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Abstract 

 

The average mutual information (AMI) known from information theory has been reported 

as a strong genome signature in some literature and we have reported the use of 

oligonucleotide frequencies as a genome signature. In this work we improve the use of AMI 

as a training feature for Growing Self Organising Maps (GSOM). Although the range of k is 

considered as an important parameter in AMI, no standard range for k is proposed. Our first 

contribution is to introduce a new growth threshold (GT) for GSOM and use it to identify the 

best range of k for clustering prokaryotic sequence fragments of 10 kb. We then, compare the 

results using the best k range of AMI against our previously published results using 

oligonucleotide frequencies. These experiments showed that the newly proposed GT equation 

makes GSOM able to efficiently and effectively analyse different data features for the same 

data. The results also emphasize our use of oligonucleotide frequencies as opposed to AMI.  
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1. Introduction 

Average mutual information (AMI) is a well-known measure of dependence of two 

variables in information theory, which has increasingly been used for analysing DNA 

sequences. Grosse et al. [1] showed that the probability distributions of AMI are 

significantly different in coding and non-coding DNA; Slonim et al. [2] used AMI to 

study the relationships between genes and their phenotypes; and Swati [3] applied a 

mutual information function to quantify the similarities and differences between 

bacterial strains. The investigation of AMI on DNA sequences has been also extended 

to DNA fragments. Otu and Sayood [4] revealed that fragments coming from the same 

regions of the target sequence have similar AMI profiles. Bauer et al. [5] found that the 

AMI profile could separate the fragments, whose sizes vary between 200 base pair (bp) 

and 10 000 bp, of two eukaryotes and claimed that the AMI profile can be used to 

discriminate between DNA fragments from different species. This growing evidence 

supports the hypothesis that AMI may also be able to distinguish DNA fragments 

according to their phylogenetic relationship. Therefore, this paper investigates the use 

of AMI as a training feature in Growing Self-Organising Maps (GSOMs) for separating 

DNA sequence fragments, and directly compares the results with AMI to the results 

with oligonucleotide frequencies obtained in our previous work [6] on the same datasets. 
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In the first development of GSOM, Alahakoon et al. [7] claims that the spread factor 

(SF) introduced to the Growth Threshold (GT) equation in GSOM is independent of the 

dimensionality of the data and that the same SF can be used to generate maps for 

different dimensionalities. In our previous experiments [6], the same SF was tested for 

datasets with different dimensions. However, a significantly lower map resolution was 

observed as the order of oligonucleotide frequency (i.e. dimensions) was increased. In 

order to rectify such unexpected behaviour of GSOM in the early tests, the SFs were 

experimentally determined for datasets with different oligonucleotide frequencies to 

achieve similar map resolutions for comparison. Although the experiments were 

completed successfully by spending more time and effort to experimentally determine 

the same map resolution for datasets with different dimensionalities, it cannot be 

repeated for the analysis of large datasets, for which a large computing time is required. 

This problem raised a question in the accuracy of the original GT equation. In this 

paper we propose a new GT equation generalised to a wider range of distance functions, 

as well as rectifying the problem of different dimensionalities so that the intended 

purpose of introducing SF in [7] can be achieved. Then the proposed GT equation is 

applied to investigate the AMI for DNA sequence separation.  

The remainder of the paper is organised as follows: Section 2 describes the background of 

GSOM and present the new generalised GT equation. Section 3 shows the results generated 

using AMI as a training parameter to GSOM. Finally, Section 4 provides a summary and 

conclusion of this paper. 

 

2. Backgrounds 

Growing Self-Organising Map (GSOM) [7] is an extension of Self-Organising Map (SOM) 

[8]. GSOM also considers as dynamic SOM overcomes the weakness of the need for user 

defined static map structure of SOM. Both SOM and GSOM are used for clustering high 

dimensional data. This is achieved by projecting the data onto a two or three dimensional 

feature map with lattice structure where every point of interest in the lattice represents a node 

in the map. The mapping preserves the data topology, so that similar samples can be found 

close to each other on the 2D/3D feature map. 

