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Abstract 
 

Segmentation of brain tissues is one important process prior to many analyses and 

visualization tasks for magnetic resonance (MR) images. Clustering is one of the 

unsupervised techniques for doing the segmentation. Fuzzy clustering techniques have not 

been applied for single-channel MR images although they have shown promise in 

segmentation of multichannel MR images. Unfortunately, MR images always contain 

significant quantity of noise caused by operator performance, equipment and the 

environment. This noise could lead to serious inaccuracies in the segmentation result. We 

conduct the research in measuring the performance of fuzzy clustering algorithms over crisp 

clustering algorithms in different noise level for single-channel MR image. To validate the 

accuracy and robustness of the result of clustering algorithms we carried out experiments on 

simulated MR brain scans. The performance of algorithms is analyzed form three measures 

namely: number of iterations required, misclassification error and per class (tissue) 

misclassification error in different noise level present in the single-channel MR image. As, 

clustering is done based on some distance measure, we also compare the performance of 

clustering algorithms based on distance norm used for it. 
 

Keywords: Single-channel MR image, segmentation, fuzzy unsupervised clustering 

algorithm, brain tissue classification. 
  

1.  Introduction 
 

Magnetic resonance imaging (MRI) or nuclear magnetic resonance imaging (NMRI) [1, 

2] is primarily medical imaging technique used in radiology to visualize internal structure of 

the body. MRI provides much greater contrast among different soft tissues of body. This 

ability makes it useful for neurological, musculoskeletal, cardiovascular and oncological 

imaging [3]. Brain matter could be generally categorized as White Matter (WM), Gray Matter 

(GM) and Cerebrospinal Fluid (CSF) [4, 5]. Most of brain structures are anatomically defined 

by the boundaries of these tissue classes [4–6]. So we need a method of segmenting tissues in 

classes. It is an important step for quantitative analysis of the brain and its anatomical 

structures. Brain tissue classification is also an important step for detection of various 

pathological conditions affecting brains parenchyma [7–9]. It is also used for surgical 

planning and simulation [10] and three dimensional visualization for diagnosis and detection 

of abnormalities [11, 12]. It is also useful in the study of brain development [13, 14] and 

human aging [15, 16]. 

In MR imaging, images are produced based on intensities achieved by three tissue 

characteristics namely: T1 relaxation time, T2 relaxation time and proton density (PD). The 

images obtained by these properties are known as T1- weighted MR images, T2-weighted 

MR images and proton density MR images respectively. The effect of these parameters on 
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image can be varied based on the adjusting the parameters like time to echo (TE) and time to 

repeat of the pulse sequence [17]. By using different parameters or number of echoes in the 

pulse sequence, a multitude of nearly registered images with different characteristics of same 

object can be achieved. If only a single MR image of the object is available such an image is 

referred to as single-channel (single-echo) image, and in case when number of MR images of 

the same object at same section are obtained, they are referred as multi-channel (multi-

spectral or multi-echo) images [18]. For a given scanning time, the voxel sizes achieved in 

multi-spectral images are larger than those achieved with single-channel images. This ability 

of finer voxel sizes makes single-channel image more suitable for precise and accurate 

quantitative measurements of anatomical structures and tissues. Nevertheless multichannel 

image provides more information at given voxel size than single-channel image [17, 18]. 

Most of segmentation techniques have relied on multi-spectral characteristics of MR 

images while a few studies have reported segmentation form single-channel MR images [19]. 

According to [19], Fuzzy segmentation techniques have not been applied for single-channel 

image segmentation although they have shown promise in segmentation of multi-channel 

images [20–22]. 

Clustering is the process of classification of objects, based on similarities among them. 

The backbone of clustering is to expose the hidden structure for the purpose of classification 

or data modeling. The partition to make the cluster can be crisp (hard) or fuzzy (soft). 

Macqueen [23] introduced the K-means algorithm to cluster numerical data in which each 

cluster has center called the mean [24]. The distance norm used in this algorithm is standard 

euclidean distance norm. K-medoid algorithm uses most centrally located data point (medoid) 

in the cluster to be the cluster center. The distance norm used in this algorithm is also 

standard euclidean distance norm. Both algorithms are hard partitioning clustering algorithms. 

