
International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

59

Bioworks: A Workflow System for Automation of Bioinformatics

Analysis Processes

Youngmahn Han

Supercomputing Center, Korea Institute of Science and Technology Information

Daejeon, South Korea

hans@kisti.re.kr

Abstract

Over the past decade, the rapid development of high-throughput technologies has lead to

an explosive growth in biological information. Many molecular biology fields involve in-

silico experiments using bioinformatics applications. A workflow can be well-defined model

for bioinformatics analysis processes to be performed as a chain of interlinked data process

tasks. We have developed a client/server-based workflow system called Bioworks,

supporting large-scale analysis through the high performance cluster computing resources.

In this paper, we highlight implementation methods in Bioworks, for meeting key

requirements of effective workflow systems for bioinformatics analysis processes.

Keywords: bioinformatics; workflow; provenance; data integration; large-scale analysis;

automation

1. Introduction

In the post-genomic era, the development of high-throughput technologies has led to an

explosive growth in biological information. Furthermore, emerging Next Generation

Sequencing (NGS) technology brought unprecedented volumes of DNA sequence data [1].

Bioinformatics is the application of statistics and computer technology to mange and

interpret these massive data. Currently, many molecular biology fields, including genomics,

transcriptomics, proteomics, metabolomics, and pharmacogenomics involve in-silico

experiments using bioinformatics applications.

Many bioinformatics analysis processes are performed as a chain of interlinked data

process tasks. A pipeline or “workflow” can be a well-defined model for bioinformatics

analysis processes, , with a specific structure defined by the topology of data-flow

interdependencies, and a particular functionality arising from the data transformations

applied at each step [2]. A typical example for bioinformatics workflow given in [3]

describes chained tasks involved in determining the protein family of a protein that

corresponds to a given DNA sequence as shown in Figure 1.

Workflow systems emerged as a glue to orchestrate heterogeneous biological information

and data analysis tools. They could be considered as a comprehensive approach for dealing

with the data explosion. This has led to the recent development of workflow management

systems (WMS) in bioinformatics experiments. Catalogs of bioinformatically-capable WMS

can be found in recent reviews [4-6].

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

60

Figure 1. One of bioinformatics workflows for searching for protein family

information from the given DNA sequence fragment.

Taverna [7] from EBI is the best-known standalone WMS for bioinformatics experiments.

It was developed as a part of the myGrid project. Taverna provides the standardized

workflow markup language called SCUFL (Simple Conceptual Unified Flow Language), a

Java-based workbench to be able to compose complex workflows from unit tasks accessing

both remote and local processors of various kinds, to launch execution of workflows and to

display different types of results, including text, web pages and various kinds of images and

diagrams. Taverna also provides special local processors to allow for executing Java-based

dynamic scripts and R scripts. The web portal called myExperiment provides useful

environments to share Tarverna‟s workflows.

Biopipe [8] is a workflow framework or software library which allows researchers to

create pipelines for bioinformatics analysis pipelines based on Perl and BioPerl, to execute

pipelines on clusters. Biopipe currently does not provide user-friendly interfaces for compose

pipelines. It rather aims to allow researchers to focus on protocol design to plug in different

Perl modules for easy bioinformatics pipelines.

Triana [9] is a problem solving environment developed at Cardiff University that

providing graphical interfaces to enable the composition of scientific applications. Triana

environment is designed as a series of pluggable components, which can easily be integrated

with other systems.

Kepler [10] is one more scientific WMS based on the Ptolemy II system [R47] developed

by the Electrical Engineering community at UC Berkeley for circuit design and simulation

and has been used in various scientific domains, including bioinformatics, computational

chemistry. Kepler adopts actor-oriented modeling for workflows. A workflow is considered

as a composition of independent component called actors. Communication between actors

occurs through interfaces called input/output ports. In addition of the ports, actors have

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

61

parameters, which configure and customize the behavior. Actors, or more precisely their

ports, are connected to one another via channels. The execution of actors is independently

triggered by the availability of inputs of upstream actors. Kepler also provides support for

Web services and Grid extensions.

