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Abstract 

In the digital era of technology and advanced automation, data or information is 

vulnerable to copying, altering, and claiming someone else's work as their own. Source code 

theft or e-plagiarism is challenging to track in hundreds of assignments submitted by 

students. Despite the year's efforts, the digital plagiarism detection software currently 

available performs well enough for a naïve programmer to detect literal plagiarism. The 

available source code similarity detectors provide insufficient results when a student uses 

complex strategies such as word substitution or reordering programming constructs. To 

overcome the above-mentioned challenges, this research aims to deliver an assistive forensic 

engine for the professors and teaching assistants to evaluate the similarities in the student's 

assignments. This research's primary objective is to help the evaluators get closer to the 

sophisticated code thieves and abide by the university's academic dishonesty regulations. The 

proposed forensic similarity detection engine's constructive methodology is specially 

designed for studies where C and C++ programming languages are majorly used in 

academic assignments. After selecting the ATM (Attribute counting metrics), the system 

implementation is divided into two phases, where phase one consists of lexical analysis and 

tokenizer customization. The second phase mostly consists of rolling out the supervised 

learning algorithm on the generated data to classify the comparison of two files as a truth 

value. The similarity elements and observations recorded can be represented to the 

evaluators in the form of visualizations for ease of understanding and efficient decision 

making. The paper also relates the proposed system with the previous and existing system and 

mitigates the past issues noted in the latter half. 

 

Keywords: Similarity detection, E-Plagiarism, Tokenization, Lexical analysis, Distance 

algorithm, Euclidean distance 

 

1. Introduction 

In a world full of advanced technology, searching for programming solutions, coding help, 

tutorials, and examples of source codes is a regular activity for programmers pursuing their 

topic of interest. Because of the high availability and convenience, digital documents can be 
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easily copied, duplicated, and discarded across several platforms. The issues and challenges 

relating to digitalization have given rise to copying and cheating phenomena among 

individuals, which is often referred to as 'Plagiarism'. According to the most basic definition, 

plagiarism can be explained as copying/owning someone else's work without consent or not 

giving inventor credits to the initial owner. According to Parker et al. [1], a plagiarized 

program is a copied or modified version of another owner‟s source code with minor edit 

activities in the area of digital computer programming. In this research article, we will be 

focusing on e-plagiarism and similarity detection in C-C++ assignments submitted 

electronically to the web portal. Similarity detection is a complex mechanism for trivial 

plagiarism in source codes provided by undergrad and graduate students. The main objective 

of the proposed system is to aid/assist the teaching assistants to get closer to the source codes, 

which have a high degree of similarity. The detailed analysis and conclusions derived from 

the computation will be sufficient enough to target the plagiarized assignments submitted by 

the students. Plagiarism at an academic level is unacceptable as it brings no justice to the 

workers of original content. Every university now has an academic dishonesty regulation, 

which is an immoral and illegal act of plagiarism resulting in non-monetary penalties.  

Source code duplication has been increased over the years and is problematic for the future 

of innovations. One among the first few researchers for plagiarism and similarity detection 

was Ottenstein [2] who published the first article in 1976 and emphasized more on operands 

and operators. Matija [3] described the never-ending work on source code similarity and 

plagiarism techniques and stated that the already existing tools had not been upgraded or 

updated for ten years, and also, there have not been any new inventions of relevance. Over the 

years, unskilled students' tendency has changed from adding more spaces and beautifying the 

code with comments to modifying the facial features such as identifiers, comments, an order 

of functions, and indentation of the code to avoid the same view or structural aesthetics. The 

sophisticated or skilled plagiarists are capable of altering the core components of code such as 

operators, declarations, expressions, constructors, control structures, and initializations.  Al-

Khanjari [4] in their publication on 'Plagdetect plugin' described the purpose of ATM's, SM's, 

and Hybrid techniques combining the formers ones. The authors made use of ATM (10 

attributes in the matrix) combination with Equivalence ratio in their system to compute the 

similarities between multiple java class files. To shed some light on the sophisticated 

plagiarist tricks, consider the segment of the C++ code given below. The two sections belong 

to two student assignments, such as Student1 and Student2, wherein this case Student1 is the 

rightful owner of the code, and Student2 is a semi-skilled plagiarist. The second one has 

copied the former student‟s code and altered it in a decent way of not catching the eye of the 

examiner for a case of plagiarism or misconduct. 
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Table 1.  C++ segment alteration: semi-skilled plagiarist 

Student 1.cpp Student2.cpp 

#include <iostream> 

using namespace std; 