Dunn [25] defined an objective function called C-means functional; the clustering algorithm 

based on its minimization is known as fuzzy C-means. The distance norm used in this 

algorithm is also standard euclidean distance norm. Gustafson-Kessel [26] extended the 

standard fuzzy C-means algorithm by employing an adaptive distance norm. The distance 

norm used in this algorithm is generalized squared mahalanobis distance norm. The fuzzy 

maxi-mum likelihood estimate (FMLE) clustering employs the distance norm based on fuzzy 

maximum likelihood estimate proposed by [27], the clustering algorithm based on this 

distance norm is described by Gath-Geva [28]. 

In the Section 2, we present the clustering algorithms used in this work. In section 3 the 

techniques for validation of the clustering results used in this work are described. Then the 

results of these algorithms are described in the Section 3. Finally, the conclusion of our 

research is described in the Section 4. 
 

2. Material and Method 
 

Clustering is the process of classification of objects. This is done based on the similarities 

among the data points or objects. It is an unsupervised method of classification, as we do not 

have any prior information about classes. Clustering is meant to expose the hidden structure 

for the purpose of classification or data modeling. Clustering is done by making the partition 

among the data points. The aim of clustering on the data is to make partitioning among the 

data points which have dissimilar characteristics and data points in the same group have 

similar characteristics. The partition can be crisp (hard) or fuzzy (soft). 

Given the data set of N points { | 1,2,..., }kX k NX   , where 
kX  may be one 

dimensional or multi dimensional data point. The rows of X  are called as patterns or objects, 

the columns are called as features or attributes and X  is called pattern matrix or simply data 
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matrix. In single-channel MR image each 
kX  will be intensity either of T1 weighted or T2 

weighted or PD weighted image and in case of multi channel MR image it will be 

combination of more than one from above three images. Each 
kX  can also be features 

derived from these images. 

The following two are the hard (crisp) partition clustering algorithms. Macqueen [23] 

introduced the K-means algorithm to cluster numerical data in which each cluster has center 

called the mean [24]. The distance norm used in this algorithm is standard euclidean distance 

norm. It makes the cluster of data points by minimizing the within cluster sum of square 

distance [23]. The conventional K-means algorithm is described by [29, 30]. K-medoid 

algorithm uses most centrally located data point (medoid) in the cluster to be the cluster 

center. An early K-medoid algorithm called Partitioning Around Medoids (PAM) was 

proposed by Kauffman [31]. The distance norm used in this algorithm is also standard 

Euclidean distance norm. 

For a data set of N points, each having n dimensional, K-means and K-medoid 

classification algorithms assign each data point to one of the c clusters, by minimizing the 

within sum of square distance norm given by 

2

1

,
i

c

k i

i k A

X V
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where iA  is the set of data points in the i-th cluster and iV  is the center or prototype of the 

points in i-th cluster. Eq.  (1) denotes euclidean distance norm. In K-means clustering iV  is 

the called cluster prototype or cluster center is mean of the cluster points, given by  
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where iN  is number of points in i-th cluster. In K-medoid clustering algorithm the cluster 

centers are the most centrally located data points (medoids) rather than the means like in K-

means algorithm. Here, the distance norm is same as Eq.  (1) but the cluster prototype or 

centers iV  are the nearest data point to the mean in the data instead of simply the mean in 

case of K-means clustering algorithm. 