BioWMS [11] is a WMS that supports, through a web-based interface, the definition, the

execution and the results management of a bioinformatics experiment. BioWMS has been

implemented over an agent-based middleware. It dynamically generates, from a user

workflow specification, a domain-specific, agent-based workflow engine.

There are mainly required considerations to effectively implement these WMS as follows:

 There are many bioinformatics tools and databases literally developed by

geographically distributed organizations, research institutes, or related industries

across the world. Some make their tools web accessible; some provide command line

based standalone programs or software libraries. Standardization and extensible

integration of distributed tools is necessary for providing seamless access to them.

 Bioinformatics tools are highly heterogeneous in their input/output data types. These

heterogeneity leads to be difficult to make links among tool tasks according to data

flow. A WMS should provide flexible integration methods to resolve data type

heterogeneity.

 Workflow scalability is important to help in large-scale data analysis like NGS data

analysis, protein interaction network analysis, and docking simulation through high

performance computing resources, e.g., running a large number of parallel jobs on a

cluster computer. However, most research groups seem to be impossible to maintain

such computing resources due to the high cost of computer hardware and the lack of

professional human resources to manage and utilize them.

 Reproducibility of scientific analyses and processes is at the core of the scientific

method, in that it enables researchers to evaluate the validity of each other‟s

hypothesis and to repeat techniques and analysis methods to obtain scientifically

similar results. In order to support reproducibility, WMS should capture and generate

provenance information as a critical part of the workflow-generated data. Provenance

information can be referred as a historical metadata that provides explanations on how

a particular intermediate result data has been generated from the given input data [2].

In order to meet above required considerations, a bioinformatically-capable WMS called

Bioworks has been developed under the project funded by KISTI. Bioworks is implemented

in Java, and based on client/server architecture adopting Java Web Start technology [12] and

Web Services for data transmissions. Bioworks has been tested on JRE (Java Runtime

Environment)-installed platforms including Window, Linux and Mac.

Here, we present implementation methods to cope with the above requirements in

Bioworks. Next Section 2 introduces the Java-based client/server architecture. Section 3

presents how distributed and assorted tools are integrated and their heterogeneity in tool

input/output data types is resolved. Workflow execution model is presented in Section 4.

Implementation methods for data management and capturing workflow-based provenance

information necessary for reproducibility are presented in Section 5. Section 6 includes a

summary of the features of Bioworks and direction for future work.

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

62

2. Client-Server Architecture

Figure 2. The Client/server-based System Architecture of Bioworks

As shown in Figure 2, Bioworks is based on client/server architecture. Workflows are

executed at the server side on high performance cluster computers. As a consequence, this

architecture is especially useful for large-scale analysis taking long time, requiring high

performance computing. Users can monitor the status of workflow execution through the

client program anywhere, anytime. The Bioworks client program provides the user-friendly

graphical user interface (GUI) which enables users to easily compose workflows for complex

analysis. Especially, by adopting Java Web Start, it can be automatically installed and

upgraded via web. The GUI mainly includes Workspace Explorer, User Data Editor, Message

Console, and Result Browser as shown in Figure 3:

 Workspace Explorer is a GUI component which is similar with Windows Explorer,

which allows users to hierarchically explore and manage their user data including

workflows, tools, and text-based biological data such as sequences, alignments, and

molecular interaction networks.

 User data Editor provides a tabbed interface which contains different edit interfaces

corresponding to each user data. For example, Workflow Editor is a tab item which

provides user-friend interfaces to allow users to easily edit their own workflows.

 Message Console allows users to monitor information related to the execution status

of their workflows.

