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Abstract 
 

Remote protein homology detection is a problem of detecting evolutionary relationship 

between proteins at low sequence similarity level. Among several problems in remote protein 

homology detection include the questions of determining which combination of multiple 

alignment and classification techniques is the best as well as the misalignment of protein 

sequences during the alignment process. Therefore, this paper deals with remote protein 

homology detection via assessing the impact of using structural information on protein 

multiple alignments over sequence information. This paper further presents the best 

combinations of multiple alignment and classification programs to be chosen. This paper also 

improves the quality of the multiple alignments via integration of a refinement algorithm. The 

framework of this paper began with datasets preparation on datasets from SCOP version 

1.73, followed by multiple alignments of the protein sequences using CLUSTALW, MAFFT, 

ProbCons and T-Coffee for sequence-based multiple alignments and 3DCoffee, MAMMOTH-

mult, MUSTANG and PROMALS3D for structural-based multiple alignments. Next, a 

refinement algorithm was applied on the protein sequences to reduce misalignments. Lastly, 

the aligned protein sequences were classified using the pHMMs generative classifier such as 

HMMER and SAM and also SVMs discriminative classifier such as SVM-Fold and SVM-

Struct. The performances of assessed programs were evaluated using ROC, Precision and 

Recall tests. The result from this paper shows that the combination of refined SVM-Struct and 

PROMALS3D performs the best against other programs, which suggests that this 

combination is the best for RPHD. This paper also shows that the use of the refinement 

algorithm increases the performance of the multiple alignments programs by at least 4%. 
 

Keywords: Classification, Multiple Alignment, Remote Protein Homology, Support 

Vector Machines. 
 

1. Introduction 
 

Remote protein homology detection (RPHD) is the inference of structural or functional 

information of proteins by finding a relationship or homology between new sequences and 
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proteins of which its structural properties are already known at low levels of sequence 

similarity. Traditional laboratory methods to detect remote protein homology are lengthy and 

expensive, making it unpractical to be applied to the unprecedented amount of protein 

sequence data made available from the advances in molecular biology. As a result, 

researchers have turned to the computational methods which are more powerful and could 

accommodate such large amount of data.  

Examples of computational methods in RPHD include multiple alignment and 

classification. The use of multiple alignment has been proven to improve RPHD [1]. There 

are two types of multiple alignments in bioinformatics; the multiple sequence alignments and 

the multiple structural alignments. Based on the observation that protein three-dimensional 

structure are surprisingly stable with respect to amino acid sequences [2], it is suggested that 

alignments derived from structural information should have an increased accuracy over 

sequence alignment alone. On the other hand, in terms of classification, studies have shown 

that discriminative classification algorithm such as Support Vector Machines (SVMs) 

outperform generative classification algorithm such as profile Hidden Markov Models 

(pHMMs) [3-5]. However, there is no study yet that has assessed the combination of these 

two types of classification algorithm with multiple sequence alignment and multiple structural 

alignments, further determining which combination is the best. Meanwhile, due to 

weaknesses in the multiple alignments algorithm, the tendency of misalignments to occur 

during the multiple alignment process is unacceptably high [6]. These misalignments have to 

be reduced as it would bring serious alignment errors that could affect the performance of the 

classification algorithm, thus influencing the determination on the best combination of the 

multiple alignments and classification algorithm. 

Multiple alignments can be divided into two types; multiple sequence alignments and 

multiple structural alignments. A multiple sequence alignment is a sequence alignment of 

three or more biological sequences. Multiple sequence alignments arranges protein sequences 

into a rectangular array with the goal that residues in a given column are homologous, 

superposable or play a common functional role [7]. Examples of most recent multiple 

sequence alignment software includes MUMMALS [8], DIALIGN-TX [9], MAVID [10] and 

BAli-Phy [11]. On the other hand, a multiple structural alignment is a form of sequence 

alignment based on comparison of shape. Multiple structural alignments has been proven to 

be helpfulin protein structure classification and structure-based functionprediction by 

highlighting structurally conserved regions of functional significance as well as selectivity 

determinants [12, 13]. Examples of most current multiple structural alignment softwares 

include CAALIGN [14], Vorolign [15], Matt [16] and POSA [17].  

In order to provide classification on the multiple alignment of protein, two types of 

classification algorithm are usually used in bioinformatics; the generative classification 

algorithm and the discriminative classification algorithm. Generative classification algorithm 

offers a probabilistic measure of relationship between a new sequence and a particular family. 

These methods such as pHMMs can be trained iteratively in a semi-supervised manner using 

both positively labelled and unlabelled samples of a particular family. Examples of pHMMs 

softwares includes HMMEditor [18], Profile Comparer [19], Meta-MEME [20] and 

GENEWISE [21]. In the meantime, discriminative classification algorithm focuses on 

learning a combination of the features that discriminate between the families. Discriminative 

classification algorithm are able to gain additional accuracy by modelling the difference 

between positive and negative examples explicitly. Thus, providing state-of-the-art 

performance with appropriate kernels. Examples of SVM softwares includes SVM-Gist [22], 

SVM Classifier [23], SVM-Prot[24] and SVM-Fold [25]. 
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The use of heuristic approaches in multiple alignments which usually sacrifices accuracy 

in favour of computational efficiency has led to the problem of errors called misalignments. 