 

int main() { 

  int x, y; 

  int sum; 

  cout << "Type a number: "; 

  cin >> x; 

  cout << "Type another number: "; 

  cin >> y; 

  sum = x + y; 

  cout << "Sum is: " << sum; 

  return 0; 

} 

#include<stdio.h> 

#include <iostream> //input output header file 

#include<string> 

 

using namespace std; 

 

int main() { 

int result;           //variable to store the result 

int a, b; 

  cout << "Enter a number "; 

  cin >> a; 

  cout << "Enter another number "; 

  cin >> b; 

  result = a + b; 

  cout << "The result is: " << result; 

  return 0; 

} 

It is very trivial for Student2 to modify the first assignment by simply putting fillers in the 

code and a few more edit operations. The changes made by Student2 in Student1‟s 

assignment are mentioned below as follows: 

To get away with plagiarism on the first line, I added two more unneeded header files. 

(Changes highlighted in Student2.cpp section of the table) 

The container variables for values have been renamed.. „Int result‟ for „int sum‟, „x‟ and 

„y‟ changed to „a‟ and „b‟. 

Marked two comments to introduce a new aspect if compared with assignment1.cpp 

The above three edit operations allowed Student2.cpp to score 3-4 new lines in the code. 

 

2. Literature survey 

In the past few years, several research pieces have shown the statistics of plagiarism 

detection in a student programming environment in academics where marked assignment 

submission is involved. Faidhi et al. [5] in their research provided an in-depth analysis of 

program similarity and reported plagiarism for 'Pascal' programming language. The paper's 

literature survey consists of multiple software science measures included in the set of 

analyses, such as time complexity of the program, running time, length measures, absolute 

errors, and language level. A metric of 10 measures each was determined for program 

similarity. The first metric measures' m1 to m10' are supposedly intended towards a novice 

programmer's alterations, leading to an act of plagiarism. A few examples to give for the first 

set would be several characters, comments, indented lines, and blanks per line followed by 

the number of identifiers, reserved words, and variety of each. The second set of measures 

mostly attempts to qualify hidden/intrinsic features of program structure, which also indicates 

the flow of control. Talking about metrics and ratios, Al-Khanjari [4] addressed the 

plagiarism problem for beginner programmers in their critical review on 'PlagDetect', 2010. 

The novel research focused on evaluating the multiple existing metrics for plagiarism 

detection and then selecting an effective and appropriate ATM (Attribute counting metrics) 
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for detecting similarities in java source codes. Unlike ATMs, SM techniques compare the 

program structures of multiple files and make up the result to spot the similarities. 

Simply put, the SM approach begins with breaking down the source code into a stream of 

tokens and then compare the streams of programs to detect standard segments. Thomas 

McCabe [6] mentioned the complexity measure for the similar metrics described in the paper. 

The authors and inventors of the PlagDetect tool carried their final procedures with 

equivalence ratio (similarity coefficient) and ATMs for investigating java assignments, and 

validation has shown promising results in a comparative study executed against JPlag and 

YAP tools. The plagiarism detection method proposed in this paper is an effective 

combination of ATMS and SMs, also called a hybrid approach to define the combination of 

both techniques. The core idea is divided into two stages, such as initial lexical analysis and 

final comparison analysis after breaking down the code into tokens and lexemes further. The 

lexical tokenizer designed for lexical analysis is responsible for categorizing the lexemes into 

identifiers, keywords, mathematical operators, numerical operators, logical operators, and 

other operators. The other comment tokenizer alongside the lexical one is supposed to count 

the occurrences of comments with the line number and compare it with other submitted 

assignments in a parallel processing environment.  In the second and the last phase of the 

proposed system, the string similarity distance between the segments of categories formed in 

the first stage is calculated using a plethora of distance algorithms in Java. The distance 

calculation is in chronological order starting from the first comparison such as keywordi = 

keywordn, math operatorsi = math operatorsn, and goes on till the last category. More details 

and information on the working system, comparison procedure, and summary of findings are 

explained in the later sections of this paper. 

Zoran Djuric and Dragan Gasevic [7], in their research on the source code similarity 

detection system (SCSDS), describe the performance of their system when tested against the 

JPlag tool for detecting similarities when lexical and structural modifications are applied to 

the plagiarized code. The authors mention all kinds of lexical and structural changes a 

plagiarizer can edit in the paper to acquire in-depth knowledge about the study. In the 

comparative analysis with the JPlag tool, SCSDS outclassed the results on the test set with a 

huge difference between the statistical F-measures/scores of both the tools. The reason being 

the qualitative design of the tokenizer of the SCSDS tool, which holds meaningful semantic 

information about the lexemes. Adding more functionality to one system can improve the 

system's accuracy and reduce computing speed and worse time complexity. The authors from 

[7] added several similarity algorithms to increase the weights of the system dimensionality. 