 

2.1. The problem in the original Growth Threshold (GT) equation in GSOM 

While SOM uses a pre-specified number of nodes and map structure in training, 

GSOM uses a threshold to control the spread of a map in the growing phase so that the 

resolution of the map will be proportional to the final number of nodes generated at the 

end of the growing phase. This threshold can be any constant value and should be 

inversely proportional to the amount of detail in the hidden data structure that the user 

would like to observe in the map. Nevertheless, in order to standardise this threshold 

into a parameter which is easy to use, Alahakoon et al. [7] introduced the growth 

threshold (GT) equation to determine the threshold: 

GT = -D*ln(SF) . (1) 

The user conveniently selects SF between zero and one as a standardised referencing 

measure for the map resolution. The GT equation also includes the dimensionality (D) 

of input data vectors intended to make it versatile for analysing datasets with different 
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dimensions while using the same SF as a referencing measure. However, this was not 

observed in our previous experiment [6]. 

In the first development of GSOM, Euclidean distance was used as the similarity 

measure. When an input vector is compared with a node, the accumulated error of the 

node is increased by the distance difference, which is defined as: 
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where w is the weight vector of the node, and x is the input vector (w, x∈ℜ
D
 where D is 

the dimensionality of data). 

The growing mechanism in GSOMs depends on the comparison of the accumulated 

error in a node and the GT value, which is determined prior to the start of training. In 

order to achieve the same spread for different dimensionalities, when the GT value is 

increased with increased data dimensionality, the generated error should also be 

increased proportionally to the increment of the GT value. However, this is not the case 

in the original GT equation. A simple example can effectively illustrate this problem. 

Let us consider GT = GT_D where D indicates the number of dimensions. To train a 1D 

dataset with SF=0.1, the original GT equation gives GT_1=2.3. Using the standard 

practice in artificial neural networks that all dimensions are normalised to values 

between zero and one, the maximum possible error (maxErr) is one, as shown in Figure 

1(a). However, for a 2D dataset (Figure 1(b)) using the same spread factor (SF=0.1), the 

GT value is doubled to GT_2=4.6 but the maximum possible error is only 2  which is 

less than double the maximum possible error in the 1D case: GT_2 = 2*GT_1, but 

maxErr_2D < 2*maxErr_1D. The disproportion between GT value and generated error 

appears whenever the dimensionality of data is changed. Consequently, the resultant 

map will be smaller for dataset with a higher data dimensionality. 

  
                          (a)                              (b) 

Figure 1. Illustration of maximum Euclidean distance. (a) 1D, (b) 2D input 

space. Stars represent the vectors locating in the corresponding normalised 

input space. 

2.2. A generalised GT equation 
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The GT equation is directly related to the generated errors which depend on the 

distance function used. Hence, the GT value is implicitly linked to the distance function. 

The Minkowski distance, a general form of some other distance functions, is chosen to 

be used in the modification.  

Considering the Minkowski distance function:  
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where AVG represents a constant value over all dimensions of data and for a large D, 

AVG is less sensitive for change in D. 

Since GT is related to dist(x) and for the GT equation to account for dimensionality, 

the simplest solution is to make GT proportional to the dimensionality related part in 

dist(x) assuming D is large and therefore AVG is constant: ∝GT D
1/p

. Then using the 

same standardising control measure SF as in the original GT equation, the generalised 

GT equation becomes: 

)ln(

1

SFDGT p−=
 , 

(4) 

where 
AVGeSF −= . Considering that AVG can take values between zero and infinity, 

we obtain 10 ≤≤ SF . In this light we observe that the original GT equation was defined 

to suit only p=1, which is the Manhattan distance, but not the intended Euclidean 

distance (p=2). 

