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Abstract 
 

This paper aims to review the technique of Photometric Stereo (PS), with specific 

application to face recognition. PS is a method to rapidly estimate the three-dimensional 

geometry of a face (or any other Lambertian-like object) using several images with an 

identical viewpoint but varied illumination directions. The contributions of this paper are to 

(1) summarise the pros and cons of PS compared to alternative methods; (2) cover the theory 

of PS, in particular with respect to the related method of shape-from-shading; (3) outline 

some of the key extensions of PS to help overcome its weaknesses; and (4) discuss an 

application of PS for a practical and complete face recognition system. 
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1. Introduction 
 

Of all the biometric modalities researched and deployed to date, automatic face recognition 

[1] appears to be taking centre-stage at present. This is due to several reasons including its 

ability to operate without subject contact or interaction (as in fingerprint recognition, for 

example), the fact that the face of an individual is usually visible and that it requires minimal 

or no effort from the user. Face recognition is also a natural choice for biometrics applications 

as it is the most reliable modality used by humans; especially for familiar faces. However, 

automatic face recognition remains a major challenge for all but the most restricted set-ups: 

i.e. where all the face images are fully frontal with identical illumination and neutral 

expression. In an effort to relax these restrictions, many researchers have turned to three-

dimensional methods for data capture and recognition. 

A great deal of effort has been made in 3D (and 2D+3D fusion) methods for face 

recognition. An extensive list of approaches and their successes is provided in [2]. The state-

of-the-art methods for recognition would be expected to achieve at least 90% recognition on 

the Face Recognition Grand Challenge (FRGC) version 2 database [3], which contains a total 

of over 4000 images of over 400 subjects. However, the problem of reliable and convenient 

3D data capture for real practical biometric applications is a less studied area. 

This paper therefore aims to review one such method for 3D data capture: photometric 

stereo (PS). This is a technique that captures multiple 2D images of an object (e.g. a face) 

each with a different light source direction. The changes in pixel intensities at each point are 

used to deduce surface orientation. The orientations are typically represented by surface 

normals – vectors located at points on the target object that are oriented orthogonally to the 

surface at that point. Figure 1 illustrates the photometric stereo paradigm.  Figure 2 shows an 

example of the application of PS to a face, as used for example, in a face recognition system. 

The paper first defines PS in a generic (non-biometric) sense, before discussing why it is 

an attractive option for face recognition. Next, the theory of PS is presented with particular 
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emphasis on the concepts and various ways to view the technique. This is followed by a 

review of the extensions to PS and an explanation of its use in face recognition. The emphasis 

of the paper is on the general theory and application of PS, rather than to conduct detailed 

comparisons of specific methods. 

 

 

Figure 1: Illustration of a basic photometric stereo capture mechanism. From 
left: experimental arrangement, raw images, estimated surface normals, 

recovered depth. The algorithm in [4] was used here to calculate depth from 
surface normals. 

 

 

 

 
 

Figure 2: Example of using surface normals from PS for face recognition. 
 

2. Why use photometric stereo? 
 

We can divide this question in to two parts: (1) why 3D in general? and (2) why PS 

in particular? Figure 3 and Figure 4 illustrate some of the problems of 2D face recognition 

which can be, at least in part, overcome using 3D methods. Figure 3 shows two images of an 

individual taken on the same day, using the same camera and camera settings, with the same 

expression, pose and clothing and no changes to the background. The only change between 

the two images is the lighting. Nevertheless, the images appear completely different, which 

would confound most 2D recognition systems. However, since the 3D shape of the face has 

not changed, 3D methods would be unaffected by this difficulty. To illustrate the point 

further, Figure 4 shows the same individual, this time with the pose and expression changing, 

but the light source constant. Again, the images appear completely different. While both 2D 

and 3D methods suffer in these cases, 3D methods have the advantage that they are better 

able to correct for such changes [5]. 

Using 3D data for face recognition therefore allows for pose and illumination correction, 

which are two commonly cited problems with conventional 2D images. Better recognition 

rates have also been reported using 3D over 2D data [6], although this is not always replicated 

[7]. One reason for this may be the representation of the 3D data used in the analysis. 
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Gökberk et al. [8] performed recognition experiments using numerous 3D representations and 

they concluded that “...surface normals are better descriptors than the 3D coordinates of the 

facial points.” This is at odds with most research which uses the 3D point coordinates as a 

starting point. For this reason, PS – which calculates the surface normals directly – is 

particularly well suited to face recognition. 

 

  

Figure 3: Illustration of the 
difficulties caused by changing 

illumination on 2D face recognition. 
 

  

Figure 4: Illustration of the 
difficulties caused by changing 
pose and expression on 2D face 

recognition. 
 

One of the main challenges with current 3D recognition technology relates to the 

means by which the data are collected. A cheap and reliable method to rapidly capture 

the 3D face shape of an individual is highly desirable. At present, methods tend to be 

too expensive, of insufficient accuracy, too slow or too computationally demanding for 

commercial use. 

