] D. R. Cordero, S. Brugmann, Y. Chu, R. Bajpai, M. Jame and J. A. Helms, Am. J. Med. Genet., vol. 155, (2011), pp. 270.
- [27] E. Tzahor, Dev Biol., vol. 327, (2009), pp. 273.
- [28] P. Hammond and M. Suttie, Human Mutat., vol. 33, (2012), pp. 817.
- [29] M. Medved and M. Percy, Journal on developmental disabilities, vol. 8, (2001), pp. 75.
- [30] K. A. Ferguson, T. Ono, A. A. Lowe, C. F. Ryan and J. A. Fleetham, Chest, vol. 108, (1995), pp. 375.
- [31] R. Fernandez, L.A. Hernández, E. López, J. Alcázar, G. Portillo and D. T. Toledano, Proceedings of 6th Language Resources and Evaluation Conference, LREC, (2008) Marrakech.
- [32] J. L. Tobin and P. L. Beales, Genet. Med., vol. 11, (2009), pp. 386.
- [33] I. Lorda-Sanchez, C. Ayuso, R. Sanz and A. Ibanez, J. Med. Genet., vol. 38, (2001), pp. E14.
- [34] J. D. Marshall, S. Beck, P. Maffei and J. K. Naggert, Eur. J. Hum. Genet., vol. 15, (2007), pp. 1193.
- [35] B. J. Lee, J-H. Do, and J. Y. Kim, J. Biomed. Biotechnol., vol. 2012, (2012), pp. 9.
- [36] WHO Expert Consultation, Lancet, vol. 363, (2004), pp. 157.
- [37] U. M. Fayyad and K. B. Irani, 13th Proceedings of the International Joint Conference on Uncertainty in Artificial Intelligence, vol. 2, (1993), pp. 1022.
- [38] P. Perner and S. Trautzsch, Advances in Pattern Recognition, in Lecture Notes in Computer Science 1451, Edited A. Amin, D. Dori, P. Pudil, and H. Freeman, Sydney, Springer Verlag, vol. 1451, (1998), pp. 475– 482.
- [39] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, SIGKDD Explor. Newsl., vol. 11, (2009), pp. 10.
- [40] A. Ben-David and E. Frank, Expert Syst. Appl., vol. 36, (2009), pp. 5264.

- [41] G. D. Fiol and P. J. Haug, J. Biomed. Inform., vol. 42, (2009), pp. 82.
- [42] T. Fawcett, Pattern Recogn. Lett., vol. 27, (2006), pp. 861.
- [43] D. V. Cicchetti and A. R. Feinstein, J. Clin. Epidemiol., vol. 43, (1990), pp. 543.
- [44] A. Ben-David, IEEE Intell. Syst., vol. 21, (2006), pp. 68.
- [45] T. Douchi, S. Yamamoto, S. Nakamura, T. Ijuin, T. Oki, K. Maruta and Y. Nagata, Maturitas, vol. 29, (1998),
- pp. 247. [46] M. Skrzypczak and A. Szwed, Homo, vol. 56, (**2005**), pp. 141.
- [47] M. Skrzypczak, A. Szwed, R. Pawlińska-Chmara and V. Skrzypulec, Anthropol. Rev., vol. 70, (2007), pp. 3.
- [48] S. S. Guo, C. Zeller, W. C. Chumlea and R. M. Siervogel, Am. J. Clin. Nutr., vol. 70, (1999), pp. 405.
- [49] A. S. Dobs, T. Nguyen, C. Pace and C. P. Roberts, J. Clin. Endocr. Metab., vol. 87, (2002), pp. 1509.
- [50] C. M. Lee, R. R. Huxley, R. P. Wildman and M. Woodward, J. Clinical. Epidemiol., vol. 61, (2008), pp. 646.
- [51] Q. Wang, C. Hassager, P. Ravn, S. Wang and C. Christiansen, Am. J. Clin. Nutr., vol. 60, (1994), pp. 843.
- [52] J. P. Porter and K. L. Olson, Arch. Facial Plast. Surg., vol. 3, (2001), pp. 191.