 

2.3. Average mutual information for DNA sequences 

Mutual information, which measures the dependency of two random variables, is 

originally from the field of information theory. In this paper, the average mutual 

information (AMI) reported in Bauer et al. [5], is adopted. In a DNA sequence, if X is 

taken to be the base at location i and Y to be the base at location j, which is k positions 

downstream from i (i.e. j = i+k), the AMI function (Ik) is defined as: 
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where A is the set of nucleotides { }TGCA ,,, ; p(X) is the marginal probability of X and 

is defined by dividing the total number of times the nucleotide X occurs by the total 

number of bases in the sequences; and pk(X,Y) is the joint probability for the 

nucleotides occur k bases apart and is defined as: 
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where ),( YXnk is the number of times two bases k apart take on the values AX ∈ and 
AY ∈ . 

By calculating the AMI for different values of k for a sequence fragment, an input 

vector for the GSOM training can be created. Each k value will correspond to a single 

dimension in the input vector and the dimensionality of the vector depends on the 

number of different k used. 

 

2.4. Quality measurement of the clustering performance in a mixing region 

To evaluate a clustering algorithm’s ability to group DNA sequence fragments into 

species-specific or “pure” clusters, we define two criteria that measure the clustering 

quality in a mixing region: intensity of mix (IoM) and level of mix (LoM), where the 

former measures the percentage of mixing and the later indicates the taxonomic level of 

ambiguity for a given pair of clusters [6].  

The IoM is evaluated based on the concept of mixed pair described below. Let A and 

B be sets of vectors belonging to species A and B, respectively, and n(X) is the number 

of elements in set X. If A and B is a mixed pair, then the percentage of A in the mixing 

region of the two classes is n(A ∩  B | A)/n(A) and the percentage of B is n(A ∩  B | 

B)/n(B). For k number of species, there can be up to k (k − 1)/2 mixed pairs. 

Additionally, a pair of clusters is only considered to be truly mixed when both clusters 

are heavily overlapped. We use TH = 5% for the threshold of being truly mixed 

meaning that, statistically, we have a non mixing confidence of 95%. The IoM measures 

the amount of mixing sequences and it is nonlinearly categorised into five levels: low 

(L) 5%–10%, medium low (ML) 10%–20%, medium (M) 20%–40%, medium high 

(MH) 40%–60%, and high (H) 60%–100%. 

To evaluate clustering results of species, we use LoM to describe the taxonomic level 

of the mixed species. Because of the evolution of organisms, nucleotide composition of 

genomes belonging to the same lower taxonomic levels can be very similar. Clustering 

organisms at higher level of taxonomy should be easier than at lower level of taxonomy. 

Therefore, if truly mixed pair occurs, lower LoM (e.g., Species) is more acceptable and 

more desirable than higher LoM (e.g., Kingdom). In summary, the proposed two 

measures are defined as  

� IoM ∈ {L,ML,M,MH,H},  

� LoM ∈ {Species, Genus, Family, Order, Class, Phylum, Kingdom}. 

The two proposed measures, IoM and LoM, are only defined for truly mixed pairs to 

evaluate the clustering quality in the mixing regions of a map by the following steps. 

(i) Find truly mixed pairs for all pairs of species where if n(X ∩  Y | Y)/n(Y) ≥  

TH and n(X ∩  Y | X)/n(X) ≥  TH, then X and Y is a truly mixed pair. 

(ii) If X and Y are truly mixed, determine IoM according to min{n(X ∩  Y | 

Y)/n(Y), n(X ∩  Y | X)/n(X)}. 
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(iii) Identify LoM of X and Y. 

Clustering results can now be assessed based on three criteria: number of truly mixed 

pairs, IoM, and LoM. However, the criterion associated with the higher priority may 

vary between applications. Therefore, in our assessment, one result is better than 

another only when it is superior on at least two of the three measures. 