In progressive alignment strategy for example, errors during the early steps of the alignment 

process are propagated to the final output. This is certainly undesirable as multiple alignments 

are very important in many of bioinformatics application such as RPHD, protein structure 

prediction and phylogenetic analysis. Therefore, approaches to reduce the misalignments has 

been introduced which include the use of phylogenetic tree, consistency-based objective 

function and iterative realignment. Example of work using phylogenetic tree is a tool 

developed by Manohar and Batzoglou [26]. In their tool named TreeRefiner, sum-of-pairs 

function in a restricted three-dimensional space around the alignment is optimized when the 

tool is given a multiple alignment, a phylogenetic tree and scoring parameters as inputs.In the 

meantime, a consistency-based objective function incorporates multiple sequence information 

in scoring pairwise alignments. Example of work using consistency-based objective function 

is a work by Notredame et al. [27].In their work, a tool named COFFEE,evaluation is made 

by comparing each pair of aligned residues observed in the multiple alignments to those 

present in the library of a collection of all-against-all pairwise alignment on a set of given 

protein sequences. Meanwhile, iterative approaches usually work by performing a certain 

refinement function iteratively. Iterative approaches have been used either alone or in 

combination with other methods. For example, Edgar [28] has applied iterative refinement on 

MUSCLE algorithm using a variant of tree-dependant restricted partitioning. The advantage 

of using iteration over other approaches is that it is usually very simple whether in terms of 

coding the algorithm for the integration or in terms of the complexity of computational time 

and memory required [29]. 
 

2.  Framework for Finding the Optimal Mesh Algorithm 

 

The framework to find an optimal mesh algorithm for RPHD is consisted of three stages 

as shown in Figure 1. In the first stage, the multiple alignments are produced using multiple 

sequence alignment and multiple structural alignment programs. Four multiple sequence 

alignment programs namely CLUSTALW [30], MAFFT [31], ProbCons [32] and TCOFFEE 

[33] are chosen to be used in this paper while another four that are 3DCOFFEE [34], 

MAMMOTH-mult [35], MUSTANG [36] and PROMALS3D [37] are used for multiple 

structural alignments. In the second stage, a refinement algorithm is performed on the results 

of multiple alignments. The purpose is to reduce the misalignments made during the 

alignment process thus increasing its accuracy. The last stage is consisted of generative 

classification algorithm and discriminative classification algorithm. pHMMs software that are 

HMMER [38]and SAM[39] are used as the generative classsifier while SVMs software that 

are SVM-Struct [40] and SVM-Fold [41] are used as discriminative classification algorithm. 

Even though a similar approach has been conducted by Bernardes et al.[42] in their work by 

comparing the performance of various multiple alignment software, yet they only use 

pHMMs for classification. They also assessed only four multiple sequence alignment 

software and two multiple structural alignment software. This paper will take into account the 

use of refinement algorithm to refine multiple alignments, the use of SVMs for classification 

and add another two multiple structural alignment softwares for evaluation. Meanwhile, 

Chakrabarti et al.[43]also has applied similar refinement algorithm but they only used 

HMMER and SALTO_global [44] to test their work. Moreover, the dataset which they used 

are different from this paper where the algorithm is tested on 362 CDD [45] multiple 

alignments and 900 Pfam [46] alignments. They also only tested the algorithm with multiple 

sequence alignment using CLUSTALW and T-Coffee. This paper used datasets from the 
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latest version of Structural Classification of Proteins (SCOP) [47] database which is version 

1.73 and measured using Receiver Operating Characteristics (ROC)[48]. Precision and Recall 

test are also applied to support ROC because of its tendency to provide an exaggeratedly 

optimistic view of the classification results. 
 

2.1. Dataset Generation 

 

SCOP is a manually examined database of protein folds and structures that provides a 

comprehensive ordering according to their evolutionary and structural relationships. In this 

database, protein domains from all species are classified hierarchically into families, 

superfamilies, folds and classes. This database also includes all entries in the Protein Data 

Bank (PDB) [49]. Therefore, it is perfect for works on RPHD. In this paper, SCOP database 

version 1.73 that is the latest version of the database is used to provide the datasets. This 

paper only considers protein with identity below 30% to be used in this work. This paper is 

conducted at superfamily level because at this level families are grouped such that a common 

evolutionary origin is not obvious from sequence identity, but instead probable through 

functional features and structure analysis. Figure 2 displays the diagram and flowchart of the 

dataset preparation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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The datasets used in this paper are cross-validated in order to make our approach 

different. First, protein sequences from SCOP database are divided by super-family. Only 

super-families that have at least two families and 20 sequences are chosen. As a result, 35 

super-families are obtained as listed in Table 1. Meanwhile, from the superfamilies we 

obtained 411 families and the total numbers of protein sequences are 6,496. Then, leave-one-

family-out cross validation are performed where for any super-family x having n families, n 

profiles are built so that each profile P was built from the sequences in the remaining n-1 

families. Lastly, the n-1 sequences are defined as the training set for profile P while the 

remaining sequences forms the test positives set for profile P and all other database sequences 

forms the test negatives set. 
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Table 1. Superfamily Ids. The table list all the superfamily ids for the protein 
sequence selected after leave-one family-out cross validation. 

 
 

2.2. Multiple Alignments 

 

Cross-validated protein sequences from the dataset generation process are input into 

multiple alignment programs. In this paper, four multiple sequence alignment programs and 

four multiple structural alignment programs are used to provide the multiple alignments. The 

multiple sequence alignment programs that were used are as follows: 

 CLUSTALW (http://www.clustal.org/) is a progressive alignment algorithm that 

improvise the sensitivity of original progressive multiple sequence alignment 

methods via sequence weighting, position-specific gap penalties and weight 

matrix choices. Initially, it obtains a guide tree and then uses a greedy search to 

calculate the best match for the selected sequences over aligned clusters of 

sequences and lines them up so that the identities, similarities and differences can 

be seen.  

 T-Coffee (http://www.tcoffee.org) also applied a progressive alignment 

algorithm. It works by improving the quality of the initial pairwise sequence 

alignment via taking into account the alignment between all the pairs as it carries 

out every step in the progressive alignment algorithm. By default, T-Coffee 

compares all sequences two by two, producing a global alignment and a series of 

local alignments using lalign. It then combines all these alignments into a 

multiple alignment.  