Appendix Table. Features and brief descriptions quoted from our previous paper [35]

Feature	Description					
FD $n_1 n_2$	Distance between point n_1 and n_2 in frontal and profile photographs					
FDH $n_1 n_2$	Horizontal distance between n_1 and n_2 in frontal and profile photographs					
FDV $n_1 n_2$	Vertical distance between n_1 and n_2 in frontal and profile photographs					
FA n_{1} n_{2} n_{3}	Angle of three points n_1 , n_2 , and n_3 in frontal and profile photographs					
FA $n_{1-} n_2$	Angle between the line through 2 points n_1 and n_2 and a horizontal line in frontal and profile photographs					
FR02_psu	FD(17,26)/FD(18,25)					
FR03_psu	(FD[18,25] + FD[118,125])/FDH(33,133)					
FR05_psu	FDH(33,133)/FD(43,143)					
FR06_psu	FDH(33,133)/FDV(52,50)					
FR08_psu	FD(43,143)/FDV(52,50)					
FArea02	Area of the contour formed by the points 53,153, 133, 194, 94, 33, and 53 in a frontal photograph					
FArea03	Area of the contour formed by the points 94, 194, 143, 43, and 94 in a frontal photograph					
Fh_Cur_Max_Distan	Distance between points 7 and 77 in a profile photograph					
Fh_Angle_ $n_1 n_2$	Angle between the line through 2 points n_1 and n_2 and a horizontal line in frontal and profile photographs					
Nose_Angle_ n_1 _ n_2	Angle between the line through 2 points n_1 and n_2 and a horizontal line in frontal and profile photographs					
Nose_Angle_ n_1 _ n_2 _ n_3	Angle of 3 points n_1 , n_2 , and n_3 in frontal and profile photographs					
SA n_{1} n_{2}	Angle between the line through 2 points n_1 and n_2 and a horizontal line in frontal and profile photographs					
Fh_Cur_Max_R79_69	FD(77,9)/FD(6,9)					
Nose_Area_ n_1 _ n_2 _ n_3	Area of the triangle formed by 3 points n_1 , n_2 , and n_3 in a profile photograph					
$\mathrm{EUL_L_}el1 \sim \mathrm{EUL_L_}el7$	Slope of the tangent at a point $(el1 \sim el7)$ in a frontal photograph					

Feature	Description
EUL_L_DH	FDH(<i>el</i> 1, <i>el</i> 7)
EUL_L_MAX	FDH(el1, el _{max})
EUL_L_RMAX	$FDH(el1, el_{max})/FDH(el1, el7)$
EUL_L_Sb	FDV(<i>el</i> 7, <i>el</i> 1)/FDH(<i>el</i> 7, <i>el</i> 1)
EUL_L_St	$FDV(el_{max}, el7)/FDH(el_{max}, el7)$
EUL_L_Sf	$FDV(el_{max}, el1)/FDH(el_{max}, el1)$
EUL_L_Khmean	Average curvature of the left (or right) upper eyelid contour in a frontal photograph
EUL_L_khmax	Maximum curvature of the left (or right) upper eyelid contour in a frontal photograph
EUL_R_er1~ EUL_R_er7	Slope of the tangent at a point $(er1 \sim er7)$ in a frontal photograph
EUL_R_DH	FDH(er1,er7)
EUL_R_MAX	$FDH(er1,er_{max})$
EUL_R_RMAX	$FDH(er1,er_{max})/FDH(er1,er7)$
EUL_R_Sb	FDV(er7,er1)/FDH(er7,er1)
EUL_R_St	$FDV(er_{max}, er7)/FDH(er_{max}, er7)$
EUL_R_Sf	$FDV(er_{max}, er1)/FDH(er_{max}, er1)$
EUL_R_Khmean	Average curvature of the left (or right) upper eyelid contour in a frontal photograph
EUL_R_khmax	Maximum curvature of the left (or right) upper eyelid contour in a frontal photograph
PDH44_53	Horizontal distance between n_1 and n_2 in frontal and profile photographs