Table 1 shows an informal assessment carried out by the authors of the most common 

methods for shape reconstruction based on the current literature. The methods described 

are as follows: 

1. Shape-from-shading (SFS) [9]. The shading patterns of a single image are used to 

deduce geometry. 

2. Geometric stereo (GS) [10]. Triangulation between two or more viewpoints is used 

to calculate depth. 

3. Laser triangulation (LT) [11]. Laser light is projected onto the target object and the 

reflected light pattern is used for triangulation line-by-line. 

4. Projected pattern (PP) [12]. Two cameras are used, as in geometric stereo, but an 

intensity pattern is projected onto the target object to aid triangulation.  

5. Photometric stereo (PS) [13]. Two or more images are taken (often in sequence), 

where the light source direction changes between views. 

The methods in Table 1 are measured against six essential criteria for face 

recognition applications. Note that PS performs well or average in four of these criteria, 

although there is room for improvement terms of accuracy and practicality. However, 

the table refers to the most basic form of PS. Later in this paper we present work that 

goes some way to improve both these shortcomings. 
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Table 1: Comparison of reconstruction methods. NB. Practicality refers to the 
ease by which the methods can be commercially deployed. The abbreviations 

are defined in the list above. 
 

 Cost Computation Accuracy Resolution Ease of 

Calibration 

Practicality 

1. SFS Good Average Poor Good Good Good 

2. GS Good Good Variable* Variable* Good Average 

3. LT Average Good Average Average Good Poor 

4. PP Poor Poor Good Good Average Average 

5. PS Good Good Average Good Good Average 

* Depends on correspondence density 

 

3. Theory of shape-from-shading and photometric stereo 
 

The mathematics of photometric stereo are covered in detail elsewhere in the literature 

[13], [14]. Here we concentrate primarily on the concepts and its relation to SFS. To start, we 

make the following assumptions [14]: 

1. No cast/self-shadows, inter-reflections or specularities (mirror-like reflections) 

2. Greyscale/linear imaging 

3. Distant and uniform light sources 

4. Orthographic projection 

5. Static surface 

6. Lambertian reflectance  

We commence by assuming that the surface is reflecting light according to Lambert's Law. 

This assumes that light is reflected by the material equally in all directions. It can be seen in 

the literature that this is a reasonably good approximation for human skin [15]. In physics 

terms, we can state that 

          (1) 

where   is the emittance (reflected power per unit area) from the surface,   is the albedo 

(ratio of reflected to incident irradiance at normal incidence),   is the irradiance (incident 

power per unit area) and   is the angle between the light source vector and the surface 

normal. For a surface    (   ), the surface normal,  , can be written. 

 

  [
  

  
   
  

  
     ]

 

 [      ]  (2) 

If we let the light source vector be    [        ]
 , then we can write 

 
               √  

      √  
    

        (3) 

Substituting (1) and (3) we have 

 

    
         

√  
      √  

    
   

 

(4) 
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In computer vision, we usually re-write this equation as 

 

   
         

√  
      √  

    
   

 

(5) 

where   is the pixel brightness measured by the camera. Here, we have assumed a linear 

camera response and have “absorbed” the incident light irradiance and camera response 

constant into the albedo. For an 8-bit image, this means that both   and   fall into the interval 

[     ]. Typically, we assume that the light source vector    is known, meaning that from a 

single pixel measurement,  , we have one equation with three unknowns (i.e.  ,   and  ). 

Figure 5 shows the range of solutions to (5) for given values of   and  . For the first case, 

for example, with a given measurement of   and for a particular (unknown) value of  , the 

solution to the equation lies on a circle in   -space. In fact, the solution to the equation in 

general lies on a conic section as illustrated by Figure 6. Here, we see that the solution can be 

regarded as an intersection between a cone (whose axis lies on the light source vector and 

whose apex is at the surface point) and the image plane. 

A third representation can be seen in Figure 7 where the solution lies on the surface of a 

sphere. This figure also relates SFS to PS in that the latter technique uses multiple light 

sources to fully constrain the surface normal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Solutions to (5) for   and  . The left-hand example shows the case where 

       , while for the right-hand case,          . The rendered images 
show a Lambertian sphere illuminated under these particular light source 

directions. 

Figure 6: Representation of the solution to (5) as a conic section (in this case 
an ellipse). The apex of the cone lies at the point on the surface, while its axis 

lies along the light source vector. 
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Usually, PS represents Lambert’s Law (1) as a vector equation so that 

 

        [

  
  
  
]
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] 
(6) 

where   is the unit normal vector (as opposed to n which is the surface normal represented by 

surface derivatives). A three-source PS arrangement can then be written in a matrix equation: 
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]

  

[

  
  
  

]   [

  
  
  

]  [

  
  
  
] 

(7) 

Performing substitutions of the above equations yield the following equations for the 

unknowns in (5): 

 

   
  
  
     

  

  
   √  

    
    

  
(8) 

It should be noted at this point that if the three light source vectors are co-planar then (8) 

becomes insoluble because the light source matrix in (7) becomes non-singular. 