 MAFFT (http://align.bmr.kyushu-u.ac.jp/mafft) package is consisted of five 

alignment methods that are FFT-NS-1, FFT-NS-2, NW-NS-1, NW-NS-2 and 

FFT-NS-i. First, it applies Fast Fourier Transform (FFT) to rapidly identify 

homologous regions and then it uses a simplified scoring system for reducing 

Central Processing Unit (CPU) time and to increase the accuracy of alignments. 

In its latest version, improvement have been made and new iterative refinement 

options, H-INS-I, F-INS-i and G-INS-I are offered [45].  

 ProbCons (http://probcons.stanford.edu) merges the use of probabilistic modeling 

and consistency-based alignment techniques. It introduces probabilistic 

consistency, a novel scoring function that is based on paired HMMs using 

progressive multiple sequence alignment. Its emission probabilities which 

correspond to traditional substitution scores are based on the BLOSUM62 matrix 

[46]. Transition probabilities which correspond to gap penalties are trained with 

unsupervised expectation maximization.  

Meanwhile, in order to provide multiple structural alignments, four programs that were 

used in this paper are as follows:  

 3DCoffee (http://www.tcoffee.org) is an aligner based on T-Coffee, but uses 

pairwise structure comparison to improve accuracy. Pairwise structure 

comparison is performed by SAP [47] if both structures are known. If only one 

structure is known, 3DCoffee uses the FUGUE threading method [50].  
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 MAMMOTH-mult (http://ub.cbm.uam.es) is a progressive multiple alignments 

program that uses a sequence independent heuristic to obtain a fully structural 

alignment. It starts from a Cα trace to obtain an alignment. Second, it finds an 

alignment of local structures based on computing a similarity score from the 

URMS metrics [51]. Third, it finds similar local structures with their Cα close in 

Cartesian space.  

 MUSTANG (http://www.cs.mu.oz.au/~arun/mustang/) is a reliable and robust 

algorithm for the alignment of multiple protein structures. Given a set of protein 

structures, the program constructs a multiple alignment using the spatial 

information of the Cα atoms in the set. This algorithm gains accuracy through 

novel and effective refinement stages which is broadly based on the progressive 

pairwise heuristic. The output of MUSTANG consists of the multiple sequence 

alignment and the corresponding structural superpositions.  

 PROMALS3D (http://prodata.swmed.edu/promals3d/) is an extension of 

PROMALS [50], a progressive method that clusters similar sequences and aligns 

them by a simple and fast algorithm which is based on the use of 3D structural 

information to guide sequence alignments. This method appliesmore highly 

structured and elaborate techniques to align the relatively differing clusters to 

each other. As an extension, firstly PROMALS3D identifies homologs with 

known 3D structures for the input sequences automatically. Second, it derives 

structural constraints through structure-based alignments and then combines them 

with sequence constraints to construct consistency-based multiple sequence 

alignments. The output is a consensus alignment that brings together sequence 

and structural information about input proteins and their homologs. The 

advantage of PROMALS3D is that it gives researchers an easy way to produce 

high-quality alignments consistent with both sequences and structures of proteins. 
 

2.3. Refinement Algorithm 

 

The results from the multiple alignment process are then input into a refinement 

algorithm. This refinement algorithm takes into account the block model of the protein 

family: a representation of conserved sequence or structure regions that are almost impossible 

to contain gaps. The conserved regions are also common to all the family members. These 

block models comprises a prearranged set of one or more non-overlapping blocks: regions 

where every sequences are aligned without gaps.  

This algorithm iteratively selects random sequences from the multiple alignments and 

realigns it with the family block model. The iteration continues until the multiple alignment 

score comes to a stable value or until the iteration cycle terminates. The order in which the 

sequences are refined is randomized in order to avoid bias and make the use of multiple 

iterations more effective. In this paper, multiple alignments from the multiple alignment 

softwares are first input into ReadSeq (http://iubio.bio.indiana.edu/soft/molbio/readseq/java/): 

a software to convert the multiple alignments format from Clustal to Fasta. Then, the multiple 

alignments are converted to .cn3 files using fa2cd (ftp://ftp.ncbi.nih.gov/pub/REFINER/). The 

multiple alignments have to be converted in such a way because the refinement algorithm 

only understand inputs in the form of CD format, that is the same format used by CDD[39] 

database. One or more iterations of refinement which contains a stage of ‘block shifting’ 

followed by a ‘block editing’ stage are performed in the algorithm. 

In the block shifting stage of the refinement, a dynamic programming(DP)[52] module 

that works as an engine runs on each sequence of the original multiple alignment to set new 
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block positions. The DP module finds the optimal placement of every block in the block 

model on the protein sequence: rows in the multiple alignments, by scoring each allowed 

arrangement of the blocks on the sequence using the Position Specific Scoring 

Matrices(PSSM)[53]of the multiple alignments. The DP engine uses row scores: a function to 

determine the refined block positions for the selected sequence. The function is denoted as 

follows:  

 
1

, ,
L

r
r i

i

S PSSM i AA


  (1) 

where for an alignment of length L, Sr is the sum of scores derived from the PSSM over all 

aligned positions of the sequence r. Therefore, The PSSM is indexed by alignment column i 

and the corresponding residuesAA from the sequence r. Meanwhile, the alignment score is 

calculated using an objective function which is denoted as follows: 

1

,

N

r

N rS S


   (2) 

where for a multiple alignment with N rows, SN are the sum of all the row scores Sr. If the 

block shifting stage of the refinement has an effect on a sequence, the position of some of the 

blocks of the alignment on that sequence are changed or updated. The updates are represented 

with a function B which is denoted as follows: 

,
shift

b

B
l




 
 (3) 

where for a given sequence, shift  is the difference in the position of block before and after 

the refinement and bl is the length of the blockb. The shifted blocks retain the same relative 

order after DP. This block shifting stage will iterates until all sequences within the multiple 

alignments are used. 