Figure 3. Main GUI components of the Bioworks client program including

Workspace Explorer, User data Editor, and Message Console

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

63

The workflow composed by the client program is transferred as a Java object model via

Web Services and stored to the server. Once the execution of the workflow is requested to

the server, the workflow execution enactor is activated, fetches the workflow from the

database, and executes the workflow. Intermediate results are stored in the database or file

system. The user can fetch each result and inspect them before the entire workflow execution

is completed. This is particularly useful for long-running workflows by allowing an early

evaluation of results.

In Bioworks, the object data transmission between client/server is archived via Web

Services. Web Services machine-oriented network services based on XML, usually

communicating by using the Simple Object Architecture Protocol (SOAP). WS have already

been implemented by many institutes and service providers in the biomedical field [13]. WS

provide a standardized programming interface so that software tools can effectively make

access to information and services. This also allows the extensible client application

environment, i.e., the client program can be implemented in various programming

environments like the Java standalone program, web applications without any change of the

server program.

3. Bioinformatics Tool Integration

There are many bioinformatics tools and databases literally developed by geographically

distributed organizations, research institutes, or related industries across the world. They

make their tools in various access methods including command-line based standalone

programs, software libraries, and Web services. Standardization and extensible integration of

distributed tools is necessary for providing seamless access to them. Figure 4 shows the class

diagram for the integration of tools with several different access methods. BioTool is the

abstract base class which defines abstract methods like beforeExecute, execute, afterExecute

to execute the mapped tool. Those methods are implemented in child classes of the BioTool

including CommandLineBioTool, WebServicesBioTool, and ScriptBioTool for command line

tools, Web Services tools, and dynamic script tools respectively.

In order to resolve the heterogeneity in tool input/output data types, an ontology is served

as a common data type model for tool input/output format in Bioworks. An ontology is the

explicit and formal specification of conceptualization in a given domain of interest. It

consists of a set of concepts expressed by using a controlled vocabulary and the relationships

among these concepts. Ontologies can add semantic metadata to the resources, improve data

accessibility and support interoperability among resources.

Ontologies are widely used for the semantic integration of heterogeneous bioinformatics

tools [3, 14-17]. In Bioworks, hierarchical ontology terms like sequences, alignments,

protein structures, and molecular interaction networks are provided for common data type

models of tool inputs/outputs. During workflow construction, two tools can be linked if the

output‟s ontology term of the upstream tool has „is a‟ relationship with the input‟s ontology

term of the downstream tool. The Jena [18] API is used for handling the ontology definition

file and validating links.

For type-mismatched link, Bioworks allows users to create a user-defined script for

mandatory converting the output data of the upstream task. These scripts can be written by

various programming languages including Java, Python, and Ruby in Bioworks. This highly

increases the flexibility in composing the workflow from heterogeneous tools.

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

64

Figure 4. The object-oriented class diagram for the integration of tools with

different access methods.

4. Workflow Execution Model

The directed graph, either acyclic (DAG) or the less used cyclic (DCG), is the most

common workflow representation. Condor‟s DAGMan is commonly used DAG format for

specifying workflows of dependent jobs. It is the underlying execution workflow

representation for Pegasus. Taverna uses an XML-based DAG format called SCUFL. Triana

uses a DCG format of its own although it is able to import and export from different formats

including DAGMan and the Virtual Data Language [19]. Kepler uses yet another directed

graph representation MOML (MOdel Markup Language) inherited from Ptolemy II [20].

In Bioworks, the workflow is represented as the DAG that tasks, links among them are

regarded as vertices, edges respectively. Tasks are sequentially executed along the data flow

in according with the breadth first search for the graph. The start task becomes the vertex

which has no incoming edges. A task can be executed once its upstream tasks are completed;

thereby their outputs are set to inputs of the task. The data transfer in a link involves the

validation of transition condition and the data conversion. Once each task is executed, the

mapped tool is invoked and executed in a variety of ways including command-lines, Web

services, and run-time scripts.

