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Abstract 

 
 The present paper deals wth a mathematical model for blood flow through stenosed 

arteries with axially variable peripheral layer thickness and variable slip at the wall. The 

model consists of a core region of suspension of all the erythrocytes assumed to be a Casson 

fluid and a peripheral layer of plasma as a Newtonian fluid. For such models, in literature, 

the peripheral layer thickness is assumed a priori based on experimental observations.  In the 

present analysis, new analytic expression for the thickness of the peripheral layer has been 

obtained in terms of measurable quantities (flow rate (Q), centerline velocity (U), pressure 

gradient (-dp/dz), plasma  viscosity (µp),  and  yield  stress (θ)).  Using  the  experimental  

values  of Q,  U, (-dp/dz), µp and θ, the value of the peripheral layer thickness has been 

computed. The theoretically obtained peripheral layer thickness is compared with its 

experimental value.  It is found that the agreement between the two is very good (error < 

1.4%). This information of blood could be useful in the development of new diagnosis tools 

for many diseases.  

 
 Keywords: Blood flow, Axially variable slip velocity, Stenosed arteries, A two-fluid   

                  model, Casson fluid, Different shapes of stenoses. 

 

 

1. Introduction 
 

 Circulatory disorders are well known to be reasonable in most cases of death, 

and stenosis or arteriosclerosis is one such case. Stenosis, a medical term which 

means narrowing of an artery, tube or orifice, is the abnormal and unnatural growth in 

arterial wall thickness that develops at various locations of the cardiovascular systems 

under diseased conditions.  The actual causes of stenosis are not well known but it has 

been suggested that the deposits of cholesterol on the arterial wall and proliferation of 

connective tissues may be reasonable for the same (Chaturani and Ponalagusamy, 

1986; Young, 1968; Shukla et al. 1980b). The presence of stenosis in the 

cardiovascular system can cause circulatory disorders by reducing or occluding the 

blood supply which may result in serious consequences (myocardial infarction, 

cerebral strokes). 
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               Many investigators (Chaturani and Kaloni,1976; Chaturani and 

Upadhya,1979; Shukla et al.,1980b; Majhi and Usha,1984; Chaturani and 

Biswas,1983; Philip and Chandran,1996) have theoretically studied the flow of blood 

through uniform and stenosed tubes and analyzed the influence of slip velocity or 

peripheral plasma layer thickness on the flow variables such as velocity, wall shear 

stress and flow resistance.  In these models, the peripheral layer thickness and slip 

velocity are assumed a priori based upon the experimental observations.  To 

understand the flow patterns in stenosed arteries, Young(1968), Macdonald(1979), 

Deshpande et al.(1979), Shankar and Hemalatha(2006) etc., have analyzed the flow of 

blood through an arterial stenosis.  Lee and Fung(1970) have obtained the numerical 

results for the streamlines and distribution of velocity, pressure, vorticity and the 

shear stress for different Reynolds number in blood flow through locally constricted 

tubes.  In these models, the flow of blood is represented by one-layered model.  

Bugliarello and Sevilla(1970) and Bugliarello and Hayden(1963) have experimentally 

observed that when blood flows through narrow tubes there exists a cell free plasma 

layer near the wall.  In view of their experiments, it is preferable to represent the flow 

of blood through narrow tubes by a two-layered model instead of one-layered model. 

 Shukla et al (1980a,b) have taken two-layered models and analysed the 

influence of peripheral plasma viscosity on flow characteristics.  Chaturani and 

Kaloni(1976), Chaturani and Ponalagusamy (1982), Sankar and Lee(2007), Sankar 

and Ismail(2009),  Sankar and Lee(2009) and Ponalagusamy(1986) have considered 

the flow of blood represented by a two-layered model. In all these models, the 

peripheral layer thickness is assumed a priori. It would be of interest to obtain the 

analytic expression for peripheral layer thickness in terms of the measurable flow 

variables (flow rates, pressure gradient, etc.). 

 The focus of this investigation is to obtain, for the first time, analytical 

expression for peripheral layer thickness in terms of measurable flow variables. 