Next, after all sequences in the multiple alignments have been used, the subsequent block 

editing stage examines each block across all the sequences to see if it is advantageous to 

extend it. A 3-fold heuristic criteria is used to control block editing based on the statistical 

properties observed for block and loop regions.After each of the block shifting stage, columns 

in loop regions adjacent to blocks are inspected and added to existing blocks until a column 

fails the 3-fold heuristic criteria. The 3-fold heuristic criteria are described as follows: 

 First, the residues aligned in block-forming columns should have a median PSSM 

matrix value of at least 3 for a column to be added. In their work, Chakrabarti et 

al. [43]concluded that this criterion have to be met before a column can be added 

based on the pattern of the median PSSM value in block-forming columns in their 

test datasets. 

 Second, the frequency of occurrence of negative scores should not exceed 0.3. 

The frequency of negative scores is simply computed as the ratio of the number 

of sequences with a negative PSSM value to the number of alignment rows.  

 Third, the relative weight of negative PSSM values also should not exceed 0.3. 

The relative weight of negative PSSM values are computed as the absolute sum 

of negative PSSM values in a column divided by the sum of all PSSM values in 

that column. 

The second and third threshold value is the characteristic of alignment column where 

block extension is favorable as suggested by Chakrabarti et al. [43].Convergence is declared 

when no further improvement of overall alignment score is observed or all iterations have 
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expired. Lastly, the outputs of the refinement algorithm are converted back to Fasta formats 

followed by another conversion to Clustal formats using the ReadSeq software. This 

conversion is done in order to suit the requirement of the classification algorithm which only 

understands inputs in Clustal formats. The flow of the refinement process is represented in 

Figure 3.The refinement algorithm applied in this paper is not novel; it has been introduced 

by Chakrabarti et al.[43] and named as REFINER. However, this algorithm has not yet been 

tested on multiple alignments programs other than CLUSTALW. This algorithm also has not 

yet been tested on datasets from SCOP 1.73. Therefore, the contribution of this paper is that 

of the application of this refinement algorithm on the multiple alignments from different 

programs towards reducing the misalignment problems on datasets from SCOP 1.73. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 
 

2.4. Classification Algorithm 
 

The result from each of the multiple alignment programs are classified using pHMMs and 

SVMs. The pHMMs programs that were used are as follows: 
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 HMMER (http://hmmer.janelia.org/) works by differentiating between match 

alignment columns and insert alignment columns in model building. Then, given 

the model HMMER allocates columns to the match or insert states. This is done 

in order to increase the posterior probability of the aligned sequences to the 

maximum. A Dirichlet mixture with 9 stages is used for priors and Viterbi 

algorithm is used to do the scoring. HMMER version 2.3.3 was used in this 

works where three stages in the software are used that are model building, model 

calibration and model scoring. In model building, hmmbuild process is carried out 

to build HMMER models. Next, models are calibrated using hmmcalibrate. Then, 

hmmsearch process is executed for scoring. Throughout the software execution, 

HMMER default parameters are applied.  

 The main difference between SAM (http://compbio.soe.ucsc.edu/sam2src/) and 

HMMER is that SAM uses a script called SAM-T2K script which performs 

iterative process to generate multiple alignments and HMMs. Furthermore, the 

developer of this software intends to improve it by using information on protein 

structure and prior probabilities. SAM also applies standard pHMMs architecture 

with 9 transitions yet however it does not dfferentiate between match and insert 

columns as HMMER does. This software uses a Dirichlet mixture with 20 stages 

for priors and Forward algorithm is used for scoring. This paper applies SAM 

version 3.4 where two stages in the software are used. In the first stage, 

modelfromalign is used to build the models. This is followed by the second stage 

where hmmscore is used for score computation. SAM default parameters are 

applied throughout the program execution.  

Meanwhile, in order to provide us with discriminative classification the results from the 

multiple alignment process are input into SVMs. The SVMs softwares that were used are as 

follows: 

 SVM-Struct (http://svmlight.joachims.org/) performs supervised learning by 

approximating a mapping of h: X  Y using labeled training 

examples 1 1( , ),...,( , )n nx y x y . Different with regular SVMs, SVM-Struct can 

predict complex objects y such as trees, sequences or sets. Examples of problems 

with complex outputs are natural language parsing, sequence alignment in protein 

homology detection and Markov models for part-of-speech tagging. SVM-Struct 

can also be used for linear-time training of binary and multi-class SVMs under 

the linear kernel. In this paper, a program called pafig 

(http://www.mobioinfor.cn/pafig/) is used to convert multiple aligments to 

feature vectors. Then, the feature vectors are input into two programs that are 

svm_learn and svm_classify. The latest version of SVM-Struct is version 3.1. 

 SVM-Fold (http://svm-fold.c2b2.columbia.edu/) combines SVMs kernel methods 

with a novel multi-class algorithm, delivering efficient and accurate protein fold 

and superfamily recognition. It detects subtle protein sequence similarities by 

learning from all available annotated proteins, as well as utilizing potential hits as 

identified by PSI-BLAST [53]. SVM-Fold uses an efficient implementation of a 

state-of-the-art string kernel for sequence profiles, called the profile kernel where 

the underlying feature representation is a histogram of inexact matching k-mer 

frequencies. SVM-Fold also employs a novel machine learning that is the one-vs-

all approach to solve the difficult multi-class problem of classifying a sequence 

of amino acids into one of many known protein structural classes. 
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2.5. Performance Evaluation 
 

In this paper, we compare the ROC value of each combination of multiple alignment and 

classifier program to evaluate its performance. ROC score is the normalized area under a 

curve that plots true positives against false positives for different possible thresholds for 

classification [54]. The ROC contingency table as shown in Table 2 is referred in order to 

analyze evaluation measures in family classification. 