 

3. Results 

This work investigates whether the average mutual information (AMI) can be used to 

separate short DNA sequence fragments, and compares the results generated by the 

AMI with the results created by oligonucleotide frequencies. The AMI, which was used 

in Bauer et al. [5], is adopted and summarised in Section 2.3. In order to compare the 

oligonucleotide frequency results produced in our previous work [6], the same two sets 

of species genomes were used here. Similar data preprocessing was applied to produce 

datasets for these experiments (i.e. using a fragment length of 10 kb), except that the 

input vectors were created by calculating the AMI for a series of k values instead of 

calculating the oligonucleotide frequencies. For convenience, datasets produced using 

the k values ranging from X to Y will be denoted as k:X-Y. For example, k:1-100 

represents the datasets which were generated using the AMI with k values ranging from 

1 to 100.  

Different ranges of k values have been used in literature depending on preference, 

but no standard range of k value is proposed. Therefore, this investigation was also 

aimed at finding a proper range for k for the task of species separation. To do this, the 

generalised GT equation can be conveniently applied with the same SF for all different 

ranges of k values. The same training settings are used as in our previous work [6] (i.e. 

learning length, learning rate, etc.). SF=0.01 was found to produce a similar resolution 

to the maps generated for the oligonucleotide frequencies and therefore, it is used in 

this work allowing direct comparison. As Bauer [5] used the range of k:5-512 in his 

experiment to successfully separate the short DNA fragments and a longer range of 

dependencies between two nucleotides are improbable from the biology perspective, 

such range of k was used here as maximum range of k for the investigation. Four 

datasets were created for each of the two sets of species genomes. These datasets will 

be referred as long-range k values in the following discussion. They are: k:1-100, k:5-

300, k:201-500 and k:5-512. The evaluation method for the mixing regions, introduced 

in our previous work [6] was adopted here to evaluate results and a summary is 

described in Section 2.4. 

The results generated by the AMI with the four long-range k values for Set1 and Set2 

are tabulated in Table 1 and Table 2 respectively. For convenience, the results 

generated by tetranucleotide frequency in our previous work [6] were also included in 

the tables. From these results, the AMI performed very badly for both Set1 and Set2 

since there are large numbers of mixed pairs. However, it was noticed that the shorter 

range of k values, i.e. k:1-100, produced fewer mixed pairs compared to other long-

range k values which was observed consistently in both sets. Therefore, it was 

concluded that even shorter ranges of k values may perform better. 

To test the above hypothesis, another five datasets for each of Set1 and Set2 were 

generated using the short range of k values: k:1-5, k:1-10, k:1-16, k:1-25 and k:1-50. The 
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results for Set1 and Set2 of each of the five datasets are shown in Table 3 and Table 4 

respectively. As expected, these short-range k values provide better results than the long-

range k values. For example, the numbers of mixed pairs for any short-range k values in 

Table 3 are smaller than those for the long-range k values in Table 1, and similarly for Table 

4 and Table 2. The best results are shown where k:1-16 for both Set1 and Set2. However, 

although it shows the best results of all the tested ranges of k values, this range still performs 

less effectively than the tetranucleotide frequency. 

Table 1. Results of using AMI with long-range k values for Set1. ‘Tetra’ 

represents using the tetranucleotide frequency as training feature; ‘k:X-Y’ 

denotes using the AMI with k ranges from X to Y as the training features. If a 

specific ‘IoM’ is more than one, its name is displayed and followed by a colon and 

number of times it should appear. 

 Tetra k:1-100 k:5-300 k:201-500 k:5-512 

#OfMix 4 34 41 42 40 

Kingdom -- ML:4, M, L:2 H:3, MH, ML:3, 

L 

H:3, MH, M, ML:2, 

L 

H:3, MH, ML:4 

Phylum -- MH, M:2, ML:3, 

L:5 

H:3, MH:2, M:4, 

ML, L:3 

H:3, MH, M:6, 

ML:2, L:2 

H:3, MH:2, M:4, 

ML, L:3 

Class -- H, MH, M:3, ML:2, 

L:2 

H:4, MH, M, 

ML:4, L:2 

H:4, MH, M:4, ML:3 H:4, MH, ML:5, M, 

L 

Order L:2 H, MH, M, ML:2 H, MH:2, M:2 H, MH:2, M:2 H, MH:2, M, ML 

Family -- -- -- -- -- 

Genus -- -- -- -- -- 

Species ML, L MH, M H, MH, L H, MH, ML H, MH 

 

Table 2. Results of using AMI with long-range k values for Set2. 