(pressure gradient tube radius, flow rate etc.,) 

 

 

2. Formulation of the problem 
 

 Consider an axially symmetric, steady, laminar and fully developed flow of 

blood through an arterial stenosis as shown in Figure 1. Here the flow of blood  is 

represented by a two-layered model (a core of red blood cell suspension surrounded 

by a peripheral layer of plasma (Figure 1)). It is assumed that the rheology of blood in 

the core region has been characterized as a non-Newtonian fluid obeying the law of 

Casson model and the peripheral layer of plasma as a Newtonian fluid. 
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Figure 1.  Geometry of Stenosed Artery(in dimensionless form) 
 

                 

We shall take the cylindrical coordinate system ( φ,, rz ) whose origin is located 

on the vessel  (stenosed artery) axis. The problem is investigated under the following  

assumptions (Philip and Chandra,1996): 

 

i) the motion is slow, so the inertia effects can be neglected 

ii) the variation of cross-section of the artery(tube) is considered to be very 

small  

iii) no body forces act on fluid 

iv) flow, which is due to the pressure gradient, is one- dimensional and fluid is 

incompressible. 

 

 The consistency function )(rµ may be written as  

   )(rµ  = cµ  for 0 ≤ r ≤ )(1 zR            … (1) 

            =  pµ  for )(1 zR  ≤ r ≤ )(zR            … (2)  

 

where cµ   and pµ  are the viscosities of the central core fluid(Casson fluid) and the  

plasma(Newtonian fluid) respectively and  )(1 zR  and )(zR are the radii of the central  

core region and the artery in the stenotic region. The peripheral layer is of axially 

variable  

 

thickness  ).z(δ Thus, the core region is given by 0 ≤ r ≤ )(1 zR = )(zR - )(zδ   

and the  

µp,  ρp up δs 

 

µc, ρc, uc 

us(z) 

0 
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Peripheral region is given by )(1 zR  ≤ r ≤ )(zR . 

 The constitutive equation for a Casson fluid (blood) is given by  
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The non-dimensional variables are  
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where u  is the velocity component in the axial direction( z ), p  the pressure, pρ  is 

the density, 0R  is the radius of the normal artery, 0z the one-fourth length of the 

stenosis 00 ,UL   the average velocity in the normal artery region, 0τ  the yield stress of 

Casson’s fluid and sδ  is the maximum height of the stenosis. The quantities in the 

peripheral layer and in the central core are denoted by subscripts p and c respectively. 

‘-‘over a letter denotes the corresponding dimensional quantity.  

Under the assumptions made in the present analysis, the momentum equations can be  

 

approximated as ( Young, 1968; Chaturani and Ponnalagarsamy, 1986): 
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for region )(1 zR  ≤ r ≤ )(zR  
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 where  
c
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The boundary conditions are 
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ττ                                                                          …(8) 

 

where us(z)( = 
0U

u s  )is the non-dimensional axially variable slip velocity, τ  is the 

shear stress and Rp (= Rp/R0 )is the plug core radius.  It may be remarked that us(z) is a 

function of z.  The geometry of the stenosis(in non-dimensional form-Figure (1)) is 

given by (Ponalagusamy,1986),  

 

])dz()dz(L[A1)z(R n1n
0 −−−−= − ,for   d≤z≤d+L0                                                        … (9) 

 

           = 1, otherwise                                  

 

Where n ( ≥ 2)  is a parameter determining the shape of the stenosis, )z(R  is the radius 

of the artery in the stenotic region, 0L  is the length of the stenosis, d  indicates its 

location and A is given by 
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00
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−
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Here sδ  denotes the maximum height of the stenosis at  

 

)1n/(1

0

n

L
dz

−
+=  

 

such that the ratio of the stenotic height to the radius of the normal artery is much less 

than unity.  It is of interest to note that an increase in the value of n leads to the 

change of stenosis shape.  When n = 2, the geometry of stenosis becomes symmetric 

at
2

L
dz

0+= . 

 

3. Solution   
 

Using boundary conditions (8), the solutions of Eqs. (4) and (6) can be obtained as 
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z

p

∂
∂

−  

 

The velocity in the plug core region upl is  
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where pR  = 2 β θ / )(zq . 