For supporting large-scale analysis, command-line tools are executed on the cluster

computing resources that are scheduled by the batch queue system, e.g. the Portable Batch

System (PBS) as shown in Figure 5.

The workflow execution enactor submits to the batch queue system as a scheduled job for

the execution of command-line tools. The batch queue system executes sequentially each job

on clustered computing resources. Job statuses and results are synchronized with task

statuses and results in the database by the JobMonitor, respectively. This allows users to

obtain statuses and intermediate results of workflow‟s tasks in real-time through the client

program.

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

65

Figure 5. The workflow execution flow supporting large-scale analysis through

high performance cluster computers.

User-defined script tools are necessary for making links among heterogeneous tool tasks;

for example, it needs to manually implement the tool for obtaining high scored sequences

from results of the BLAST similarity search. Bioworks provides the dynamic script launcher

that can dynamically execute user-defined scripts developed in various languages including

Java, Ruby and Python. The dynamic execution of these user-defined scripts must take care

of security issues such as abnormal server shutdown, access to confidential resources. The

script launcher uses the SecurityManager provided by the Java Security Architecture to

control access of script codes to resources of the server. The Security Manager controls

access of operations in client codes to specific computing resources. Once the script is

executed under the control of the SecurityManager, access to specific resources is only

allowed for operations granted by the security policy that is defined in a standardized text file.

5. Data Management and Provenance

In order to capture workflow-based provenance information, data models related to the

workflow including workflow execution metadata, generated results, and input data are

historically stored into the database in Bioworks. The object-oriented class diagram for

implementation of the workflow-based data models represented as a DAG is shown in Figure

6.

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

66

Figure 6. The object-oriented class diagram for workflow data models

Bioworks uses the rational database management system (RDBMS) like MySQL. This

leads the inconsistency between object-oriented data models at the application layer and

rational data models at the persistence layer; thereby the complexity of the implementation of

the whole system is dramatically increased. In order to resolve this inconsistency, several

programming techniques like the Object-relation mapping (ORM) have been developed for

the automation to convert the object data model to the relational data model and vice versa.

In Bioworks, the Java-based ORM engine like Hibernate [21] is used for implementation of

the object-oriented persistent layer.

The Hibernate allows for the automation of the ORM through XML-based definitions of

object models.

6. Conclusion

Bioinformatics is the application of statistics and computer technology to mange and

interpret huge amount of biological data generated from rapidly evolving high-throughput

instruments in molecular biology fields. Workflow systems have emerged as a glue to

orchestrate heterogeneous biological information and data analysis tools. They could be

considered as a comprehensive approach for dealing with the data explosion.

There are commonly required considerations to effectively implement WMS like

standardization and extensible integration of distributed tools to provide seamless access to

them, flexible integration methods to resolve data type heterogeneity, workflow scalability to

support large-scale data analysis like NGS data analysis, and capturing provenance

information for the scientific reproducibility. In order to meet these requirements, a

bioinformatically-capable WMS called Bioworks has been developed. In this paper,

implementation methods in Bioworks to cope with the above requirements were presented.

Bioworks is implemented in Java, and based on client/server architecture adopting Java Web

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

67

Start technology and Web Services for data transmissions. Bioworks supports large-scale

analysis through high performance cluster computers, and provides workflow-based

provenance information for the reproducibility and traceability. Future works will focus on

enhancing the system performance for supporting large-scale analysis, and providing

workflow-based environments for collaborative researches through Bioworks.

Acknowledgment

The author would like to acknowledge the Bioinformatics team of the Supercomputing

Center: Seok Jong Yu, Insung Ahn, and Yongseong Cho; and Young-Hwan Bang who has

assisted me one way or another. This work is supported by the Korea Institute of Science and

Technology Information.

 References

[1] Elaine R. Mardis, “The impact of next-generation sequencing technology on genetics”, Trends in Genetics,

vol. 24(3), pp. 133-141, 2008.