Entries in the contingency table with n number of sequences are described as follows: 

TP = number of examples correctly classified as positives 

FN = number of positive examples incorrectly classified as negative  

FP = number of negative examples incorrectly classified as positive 

TN  = number of negative examples correctly classified as negative 

n = TP + FN + FP + TN (total number of sequences) 

In ROC space, False Positive Rate (FPR) are plotted on the x-axis and True Positive Rate 

(TPR) are plotted on the y-axis. Both FPR and TPR are calculated using the following 

formulas: 

FPR
FP

FP TN



,                                                                                    (4)  

where FPR is the fraction of negative examples that are misclassified as negatives and  

TPR
TP

TP FN



,                                                                                  (5)  

where TPR is the fraction of positive examples that are correctly classified as positive. 

Meanwhile, in Precision Recall (PR) space Recall are plotted on the x-axis and Precision are 

plotted on the y-axis. The formula for PR is defined as follows: 

Recall
TP

TP FN



,                           (6)  

where Recall is the fraction of positive examples that are correctly classified as positive and  

Precision
TP

TP FP



,                           (7)  

where Precision is the fraction of examples classified as positives (i.e: TP and FP) that are 

correctly positive. 

Information encoded in the contingency table can be used not only in the evaluation 

measurements of RPHD, but can also be applied in general classification problems. In this 

paper, the best combinations of a multiple alignment and a classification program are denoted 

by looking at the highest ROC scores.  
 

Table 2. ROC Contingency Table. The table shows the ROC contingency 
matrix. 

 

 Actual Positive Actual Negative 

Predicted Positive True Positives (TP) False Negatives (FN) 

Predicted Negative False Positives (FP) True Negatives (TN) 
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3.  Results  
 

3.1. HMMER Performance 
 

HMMER performance was assessed using multiple alignments from CLUSTALW, 

MAFFT, ProbCons and T-Coffee for MSA and 3DCoffee, MAMMOTH-mult, MUSTANG 

and PROMALS3D for MStA. Figure 4(a) shows the ROC results of unrefined and refined 

HMMER. Figure 4(b) and Figure 4(c) shows the Precision and Recall result of unrefined and 

refined HMMER respectively. For MSA, refined HMMER-MAFFT performs the best in 

terms of ROC with value of 0.83. Meanwhile, unrefined HMMER-CLUSTALW performs the 

worst with an ROC of 0.53. The result for Precision test shows that refined HMMER-

ProbCons performs the best with value of 0.02893. On the other hand, unrefined HMMER-

CLUSTALW performs the worst with a value of 0.00694. For Recall test, refined HMMER-

T-Coffee performs the best with a value of 0.03124. Unrefined HMMER-CLUSTALW 

instead performs the worst with a value of 0.00756. 

For MStA, refined HMMER-PROMALS3D performs the best in terms of ROC with the 

value of 0.85. Meanwhile, unrefined HMMER-MUSTANG performs the worst with an ROC 

of only 0.5. Precision test results further shows that refined HMMER-PROMALS3D 

performs the best with the value of 0.03377. On the other hand, unrefined HMMER-

MAMMOTH-mult performs the worst with only 0.01206. As for Recall test, refined 

HMMER-PROMALS3D performs the best with a value of 0.03957. Meanwhile, unrefined 

HMMER-MUSTANG performs the worst with a value of only 0.01394. 

Overall experiment result for HMMER derived from MSA and MStA shows that refined 

HMMER-PROMALS3D performs the best in terms of ROC with the value of 0.85. 

Meanwhile, unrefined HMMER-MUSTANG performs the worst with value of only 0.5. 

Precision test further shows that refined HMMER-PROMALS3D performs the best compared 

to other multiple alignment tools with a value of 0.03377. Meanwhile, the combination of 

refined HMMER-CLUSTALW performs worst with Precision value of 0.00694. Recall test 

results also shows that refined HMMER-PROMALS3D performs the best with a value of 

0.03957. The combination of refined HMMER-CLUSTALW on the other hand performs the 

worst with a value of 0.00756.  
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Figure 4 
 

3.2. SAM Performance 
 

SAM performance was also assessed using multiple alignments from CLUSTALW, 

MAFFT, ProbCons and T-Coffee for MSA and 3DCOFFEE, MAMMOTH-mult, MUSTANG 

and PROMALS3D for MStA. Figure 5(a) shows the ROC result of unrefined and refined 

multiple alignments combined with SAM. Figure 5(b) and Figure 5(c) both shows the result 

of Precision and Recall test respectively. ROC results for MSA shows that, refined SAM-

MAFFT performs the best with ROC of 0.86. On the other hand, unrefined SAM-MAFFT, 

unrefined SAM-T-Coffee and refined SAM-ProbCons perform worst with an ROC of only 

0.6. Results from Precision test in the meantime shows that refined SAM-ProbCons performs 

the best with a value of 0.03094. Meanwhile, the worst performance for this test is shown by 

the combination of unrefined SAM-T-Coffee with a value of only 0.009. As for Recall test, 

refined SAM-ProbCons displays the best performance with a value of 0.02797. The 

combination of refined SAM-T-Coffee in the meantime performs worst with a value of only 

0.00973. 

For MStA, the combination of refined SAM-PROMALS3D performs the best in terms of 

ROC with a value of 0.87. On the other hand, unrefined SAM-3DCoffee and SAM-

MAMMOTH-mult performs worst with an ROC of only 0.59. Precision test also shows that 

the combination of refined SAM-PROMALS3D performs best with a value of 0.03893. 

Meanwhile, the worst combination for this test is shown by the combination of unrefined 

SAM-3DCoffee with a value of only 0.019. The Recall test further shows that refined SAM-

B 

C 
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PROMALS3D performs the best with a value of 0.04147. Meanwhile, the combination of 

unrefined SAM-3DCoffee performs worst with a value of only 0.02. 