Since the concept of Fuzzy sets was introduced by Zadek [32], fuzzy clustering has been 

widely discussed, studied and applied in various areas [24]. Early work on applying fuzzy set 

theory in clustering analysis was proposed by [33]. The following three are the soft (fuzzy) 

partition clustering algorithms. The Fuzzy C-means (FCM) clustering algorithm is based on 

the minimization of an objective functional defined by Dunn [25]. This is known as C-means 

functional and given by 

2
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where iV   is the cluster center or prototype, ( )ik  is the fuzzy partitioning matrix, m  is the 

weighting exponent controls the ’fuzziness’ of the resulting cluster and 
2 2 ( ) ( ),T

ikA k i A k i k iD X V X V A X V       given 1 ,1i c k N     is squared inner product 

distance norm. The clustering algorithm based on minimization of Fuzzy C-means functional 

is known as the Fuzzy C-means clustering algorithm. In fuzzy C-means clustering each iV  

gives weighted mean of the cluster, and the weight is given by the membership degree of the 

fuzzy membership function, so the algorithm is called the fuzzy C-means algorithm. The 
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distance norm used in this algorithm is standard euclidean distance norm. So FCM makes 

hyper spherical clusters. Depending on the choice of the norm inducing matrix A , as Identity 

or diagonal, the clusters can be of same shape and orientation or different variance in the 

direction of the coordinate axis. 

As the disability of FCM clustering algorithm to detect the clusters of different 

geometrical shapes, Gustafson and Kessel [26] extended FCM algorithm to compute clusters 

of different shapes by using an adaptive distance norm. The objective functional for the 

Gustafson-Kessel algorithm is given by 

2

1 1

( ; , , ) ( ) ,
i

c N
m

ik k i A

i k

J X U V A X V
 
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where 2

iikAD is the adaptive inner-product distance norm and given by 

2 2 ( ) ( ),
i

T

ikA k i A k i i k iD X V X V A X V       given 1 ,1i c k N    . ( )ik  is the fuzzy 

partitioning matrix and m  is the weighting exponent controls the ’fuzziness’ of the resulting 

cluster. As the algorithm assigns Ai, the norm inducing matrix, to each cluster it allows the 

cluster to adapt the distance norm from local topographical structure. Hence it has the ability 

to detect the cluster of different geometrical shapes. The distance norm used in this algorithm 

is generalized mahalanobis distance norm. Here the covariance is weighted by the 

membership degree in the fuzzy membership function. The numerically robust Gustafson-

Kessel algorithm is described by [34]. 

For hyper ellipsoidal clusters and clusters with variable shape and sizes Gath and Geva 

[28] presented an exponential distance norm based on maximum likelihood estimation. The 

fuzzy maximum likelihood estimate (FMLE) clustering employs the distance norm based on 

fuzzy maximum likelihood estimate proposed by Bezdek and Dunn [27]. This distance norm 

is given by 
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where 
miF  is the fuzzy covariance matrix of the i-th cluster, ( )ik is the fuzzy partitioning 

matrix, m  is the weighting exponent controls the ’fuzziness’ of the resulting cluster and 
i  is 

aprior probability of selecting the i-th cluster. The distance in Eq.  (4) is used in the 

calculation of ( / )kP i X , the probability of selecting the i-th cluster given the k-th data point, 

is given by 

1

1
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By using Eq.  (4, 6) the clustering is performed based on the distance norm of fuzzy 

maximum likelihood estimate. A nice toolbox containing these algorithms is made by [35] 

also in the book [36]. 
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3. Result Validation and Discussion 
 

Even though different scalar validity measures like Partition Coefficient (PC)  [37], 

Classification Entropy (CE), Partition Index (SC), Separation Index(S)  [38], Xie and Beni’s 

Index (XB)  [39,40], Dunn’s Index and many more  [41,42] for the validation of the result of 

the clustering algorithms are available we use the following: As the interest in computer-

aided, quantitative analysis of medical image data is growing, the need for validation of such 

techniques is also increased. For the solution of validation problem, Simulated Brain 

Database (SDB) is available [43]. The Simulated Brain Database contains a set of realistic 

MRI data volumes [44] produced by a MRI simulator [45]. This data set is used in our work 

to evaluate the performance of the tissue classification algorithms in a setting where the truth 

is known [46]. The detail about the noise used in our work for analysis is described in [43–

46]. 