The other limitation and disadvantages of SCSDS stated in the paper should be worked on in 

the future. Wise [8] from the department of computer science, University of Sydney, 

Australia illustrates the working of the first YAP tool's successor, YAP3 (Yet Another 

Parser). YAP3 is an improved version of YAP that focuses on an underlying algorithm: 

Running-Karp-Rabin Greedy-String-Tiling (RKS-GST). The specialty of the system is to 

detect transposed subsequences in the source codes. The system is not vulnerable to the 

source code manipulated with additional lines by a novice programmer.  The system working 

for YAP3 is not complicated as the second phase after generating token sequences mainly 

consists of discarding comments & string constants, translating uppercase to lower-case, 

reordering functions, and passing the strings to the Karp-Rabin method parameters. 

According to the author of the paper [8], just like the Plague tool, even the latest version of 

YAP does not entirely parse the source code beyond identifiers and keywords. The ability of 

YAP3 to generate tokenizers provides flexibility to the weighted algorithm, and hence the 

functionality is expandable. 
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Whale [9] in his research mentioned that the popular previous approaches to plagiarism 

detection based on attribute counting measures are not adequate, and hence, the idea of the 

'Plague' tool came into the picture. The mechanism of Plague works in a two-stage process 

where similar features are identified from the source codes in the population. The 

representation used for the final stage is the syntactic and semantic token analyzed from the 

first stage. The high selectivity potential is gained by detailed representation, whereas the 

high recall is achieved with the robustness of the least common subsequence's length 

calculations. The authors [10] who worked on solving semantic searches for source code aims 

to address the issue of complexity in the usage of semantic search approaches as the exiting 

approaches entail the programmer to define complicated queries to get desired results; 

however, the results often contain unnecessary matches that require manual filtration.  The 

same authors have devised an approach where a programmer can use incomplete and 

lightweight specifications using an SMT solver that identifies programs from a repository that 

match the specifications provided by the programmer. The authors test the approach on 

subsets of the Java string library, Yahoo! Pipes mash-up language, and SQL select statements 

to gauge the effectiveness and efficiency that evaluates each domain. The results of the 

approach described in the paper are useful in the domains mentioned but the focus should be 

on the generality that addresses the problems of more complex constructs. The future scope of 

the approach is to test on a wider range of programs. The author in their paper [11] provides 

comprehensive information on plagiarism. A detailed account of plagiarism is, how it affects 

the research community, what accounts for plagiarism, and types of plagiarism provided by 

the authors. Along with that the method of plagiarism detection (manual and computer-aided) 

along with the process in which these methods work is discussed in detail. The paper's main 

focus is on the Free Text Detection technique under the Computer-Aided Technique that is 

categorized into the Lexical and Semantic-based detection technique. The authors provide 

comparisons of all the detection techniques and conclude that more work needs to be done in 

the Semantic-based detection technique. The paper also provides a survey on various offline 

and online tools available to detect plagiarism and an extensive comparison of various 

parameters. 

 

3. Proposed system 

As mentioned in the previous section, there are many complicated challenges to be faced 

with developing an automatic plagiarism detection system under certain situations. The first 

issue that needs to be addressed is setting up the corpus (set of documents) with the system's 

code design. The second challenge lead by the former one is the connectivity of corpus with 

the source codes for data retrieval and data processing by our plagiarism detector system. The 

proposed system is built using java programming language and trivial issues faced in the 

development process are class integration, database connection, front end setup, and data 

encapsulation. Figure-1given below explains the work-flow of the system starting from 

inputting the chosen dataset to ANTLR Tokenizer. To introduce ANTLR (Another tool for 

Language Recognition) in this paper is as a tokenizer for our programming language. This 

tokenizer consists of 'C' and 'C++' language grammar for processing the source codes and 

breaking them down into lexemes, also referred to as 'Lexical Analysis'. The lexemes are 

further processed through the 'Token Categorizer' where the lexemes are categorized into 

identifiers, keywords, mathematical operators, logical operators, and other operators. 