The overall result of the comparison between unrefined and refined SAM combined with 

multiple alignment tools shows that refined SAM-PROMALS3D performs best with an ROC 

of 0.87. Meanwhile, the worst performance is shown by the combination of unrefined SAM-

3DCoffee and SAM-MAMMOTH-mult with an ROC of 0.59 respectively. In terms of 

Precision test, the combination of refined SAM-PROMALS3D performs the best with a value 

of 0.03893. Meanwhile, unrefined SAM-T-Coffee performs the worst with a value of only 

0.009. Recall test also shows that the combination of refined SAM-PROMALS3D performs 

the best with a value of 0.04147. Meanwhile, the worst performance is shown by the 

combination of refined SAM-T-COffee with a value of only 0.00973.  
 

3.3. HMMER and SAM Performance 
 

The comparison between HMMER and SAMperformance derived from the refined 

multiple alignments is also compared. Figure 6(a) shows the comparison of ROC between 

HMMER and SAM. Figure 6(b) and Figure 6(c) both shows the results comparison of 

Precision and Recall test respectively. For MSA, the combination of refined SAM-MAFFT 

performs the best in terms of ROC with a value of 0.86. Meanwhile, the worst combination is 

shown by refined SAM-ProbCons with an ROC of only 0.6. In terms of Precision test, the 

combination of refined SAM-ProbCons performs the best with a value of 0.03094. However, 

the combination of refined SAM-T-Coffee performs the worst with a value of 0.02061. 

Meanwhile, Recall test shows that the combination of refined HMMER-T-Coffee performs 

the best with a value of 0.03124. On the other hand, the combination of refined SAM-T-

Coffee performs worst with a value of only 0.00973. 

For MStA, the combination of refined SAM-PROMALS3D performs the best in terms of 

ROC with a value of 0.87. The worst combination is shown by the combination of refined 

HMMER-MUSTANG with an ROC value of only 0.79. In terms of Precision test, the 

combination of refined SAM-PROMALS3D are also shown to performs the best with a value 

of 0.03893. Refined SAM-3DCoffee on the other hand performs the worst with a value of 

only 0.02670. Recall test further shows that refined SAM-PROMALS3D performs the best 

with a value of 0.04147. In the mean time, refined HMMER-3DCoffee performs the worst 

with a value of only 0.02402. 

From the overall result comparison, refined SAM-PROMALS3D are shown to performs 

the best in terms of ROC with a value of 0.87. Meanwhile, refined SAM-ProbCons performs 

the worst with an ROC of only 0.60. In terms of Precision, refined SAM-PROMALS3D are 

shown to performs the best with a value of 0.03893. On the other hand, refined SAM-T-

Coffee  combination performs the worst with a value of only 0.02061. In the mean time, 

Recall test result also shows that the combination of refined SAM-PROMALS3D performs 

the best with a value of 0.04147. Meanwhile, the worst combination is displayed by refined 

SAM-T-Coffee with a value of only 0.00973.  
 

3.4. SVM-Fold Performance 
 

This paper also assessed the performance of SVM-Fold using multiple alignments derived 

from CLUSTALW, MAFFT, ProbCons and T-Coffee for MSA and 3DCOFFEE, 

MAMMOTH-mult, MUSTANG and PROMALS3D for MStA. Figure 7 (a) displays the 

results of ROC for unrefined and refined SVM-Fold. Figure 7(b) and Figure 7(c) both shows 

the result of Precision and Recall test of unrefined and refined SVM-Fold respectively. 
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For MSA, refined SVM-Fold-MAFFT and SVM-Fold-T-Coffee both performs the best in 

terms of ROC with a value of 0.86 respectively. On the other hand, worst performance was 

displayed by the combination of refined SVM-Fold-ProbCons with an ROC value of only 

0.61. For Precision test, refined SVM-Fold-ProbCons performs the best with a value of 0.029. 

Meanwhile, unrefined SVM-Fold-CLUSTALW shows the worst performance for this test 

with a value of only 0.018. In the meantime, Recall test shows that refined SVM-Fold-T-

Coffee performs the best with a value of 0.028. Unrefined SVM-Fold-CLUSTALW on the 

other hand performs worst in this test with a value of only 0.011. 
 

 
 

As for MStA, ROC test shows that refined SVM-Fold-3DCOFFEE performs the best with 

0.87. Unrefined SVM-Fold-MAMMOTH-mult on the other hand performs worst with an 

ROC of only 0.57. Meanwhile, Precision test shows that refined SVM-Fold-PROMALS3D 

performs the best with a value of 0.035. In the meantime, unrefined SVM-Fold-MAMMOTH-

mult performs the worst with a value of only 0.021. As for Recall test, refined SVM-Fold-

PROMALS3D also performs the best with a value of 0.035. Meanwhile, unrefined SVM-

Fold-MUSTANG displays the worst performance with a value of only 0.019. 

Overall performance comparison between the combination of SVM-Fold with different 

type of multiple alignments shows that refined SVM-Fold-3DCOFFEE performs the best with 
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an ROC of 0.87. On the other hand, worst performance is shown by the combination of 

unrefined SVM-Fold-MAMMOTH-mult with an ROC of only 0.57. Precision test in the 

meantime shows that the combination of refined SVM-Fold-PROMALS3D performs the best 

with a value of 0.035. On the other hand, unrefined SVM-Fold-CLUSTALW performs the 

worst in this test with a value of only 0.018. As for Recall test, refined SVM-Fold-

PROMALS3D also performs the best with a value of 0.035. Unrefined SVM-Fold-

CLUSTALW in the meantime performs the worst with a value of only 0.011.  
 