 

Table 1: Number of Iterations Required for Clustering in Different Noise Level 
 

 

Algorithm 

Noise Level in (%) 

0 1 3 5 7 9 

K-means 12 10 11 12 11 23 

K-medoid 8 9 12 12 11 31 

Fuzzy C-means 13 13 13 16 23 52 

Gustafson-Kessel 13 13 13 16 23 52 

Gath-Geva 30 30 42 46 73 50 

 

Table 2: Misclassification Error in Different Noise Level in (%) 
 

 

Algorithm 

Noise Level in (%) 

0 1 3 5 7 9 

K-means 1.3983 1.6441 3.0023 5.0820 8.4217 15.1202 

K-medoid 1.3927 1.6441 2.9796 5.0877 8.4217 15.1653 

Fuzzy C-means 1.3077 1.5024 3.0136 5.0766 9.0209 17.9696 

Gustafson-Kessel 1.3077 1.5024 3.0136 5.0766 9.0209 17.9696 

Gath-Geva 19.4520 10.6072 4.4149 5.2194 8.4258 39.7725 

 

The results of these algorithms in different noise level for the single-channel MR 

image data set are described in this section. As these algorithms are iterative 

algorithms, the number of iterations required for the algorithm in different noise level is 

described in Table 1. In K-means algorithm as the noise level in the MR image is 

increasing from 0% to 9%; the number of iterations required to do the clustering are 

also increased from 12 to 23, causing increase in processing time to make the clusters. 

In case of K-medoid algorithm, in lower noise level comparatively fewer number of 

iterations are required than that of K-means algorithm, but in higher noise level they 

increase than that of K-means algorithm. Also the numbers of iterations required for 

clustering are increased as the noise level in the MR image increase. Fuzzy C-means 

and Gustafson-Kessel algorithms have shown same number of iterations in 0% to 9% of 

noise level. In both cases the required iterations are increasing as the noise level in MR 

image increase. The required iterations are higher than that required by K-means and K-

medoid algorithms. Also in very high noise level the iterations required by these two 

algorithms have increased to very high number. Finally, in Gath-Geva algorithm the 
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required iterations are higher than that of all the previous algorithms described. Also, 

the required iterations are increasing as the noise level in the MR image increase. The 

reason for such behavior of this algorithm, Gath-Geva [28] pointed that this algorithm 

does not perform well as it seeks an optimum in a narrow local region due to the 

exponential distance norm [24]. 

The misclassification error in % for different noise level for above discussed 

algorithms has shown in Table 2. In K-means algorithm the misclassification error 

increases as the noise level in the MR image increase. In lower noise levels, the value 

of misclassification error is nearer to the noise present in the MR image. However in 

higher noise level, the misclassification error is greater than the noise present in the MR 

image. In K-medoid algorithm the misclassification error increases as the noise level in 

the MR image increase. In lower noise levels, the value of misclassification error is 

nearer to the noise present in the MR image. However in higher noise level, the 

misclassification error is greater than the noise present in the MR image. However, the 

misclassification error in all noises level is less than that of K-means algorithm. In 

Fuzzy C-means and Gustafson-Kessel algorithms the misclassification error increase as 

the noise level present in the MR image increase. Both algorithms are showing almost 

same misclassification error in the noise level from 0% to 9%. Also, the 

misclassification error in both algorithms is lesser than that of K-means and K-medoid 

algorithms. In lower noise levels, the value of misclassification error is nearer to the 

noise present in the MR image. However in higher noise level, the misclassification 

error is greater than the noise present in the MR image. Finally, in Gath-Geva algorithm 

the misclassification error changes dramatically with different noise level. In lower and 

higher noise level the misclassification error is higher than the noise level and in 

moderate noise level the error is nearer to the noise level present in the MR image. 

Other than moderate noise level the misclassification error is higher than all previous 

algorithms. The reason for such behavior of this algorithm is same as explained before.  