Following to categorization of lexemes, each group is fed to the distance similarity algorithms 

such as Jaro, Jaro-Winkler, Levenshtein, cosine similarity, dice coefficient, and least common 
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substring for computation of values. Our similarity detection process can be explained in 

three stages given as under: 

(1) Pre-Processing: This stage involves document(s) retrieval and uploads from the corpus 

set at the back-end. The document corpus consists of student assignments from the IEEE 

Homework programming dataset in this case, where each student 'N' submits a folder 

composed of 'Ni' number of assignments in it.  Mathematically, a set of assignments' Ni‟ is a 

subset of student folder „N‟ such as Ni ϵ N. In the proposed dataset, each subfolder „Zi‟ 

ranging from 1 to 6 is within the subfolders A2016, A2017, B2016, and B2017. The details 

about the dataset are mentioned in section IV. Once the necessary documents are retrieved for 

comparison, they are fed to the file matching loop in the intermediate stage processing. The 

main objective of this pre-processing stage is to maximize the accuracy of document 

searching and to fetch from the corpus. 
 

 

Figure 1. Hypothetical structure and work-flow of the proposed system 

(2) Intermediate Processing: The second stage, followed by pre-processing, comprises 

three key components: File matching comparator or loop, ANTLR Tokenizer, and mainframe 

system component, which has similarity distance algorithms and controller functionality for 

the comparison. The detailed description of the working of each part mentioned above is 

given below as follows: 

(a) File Matching Loop / Comparator - The 'N' student assignment folders are lined up in a 

working directory or path specified in the program. For a use case in undergrad school, all 

students are given multiple applications to code in the C/C++ programming language. 

Therefore, one assignment has three to four source codes at maximum in one folder when 

they electronically submit it to the subject professor.  

The logic of comparing file 'A' from the first folder with all other files in the same folder 

makes sense without any extra loss of time. The comparator involved in the intermediate 

stage will compare „Ni‟ of folder one with the rest „n‟ numbers of „Ni' going on till the last 
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file in the folder path specified. The comparator loop will continue matching the next file, i.e., 

Ni + 1, in line after „Ni' from folder one and keep matching with the other files in the same 

folder. The files to compare are then passed to the sequence of tokenizers for breaking down 

the files into lexemes and teaming up with their categories such as keywords, mathematical 

operators, logical operators, numerical, and other operators. 

(b) ANTLR Tokenizer- The general introduction of ANTLR is given at the start of section 

III. To dive deep into the tool, ANTLR uses the LL1 parser for reading and processing textual 

files. The plugin for ANTLR is available from its website (https://www.antlr.org/) and can be 

installed in the IDE environment such as an eclipse or IntelliJ IDEA. The ideal IDE platform 

preferred for developing this kind of system with heavy data handling and building grammars 

for parsing is IntelliJ IDEA. This tokenizer in the series is supposed to break down the stream 

of code into lexemes by referring to the „C‟ or „CC++‟ grammar. The program has been 

constructed in such a way that it can detect the extension of source codes in the given path 

such as „.c‟ or „.cpp‟ and choose the grammar file accordingly. The second tokenizer has 

exclusive use for detecting new lines, comments, and line numbers for the corresponding 

printouts. The lexical tokenizer, which is ANTLR, generates tokens in clusters of identifiers, 

keywords, arithmetic operators, logical and other operators for both the files and lists out the 

count for each cluster, including multiples. The next tokenizer in the queue has its expertise in 

detecting newlines and comments in the same set of files with the number of occurrences. The 

clusters/sets obtained from the source codes are compared with each other based on similarity 

distance algorithms in the mainframe system. 

(c) Mainframe System- This essential component of the intermediate pre-processing stage 

has a collection of distance similarity algorithms to compare the clusters and give out the 

result. The ideal distance algorithms to be considered would be cosine similarity measure, N-

grams, Levenshtein distance, Jaro, Jaro-Winkler, Sorensen dice coefficient, and least common 

substring the length of common subsequence. The performance evaluation and working of all 

the similarity algorithms based on distance methods are illustrated in the 'Similarity Measures 

Techniques' section in the latter half of this paper. The proposed research can also be framed 

as a comparative study of string similarity distance algorithms on a massive chunk of data 

where the results of all the categories of two files, i.e., keywords, math operators, logical 

operators, and other operators will be aggregated into one value for the ease of classification. 

The results obtained from this study will be summarized in a tabular format and displayed to 

the user operating at the front-end in the form of reports and visualizations.  

(3) Post Processing: This is the final stage of the hypothetical structure of the system. The 

results from pre-processing and intermediate processing are validated in the form of reports 

and presented to the system's end-users. The stakeholders or users using the front-end of the 

system would be assignment evaluators such as Professors, Graduate assistants, and other 

fields related faculty. The result data/information could be visualized in charts, bar graphs, 

treemaps, column data charts, or maybe as simple as possible. The potential open-source tools 

considered and used in this research for representing analytics and visualizations are Google 

charts, ChartJS and Fusion Charts. 