 

                                                                                                                               

The  flow rate Q may be obtained as 
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4. Analytic Expressions For Slip Velocity, Core Viscosity And   Peripheral 

Layer Thickness 
 

Btrunn(1975) has indicated that the introduction of a thin solvent layer near the wall 

produces the same effect as that of the slip at the wall.  In the case of one layered 

model (R = R1) with slip at the wall, the flow rate Q1L (from Eq. (13) ) can be 

obtained as 
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where 
ρ
ρ

ρ
p

=* , Re = 
*

00

µ
ρ RU

 and ρ  and *µ  are the density and viscosity of the 

fluid when the flow is one-layered.  For the two-layered model without slip at the wall 

( us = 0), the flow rate LQ2
 (from  Eq.(13)) can be obtained as 
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where 0/)()( Rzz δδ =  is the non-dimensional peripheral layer thickness which is a 

function of axial distance z.  Since the two models (one-layered with slip and two-

layered without slip) represent the same phenomena, the flow rates can be equated as  
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For a two-layered model without slip at the wall (us = 0), the expression for velocity 

in the core region is obtained from Eq.(10) as  
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The centerline velocity U (at r = pR ) from Eq.(17) can be obtained as  
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Elimination of  µ  from Eqs. (16) and (18) gives 
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Since all the quantities on right hand side of Eq. (19) are measurable experimentally, 

the peripheral layer thickness )(zδ can be computed.  

  

5. Results And Discussion 
           

           It is pertinent to mention that we are only interested in computing the values 

of
R

z)(δ
, which are real and less than or equal to unity.                                                                                                                                              
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Since the experimental values of pressure gradient, flow rate and centerline velocity 

for flow through an arterial with mild stenosis at different cross-sections for various 

values of stenotic height and shapes and red blood cells concentrations are not 

available, the variation of  peripheral layer thickness with the axial distance cannot be 

obtained.  However, to show the procedure and to see the accuracy of the method, we 

have used the experimental data of flow through a uniform tube. First, we write 

Eq.(19) in the dimensional form as 
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where 0q  is the pressure gradient and 0δ  is the peripheral plasma layer thickness in 

the normal artery region.  For blood with 40% and 6% red blood cell concentration, 

we have the following data from Bugliarello and Sevilla(1970) and Bugliarello and 

Hayden(1963). 

 

For 40  mµ Diameter 

 

C = 40% and , sec/10*2342.19 36* cmQ −= , 

0δ = 3.2 mµ , and , 33

0 /10*5.167 cmdyneq = , 

atPp (0144.0=µ  25.5
0
C), sec/37.2 cmU =  and 0τ =0.04 dyne/cm

2
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For 66.6  mµ Diameter 

 

C = 6 % , sec,/10*6546.45 36* cmQ −=  

0δ = 12.876 mµ , and ,3/10*2655.14 3

0 cmdyneq =  

atp (0143.0=µ  25.5
0
C),  sec/38.2 cmU = and 0τ =0.0064 dyne/cm

2
 

 

Using these value, the peripheral layer thickness is computed (Table 1) for blood flow 

in 40 mµ  and 66.6 mµ  tube diameter from Eq. (20). One can easily see from this 

table that the peripheral layer thickness, obtained from the present analysis , has a 

good agreement with the experimental observation(Bugliarello and Sevilla,1970; 

Bugliarello and Hayden,1963), the error  is less than 1.40%. 

 

Table 1. Comparison of Peripheral Layer Thickness moµδ  

 

Tube diameter 

moµδ  

Present work Experimental 

Results 

(C-N) 

Difference % 

Casson – Newtonian 

(C-N) 
Casson – Newtonian 

40µm 3.1658 3.2000 1.0688 

66.6µm 12.6973 12.8760 1.3878 

 

 

6. Conclusion 
 

It is of interest to mention that measuring the thickness of peripheral plasma 

layer experimentally is not so easy because its thickness is not constant even for the 

steady flow through uniform tubes, due to the random motion of the suspended 

particle (red blood cell); whereas the reliable values of pressure gradient, plasma 

viscosity and centerline velocity can be measured for a given flow rate, tube size and 

concentration of blood.. Therefore, it is preferable to use these reliable measurements 

for the computation of the value of peripheral layer thickness using newly developed 

equation (19).  

 The present analysis could also serve as the check for the experimentally 

measured rheological values of blood. It may be mentioned at this stage that the 

variation of peripheral layer thickness with the axial distance in the stenotic region 

has not been analyzed due to the non-availability of the experimental values of 

pressure gradient and the centerline velocity at different cross-sections of the stenosed 

arteries for various values of stenotic heights, flow rates and concentrations.  It would 

be of interest to conduct such experiments to provide this vital data which, in turn, 

could be useful in the understanding of the rheology of blood.  This rheological 

information of blood in turn could be exploited for the development of new diagnostic 

tools for many diseases such as myocardial infarction, hypertension, renal, retinal, etc. 
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