 Tetra k:1-100 k:5-300 k:201-500 k:5-512 

#OfMix 0 25 43 45 44 

Kingdom -- -- -- -- -- 

Phylum -- H, MH:2, M:3, 

ML:5, L:6 

H:6, MH:8, 

M:8, ML:4, L:2 

H:8, MH:11, M:7, 

ML:3, L 

H:8, MH:6, M:8, 

ML:7 

Class -- MH, M, L:2 H:2, MH, M:3, 

ML:2, L 

H:2, MH:3, M:2, 

ML:2 

H:2, MH, M:3, ML:2, 

L 

Order -- M, ML:2, L H, M:3, ML, L H, M:2, ML:3 H, M:3, ML, L 

Family -- -- -- -- -- 

Genus -- -- -- -- -- 

Species -- -- -- -- -- 

 

 

Table 3. Results of using AMI with short-range k values for Set1. 

 Tetra k:1-5 k:1-10 k:1-16 k: 1-25 

#OfMix 4 31 29 27 30 

Kingdom -- ML:4, L:2 ML:4, L M:2, ML:3 M:2, ML:3 

Phylum -- MH, M, ML:4, L M:2, ML:2, L:5 MH, M, ML:3, M:3, L:7 
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L:3 

Class -- H, MH:2, M:3, 

L:3 

H, MH, M:2, ML:2, 

L:2 

H, M:5, L H, M:4, ML, L:2 

Order L:2 H, MH:2, M, 

ML:2 

H, MH, M, ML:2 H, M:2, ML:2 H, M:2, ML:2 

Family -- -- -- -- -- 

Genus -- -- -- -- -- 

Species ML, L MH:2, L MH:2 MH, M H, M 

 

Table 4. Results of using AMI with short-range k values for Set2. 

 Tetra k:1-5 k:1-10 k:1-16 k: 1-25 

#OfMix 0 24 19 19 21 

Kingdom -- -- -- -- -- 

Phylum -- MH:2, M:3, ML:6, 

L:5 

H, M:4, ML:3, L:5 MH:2, M:2, ML:4, 

L:4 

MH:2, M:4, ML:2, 

L:5 

Class -- MH:2, M, L:2 MH, ML:2, L M, ML, L:3 M, ML, L:4 

Order -- M, L:2 M, L M, ML M, ML 

Family -- -- -- -- -- 

Genus -- -- -- -- -- 

Species -- -- -- -- -- 

 
4. Conclusion 

This paper identified a key deficiency in the original GT equation through experimental 

analysis. Consequently, a generalised GT equation was proposed to suit a wider range of 

distance functions and to give GSOM the ability to analyse datasets with different numbers of 

dimensions through a single SF value. Then the proposed GT equation was used to effectively 

investigate the AMI as applied to the separation of short sequence fragments. The long-range 

k values performed less than the short-range ones, perhaps because the short sequence 

fragments are not long enough to provide a good estimation for long-range k values [9]. The 

results showed that k:1-16 performed better than other short ranges of k values, such as k:1-

10, and better than the longer ranges of k values, such as k:1-25. This may also be because the 

short ranges of k values did not provide enough signals; the amount of stored signal was 

limited by the short length of sequences for the longer ranges of k values. Although the best 

range of k values (k:1-16) for the AMI could be identified after intensive tests, the results 

were inferior in comparison to the excellent results achieved by using oligonucleotide 

frequencies  [6]. The poor results for the AMI may be due to the noise from the non-coding 

region of the fragments, as Grosse et al. [1] showed that  the probability distributions of AMI 

are significantly different in coding and non-coding DNA. Therefore, the results should be 

improved if only the sequences with sufficient portions of coding DNAs are employed in the 

clustering. 
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