The most interesting part of the result is the misclassification error per class 

(tissue). As we are classifying the MR image into Gray Matter (GM), White Matter 

(WM) and Cerebrospinal Fluid (CSF), we compute the misclassification error per class 

for single-channel MR image after the clustering done by the discussed clustering 

algorithms. The per class misclassification error is shown in Table 3. As for the 

clustering algorithms in noise level of 0% to 9%, Table 3 shows the misclassification 

error in Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). As we 

increase the noise level the per tissue class misclassification error for K -means, K-

medoid, Fuzzy C-means and Gustafson-Kessel algorithms increase. In these algorithms 

Gray Matter tissue has the highest per class misclassification error than that of for  

White Matter (WM) and Cerebrospinal Fluid (CSF) in all noise levels. In lower noise 

levels, the per class misclassification error for Gray Matter is higher than the noise 

level, for Cerebrospinal Fluid is nearer to the noise level and for White Matter it is 

below than the noise level present in the MR image. However in higher noise level, the 

per class misclassification error for Gray Matter is much higher than the noise level, for 

Cerebrospinal Fluid it is still below to the noise level and for White Matter it is higher 

than the noise level present in the MR image. Finally for Gath-Geva algorithm the per 

class misclassification error changes dramatically with different noise level. In lower 

and higher noise level the per class misclassification error is higher than the noise level 

and in moderate noise level the error is nearer to the noise level present in the MR 

image. Other than moderate noise level the per class misclassification error is higher 

than all previous algorithms. In some noise levels the per  class misclassification error is 
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zero for Gray Matter, but same time it has higher value for Cerebrospinal fluid and 

White Matter. 

 

Table 3: Per Class (Tissue) Misclassification Error in Different Noise Level in (%) 

 

 

Noise (%) 

 

Tissue 

Class 

Algorithm 

K-means K-medoid Fuzzy 

C-means 

Gustafson 

Kessel 

Gath- 

Geva 

 CSF 1.1609 1.0491 1.4975 1.4975 18.3700 

0 GM 2.9360 2.9525 2.3122 2.3122 0 

 WM 0.4587 0.4587 0.6304 0.6304 50.3032 

 CSF 1.1905 1.1905 1.4781 1.4781 8.7751 

1 GM 3.2237 3.2237 2.5331 2.5331 0.0777 

 WM 0.7273 0.7273 0.8567 0.8567 22.3753 

 CSF 2.3563 2.3563 2.4152 2.4152 2.1191 

3 GM 5.8174 5.6955 5.4351 5.4351 2.8842 

 WM 1.4543 1.4871 1.7063 1.7063 6.3340 

 CSF 5.1313 5.0031 4.4957 4.4957 5.2058 

5 GM 9.1017 9.1574 8.6765 8.6765 7.2049 

 WM 2.9852 2.9852 3.3469 3.3469 4.4356 

 CSF 6.1996 6.1996 4.6125 4.6125 6.1175 

7 GM 14.6564 14.6564 14.6975 14.6975 19.3332 

 WM 6.2980 6.2980 7.8438 7.8438 3.7682 

 CSF 6.4626 6.4582 4.1181 4.1181 48.9286 

9 GM 24.9951 24.9951 29.6461 29.6461 all 

 WM 15.3460 15.4591 20.3271 20.3271 0 

 

Also, in very high noise level the per class misclassification error is zero for White 

matter, very high for Cerebrospinal Fluid and all misclassified in case of Gray matter. 

The images of the classification result are shown in Table 4, where blue color denotes 

Gray Matter, green color denotes White Matter and red color denotes Cerebrospinal 

Fluid. 
 

4. Conclusion 
 

This paper presented a comparison of hard and fuzzy clustering algorithms for tissue 

classification of single-channel MR image in different noise level. The performance of these 

algorithms has measured in different noise level using three measures namely: number of 

iterations required, the misclassification error and the per class (tissue) misclassification error. 

We successfully classify the brain tissues in single-channel MR image in different noise level 

using hard and fuzzy clustering algorithms. The effect of noise present in the single-channel 

MR image is measured on the number of iterations required to do the clustering, the 

misclassification error and the per class (tissue) misclassification error. The proper selection 

of distance norm used in the clustering algorithm can give better classification result by 

reducing the misclassification error, with cost of number of iterations required to do the 

clustering. 
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Table 4: Segmentation Result of Brian Tissues in the Single-Channel MR Image 
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