3.5. SVM-Struct Performance 
 

SVM-Struct performance in this paper is also assessed using multiple alignments from 

CLUSTALW, MAFFT, ProbCons and T-Coffee for MSA and 3DCOFFEE, MAMMOTH-

mult, MUSTANG and PROMALS3D for MStA. Figure 8(a), Figure 8(b) and Figure 8(c) 

shows the ROC, Precision and Recall result of unrefined and refined SVM-Struct 

respectively. For MSA, the best performance in terms of ROC is shown by refined SVM-

Struct-ProbCons with an ROC of 0.88. Meanwhile, unrefined SVM-Struct-T-Coffee performs 

worst with ROC of 0.69. Precision test also shows that refined SVM-Struct-ProbCons 

performs best with a value of 0.034. Unrefined SVM-Struct-CLUSTALW instead performs 

worst with a value of only 0.01732 compared to others in this test. As for Recall test, refined 

SVM-Struct-ProbCons once again comes best with a value of 0.035. Meanwhile, unrefined 

SVM-Struct-CLUSTALW performs the worst with a value of only 0.01363. 

MStA derived SVM-Struct witnesses refined SVM-Struct-PROMALS3D to be 

performing the best compared to others in terms of ROC with a value of 0.89. On the other 

hand, unrefined SVM-Struct-MAMMOTH-mult performs the worst with an ROC of 0.6. 

Meanwhile, Precision test also shows that refined SVM-Struct-PROMALS3D performs the 

best with value of 0.039. Unrefined SVM-Struct-3DCOFFEE instead performs the worst with 

a value of only 0.0257. Results from Recall test also displays that refined SVM-Struct-

PROMALS3D to perform the best with a value of 0.044. Meanwhile, unrefined SVM-Struct-

3DCOFFEE shows the worst performance with a value of only 0.02301. 

Overall comparison results between SVM-Struct MSA and MStA shows that refined 

SVM-Struct-PROMALS3D performs the best in terms of ROC with a value of 0.89. 

Meanwhile, the worst performance is shown by unrefined SVM-Struct-MAMMOTH-mult 

with an ROC of only 0.6. Precision test in the meantime also shows that refined SVM-Struct-

PROMALS3D gives the best performance with a value of 0.039. Unrefined SVM-Struct-

CLUSTALW however displays the worst performance with a value of only 0.01732. As for 

Recall test, the combinations of refined SVM-Struct-PROMALS3D are also shown to give 

the best performance with a value of 0.044. Meanwhile, the worst performance is displayed 

by the unrefined SVM-Struct-CLUSTALW with a value of 0.01363.  
 

3.6. SVM-Fold and SVM-Struct Performance 
 

In this section, results of refined SVM-Fold and SVM-Struct derived from multiple 

alignments tools that are CLUSTALW, MAFFT, ProbCons and T-Coffee for MSA and 

3DCOFFEE, MAMMOTH-mult, MUSTANG and PROMALS3D for MStA are discussed. 

Figure 9 (a) shows the ROC results of refined SVM-Fold and SVM Struct. Figure 9 (b) and 

Figure 9 (c) both shows the results of refined Precision and Recall of SVM-Fold and SVM-

Struct respectively. 

For MSA, refined SVM-Struct-ProbCons performs the best with an ROC of 0.88. 

Meanwhile, the worst performance is shown by refined SVM-Fold-ProbCons with an ROC of 

only 0.61. Precision test on the other hand shows that refined SVM-Struct-ProbCons performs 
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the best with a value of 0.034. In the meantime, the worst performance is displayed by refined 

SVM-Fold-CLUSTALW with a value of only 0.026. As for the Recall test, refined SVM-

Struct-ProbCons also shows the best result of 0.035. Meanwhile, refined SVM-Struct-

CLUSTALW performs the worst with value of only 0.021. 
 

 

MStA derived refined SVM-Fold and SVM-Struct on the other hand shows that refined 

SVM-Struct-PROMALS3D performs the best in terms of ROC with a value of 0.89. Refined 

SVM-Struct-MAMMOTH-mult and SVM-Fold-MUSTANG instead performs the worst with 

an ROC value of only 0.8 respectively. Precision test also displays that refined SVM-Struct-

PROMAL3D performs the best with a value of 0.039. Refined SVM-Fold-3DCOFFEE in the 

meantime performs the worst compared to other MStA tools with a value of only 0.029. 

Recall test on the other hand also shows that refined SVM-Struct-PROMALS3D performs the 

best with a value of 0.044. Meanwhile, the worst performance for Recall test is shown by 

refined SVM-Struct-MUSTANG with a value of only 0.029. 

Overall performance comparison between refined SVM-Fold and SVM-Struct shows that 

refined SVM-Struct-PROMALS3D performs the best with an ROC of 0.89. Meanwhile, 

refined SVM-Fold-ProbCons shows the worst performance with an ROC of only 0.61. As for 
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Precision test, refined SVM-Struct-PROMALS3D also displays the best performance with a 

value of 0.039. Refined SVM-Fold-CLUSTALW in the meantime displays the worst 

performance with a value of only 0.026. Recall test also shows that refined SVM-Struct-

PROMALS3D performs the best with a value of 0.044. Instead, the worst performance is 

shown by refined SVM-Struct-CLUSTALW with a value of only 0.021.  

 

3.7. PHMMs and SVMs Performance 
 

Lastly, the overall performance between pHMMs and SVMs derived from CLUSTALW, 

MAFFT, ProbCons and T-Coffee for MSA and 3DCOFFEE, MAMMOTH-mult, MUSTANG 

and PROMALS3D for MStA are also discussed. Figure 10(a) shows the comparison of ROC 

results of refined pHMMs and SVMs. Meanwhile, Figure 10(b) and Figure 10(c) displays the 

comparison of result of Precision and Recall tests for refined pHMMs and SVMs 

respectively. 

For MSA, refined SVM-Struct-ProbCons performs the best in terms of ROC with a value 

of 0.88. Meanwhile, the worst performance is shown by refined SAM-ProbCons with an ROC 

of only 0.6. Precision test on the other hand shows that refined SVM-Struct-ProbCons 

performs the best with a value of 0.034. Refined SAM-T-Coffee in the meantime performs 

the worst with a value of 0.02061. As for Recall test, the best performance is also shown by 

refined SVM-Struct-ProbCons with a value of 0.035. Meanwhile, the worst performance is 

displayed by refined SAM-T-Coffee with a value of 0.00973. 