4. Advanced Methods in PS 
 

Of the six assumptions listed at the start of Section 3, perhaps the most studied are the 

assumption that no shadows are present and the assumption of Lambertian reflectance. This 

section does not aim to present an exhaustive literature review of PS methods aimed to 

address these issues, but points towards the main approaches of overcoming them. 

One means to minimize the effects of shadows and specularities is to introduce a fourth 

light source (or more). This allows (7) and (8) to be applied four (or more) times: once for 

each combination of three light sources. This gives four estimates for the surface normal at 

each point. We can then say that where the discrepancy between these estimates is too great 

Figure 7: Representing the solution to (5) on a sphere for three different light 
sources. Use of multiple sequential light sources are able to fully constrain the 

normal, as in PS. 
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to be accounted for by camera noise [16], [17] then one of the sources should be omitted from 

the calculation in order to minimize the error between the remaining three. 

Another approach that goes some way to reduce shadows, specularities and non-

Lambertian reflectance [18] uses the observation that, due to the linear dependence of the 

light source vectors, 

 
                      (9) 

where   ,   ,    and    are constants. If we multiply (9) by the albedo and take the scalar 

product with the surface normal, we have 

 

 
   (    )     (    )     (    )     (  )     (10) 

                        
(11) 

Where condition (11) is satisfied (subject to the confines of camera noise), the pixel is not 

specular, not in shadow and follows Lambert’s Law. 

Finally, we mention a method that not only overcomes the non-Lambertian assumption, but 

also reduces the impact of non-uniform illumination [19]. The method involves imaging the 

target in the presence of a “gauge” object, which is typically a sphere whose reflectance 

properties are assumed to be identical to the target object. Using   light sources, intensity 

vectors are acquired for both the target (scene) and the gauge: 

 

 

 (     )  [  
(     )

    
(     )

    
(     )

]
 
   

 (     )  [  
(     )

    
(     )

    
(     )

]
 

 

(12) 

The task then is presented as finding a mapping between the normals   on the target with 

those   on the gauge: 

 

 
 (     )[ ]   (     )[ ]  (     )[ ]   (     )[ ] (13) 

The interested reader is referred to the following papers for more approaches to PS in 

biometrics and in general: [20], [21], [22], [23], [24], [25], [26], [27]. 

 

6. The PhotoFace recognition system 
 

Figure 8 shows the hardware from [15], which we call the “PhotoFace” system. The device 

uses a Field Programmable Graphics Array (FPGA) to synchronize a camera, operating at 200 

frames per second, to four separate flash lights. The reconstruction in Figure 2 was captured 

using this device. 

The device in Figure 8 has been used to capture a new face database for use by the 

international research community [28]. It was placed at the entrance to a busy workplace and 

employees were simply told to “walk through the archway”. The aim was to generate a 

database of natural poses where participants were not required to pose for the camera or have 

a particular type of expression. This is in contrast to most existing test databases, such as the 
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well-used FRGC database [3]. Furthermore, PS inherently allows any combination of 2D 

data, 3D data or surface normals to be used for recognition. 

 

 

 

 

 

 

 

 

The PhotoFace database consists of a total of 1,839 sessions of 261 different subjects. 

Using a range of existing methods for recognition in [28], we easily acquired rank 1 

recognition rates of ~85% on this database and equal error rates of 5% for verification (the 

rate corresponding to equal values of false acceptance and false rejection). Early results 

suggest that higher recognition rates are possible using novel dimensionality reduction 

techniques [29] or the ridgelet transform [30]. For example, in a recent adaptation of [29], we 

acheive over 96% recognition for a subset of 40 frontal images when compressing each face 

representation to a mere 61 dimensions via a variance analysis of the data. Expanding on the 

methods in [30], we represent faces in the domain of the ridgelet transform and obtain 100% 

recognition on galleries of 60 subjects, provided sufficient training data is used. It is intended 

that these recent developments will appear in the literature shortly. 

 

6. Conclusion 
 

This paper has presented an overview of PS and its application to automatic face 

recognition. It has been demonstrated that a PS device offers many advantages over other 

face-shape capture devices in that it is competitive in terms of cost, computational efficiency, 

resolution capabilities and ease of calibration. The paper showed how its shortcomings in 

terms of accuracy can be reduced using certain extensions of PS and its practicality can be 

improved using the high-speed camera set-up of the PhotoFace system. In future work, we 

hope to improve the system so that near infrared illumination is used so avoid the obtrusive 

flashing lights. We have already proven the principle of this and indeed shown that the 

surface reconstructions are marginally more accurate under near infrared illumination 

compared to visible light [15]. We also aim to demonstrate how the surface normals can be 

used to aid expression analysis. 
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