[2] Yolanda Gil, et al., “Examining the Challenges of Scientific Workflows”, IEEE Computer, vol. 40, pp. 24-32,

2007.

[3] Malika Mahoui, et al., “A Dynamic Workflow Approach for the Integration of Bioinformatics Services”,

Cluster Computing, vol. 8, pp. 279–291, 2005.

[4] Paolo Romano, “Automation of in-silico data analysis processes through workflow management systems”,

Briefings in Bioinformatics, vol. 9, pp. 57-68, 2007.

[5] Abhishek Tiwari, Arvind K.T. Sekhar, “Workflow based framework for life science informatics”,

Computational Biology and Chemistry, vol. 31, pp. 305-319, 2007.

[6] Ewa Deelman, Dennis Gannon, et al., “Workflows and e-Science: An overview of workflow system features

and capabilities”, Future Generation Computer Systems, vol. 25, pp. 528-540, 2009.

[7] Oinn T, Addis M, Ferris J, et al. “Taverna: a tool for the composition and enactment of bioinformatics

workflows”, Bioinformatics, vol. 20: pp. 3045–54, 2004.

[8] Shawn Hoon, Kiran Kumar Ratnapu, Jer-ming Chia, et al., “Biopipe: A Flexible Framework for Protocol-

Based Bioinformatics Analysis”, Genome Res., vol. 13, pp. 1904-1915, 2003.

[9] Matthew Shields, Ian Taylor, “Programming Scientific and Distributed Workflow with Triana Services,

Concurrency and Computation: Practice and Experience (Special Issue: Workflow in Grid Systems), vol. 18,

pp. 1021–37, 2006.

[10] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, et al., “Scientific Workflow

Management and the Kepler System”, Concurr. Comput.: Pract. Exp., vol. 18, pp. 1039 – 1065, 2005.

[11] Bartocci E, Corradini F, Merelli E, et al., “BioWMS: a web based workflow management system for

bioinformatics”, BMC Bioinformatics, vol. 8, S2, 2007.

[12] Java WebStart Technology, http://www.oracle.com/technetwork/java/javase/overview-137531.html.

[13] Pieter B. T. Neerincx and Jack A. M. Leunissen, “Evolution of web services in bioinformatics”, Briefings in

Bioinformatics, vol. 6, pp. 178–188, 2005.

[14] Patricia G. Baker, Carole A. Goble, et al., “An ontology for bioinformatics applications”, Bioinformatics, vol.

15, pp. 510-520, 1999.

[15] C. Wroe, R. Stevens, C. Goble, A. Boberts and M. Greenwood, “A suite of DAML + OIL ontologies to

describe bioinformatics web services and data”, Int. J. Cooperative Inf. Syst., vol. 12 (2), pp. 197-224, 2003.

[16] Romano P, Bartocci E, Bertolini G, et al., “Biowep: a workflow enactment portal for bioinformatics

applications”, BMC Bioinformatics, vol. 8, S19, 2007.

[17] M.D. Wilkinson and M. Links, “BioMOBY: An open-source biological web services proposal”, Briefings in

Bioinformatics, vol. 3(4), pp. 331– 341, 2002.

[18] Jena, http://jena.sourceforge.net/

International Journal of Bio-Science and Bio-Technology

Vol. 3, No. 4, December, 2011

68

[19] I. Foster, J. Voeckler, M. Wilde, Y. Zhao, “Chimera: A virtual data system for representing, querying, and

automating data derivation”, in: 14th International Conference on Scientific and Statistical Database

Management, SSDBM'02, IEEE Computer Society Press, New York, pp. 37-46, 2002.

[20] Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G., “Ptolemy: a framework for simulating and prototyping

heterogeneous systems”, Int. J. Comput. Simul., vol. 4, pp. 155–182, 1994.

[21] Hibernate, http://hibernate.org