For MStA, refined SVM-Struct-PROMALS3D performs the best in terms of ROC with a 

value of 0.89 respectively. The worst performance on the other hand is shown by refined 

HMMER-MUSTANG with a value of only 0.79. For Precision test, refined SVM-Struct-

PROMALS3D displays the best performance with a value of 0.039. Meanwhile, the worst 

performance is displayed by refined SAM-3DCOFFEE with a value of only 0.0267. As for 

Recall test, the best performance is also shown by the combination of refined SVM-Struct-

PROMALS3D with a value of 0.044. The worst performance in the meantime is shown by 

refined HMMER-3DCOFFEE with a value of only 0.02402. 

Overall performance result comparison shows that refined SVM-Struct-PROMALS3D 

performs the best in terms of ROC with an ROC value of 0.89. On the other hand, the worst 

performance is shown by refined SAM-ProbCons with an ROC value of only 0.6. Precision 

test in the meantime witnesses that refined SVM-Struct-PROMALS3D also performs the best 

with a value of 0.039. On the other hand, refined SAM-T-Coffee shows the worst 

performance with a value of 0.02061. Recall test also displays that refined SVM-Struct-

PROMALS3D performs the best with a value of 0.044. Meanwhile, the worst performance is 

shown by refined SAM-T-Coffee with a value of 0.00973.  
 

4.  Discussion 
 

4.1. PROMALS3D: The Best Multiple Alignments 
 

Based on the results from this paper, PROMALS3D can be seen to perform the best for 

multiple alignments. It is believed that PROMALS3D is able to achieve the best performance 

by deriving structural constraints from representative sequences with known structures. 

Furthermore, PROMALS3D uses 3D structural information to guide multiple alignments 

constructed using PROMALS. By automatically identifying homologs with known 3D 

structures, deriving structural constraints through structure-based multiple alignments and 

then combining them with sequence constraints to construct consistency-based multiple 
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alignments, this software is capable to output a consensus multiple alignment which brought 

together sequence and structural information. 
 

4.2. SVM-Struct: The Best Classification Algorithm 
 

As for classification algorithm, SVMs which in this case SVM-Struct employs 

discriminative classification approaches that are proven to be superior compared to other 

methods including pHMMs. Discriminative approaches typically would estimate posterior 

probabilities directly without attempting to model underlying probability distributions [55]. 

This would further focuses computational resources more on specific task which would in 

turn resulted on increasing performance. The SVM-Struct is specifically designed for 

prediction of complex outputs such as multiple alignments and has more superior 

generalization performance. Unlike regular SVMs, SVM-Struct considers multivariate and 

structured outputs. Furthermore, it also employs the 1-slack cutting-plane algorithm which 

uses new but equivalent formulation of the structural SVMs quadratic program. It is also 

several orders of magnitude faster than other methods. 
 

4.3. REFINER: The Impact or Refinement Algorithm 
 

The performance of the optimal mesh algorithm is further enhanced through the 

application of the realignment algorithm which increases the quality of the multiple 

alignments through conserved core iterative realignment of the protein block model. The 

refinement algorithm is applied because multiple alignment which employs progressive 

approach have the problem whereby the misalignments made at previous stages cannot be 

corrected afterwards. This will further disseminate into serious alignment errors. Making 

things worse, the final alignment strongly depends on the order of sequences aligned. The use 

of a refinement algorithm can correct misalignments between a given sequence and the rest of 

the profile and at the same time preserves the family’s overall block model. The ROC test 

shows that the performance of RPHD has been increased for 14.1% through the application of 

the refinement algorithm. 
 

4.4. PRS: The Optimal Mesh Algorithm  
 

Based on the findings of this paper, the combination of PROMALS3D, REFINER and 

SVM-Struct (PRS) produces an optimal mesh algorithm for RPHD. By implementing an 

approach of utilizing 3D structural information to act as guide for multiple alignment 

construction, the algorithm is further enhanced through the use of discriminative classification 

approach that are proven to be superior. The algorithm also employs a refinement algorithm 

to further increase the quality of the multiple alignments, which in turn increased the 

performance for RPHD.  
 

5.  Conclusions  
 

Throughout this paper, a data pre-processing procedure has been introduced to prepare 

the datasets for the RPHD from SCOP 1.73. Furthermore, different combinations between 

multiple sequence alignments and multiple structural alignments programs with pHMMs and 

SVMs has been introduced and integrated in order to construct an optimal mesh algorithm for 

RPHD. The optimal mesh algorithm consists of three main stages that are the multiple 

alignments stage, realignment of protein sequences stage and the classification and evaluation 

stage. A refining algorithm has also been applied to reduce misalignments in multiple 
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sequence alignments and multiple structural alignments, thus further assisting in accurate 

RPHD. The results for RPHD using SCOP 1.73 can be introduced to be utilized as a 

benchmark result for other researchers to further improve the detection of remote protein 

homology via identifying the best combination of multiple alignments and classifier programs 

that include pHMMs for generative classifier and SVMs for discriminative classifier. 

Based on the result of the experiments, the use of realignment algorithm clearly improves 

the detection of remote protein homology by the programs chosen. This can be inducted from 

the performance graphs that shows realigned multiple alignments outperforms multiple 

alignment which is not realigned. Meanwhile, the optimal mesh algorithm is displayed by the 

refined SVM-Struct-PROMALS3D. 

The results and findings from this paper can be further utilized such as by integrating 

biological information, for example from Gene Ontology in order to further increase its 

capability. Apart from that, the step of feature extraction can also be improvised by applying 

non-negative matrix factorization to further increase the performance of the optimized 

algorithm. Lastly, the algorithm designed in this paper can also be utilised by transforming it 

into a web service which will enable researchers to perform RPHD. 
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