 

4. Data description 

Generating source code datasets using artificial techniques is a challenging task and 

indirectly reflects various realistic situations. A good number of previous researches 

experimented on the output of „jury‟ existing tool for measure algorithms [12]. As a lack of 
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description of the standard datasets in existing researches, the new homework programming 

dataset is presented in this research to work with the proposed system. The „Programming 

Homework Dataset for Plagiarism Detection‟ was uploaded on IEEE-Dataport by Vedran 

Ljubovic, University of Sarajevo [13]. The dataset is developed from the students' 

assignments for the subject – Introduction to C in one semester and assignments of C++ in 

other for the years 2016 and 2017. All the final source codes submitted by the students are 

available at http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-

detection and on AWS for comparison by the already existing plagiarism detection tools like 

JPlag, YAP3, MOSS, and PlagDetect. The homework assignment zip extract consists of full 

traces of student activity and keystrokes generated by setting the IDE to a time limit autosave 

during homework development. The IDE also helped passing out the output information from 

the compiler, debugger, and student assignment to a safe corner of the repository. 

The instructions for the dataset go as an archive folder having three subparts in it as 

follows:  

(1) Source codes – The actual source code assignments submitted by the students are 

stored in the /src folder inside the archive. The subfolders under „src‟ are named A2016, 

A2017, B2016, and B2017. Each subfolder listed above contains more subfolders inside for 

individual assignments. Students were required to solve 16-22 assignments in each course, 

labeled as “Z1/Z1”, “Z1/Z2”, and “Z2/Z1” and so far till the end. The C/C++ source codes 

solved by the students are stored in these subfolders with an anonymous name. All the traces 

AutoSaved after every few seconds by the IDE are saved in the archive's stats folder. This 

folder is again segregated into subfolders named after courses, and the subfolder contains files 

ending with extension '.stats' for every student (name stays anonymous). The stats 

information is stored in JSON format (Key = value pairs).  Figure 2 shown below gives a 

concept map view of the IEEE dataset where there are four courses- A2016, A2017, B2016, 

B2017, and assignments for each course is described as Z1/Z1.Z5/Z2 for each course. 

 

Figure 2. Dataset concept map 
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(2) Ground Truth - The instructions and format for JSON files is described in the 

readme.txt file present in the folder. The ground truth files list the individual and group of 

students involved in plagiarism due to code similarities detected in their assignments. The 

three ground truth files starting from 'ground-truth-anon.txt' contain a full list of plagiarisms, 

ground-truth-static-anon.txt based on source code similarity, and ground-truth-dynamic-

anon.txt based on only failures due to 'oral defense'. 

Some statistics generated by V. Ljubovic and E. Pajic[14] for the course „A‟ in 2016 and 

2017 i.e. A2016 & A2017 in their latest research published and accepted at IEEE in the year 

2020 is shown below in [Table 2] as follows:  

Table 2. Statistics for courses a2016 and a2017 

Course A2017 

Student enrolled 488 

Number of assignments 20 

Submitted files 5733 

Files per assignment 125-444 

Average file size (bytes) 1317.23 

Changes per file 1-7740 

Plagiarized Solutions 699 (12.2%) 

We all know that in a three-four-year-long course, the degree of homework participation, 

in the beginning, is way more than the involvement in the end. If the participation is 90% in 

the beginning, it closes up to 10-15% in the final semester of the course. As the willing 

participation increases, plagiarism decreases, and it‟s vice versa in a long-term graduation 

program. The technique used to overcome the plagiarism index and balance out the 

proportion was to make 20% of the total students deliver oral-defense of their homework. The 

ground truth files were constructed on a marking system where the students who failed to 

defend their homework defense were marked as 'Plagiarized' in the file. Proper classification 

of homework is a must-needed feature in a similarity detector tool, but every tool handles the 

situation differently. Some tools have defined a threshold on assignment length. Some have 

pre-defined heuristics, and a few tools will simply mark all the students as plagiarized and 

leave unsupervised decisions to a human evaluator. A decent approach for avoiding 

overfitting with the proposed system in this paper would be to divide the dataset into training 

and testing datasets for the underlying machine learning algorithm. As explained at the 

beginning of this section, the normal ground truth file contains all the plagiarized files. In 

addition to the normal file, two more ground truth files have been added, such as static for 

similar homework documents and dynamic ones. They exclude original authors and keep 

those who have no similar pairs. In the ground file, the assignments are represented in similar 

files, such as triplets and quadruplets. When it comes to evaluating a newly developed 

plagiarism tool, one does not need to identify similar document pairs but should be able to 

count false positives and false negatives inclusive of detected pairs. 

 

5. Similarity measure methods 

According to the work-flow explained in the primary and intermediate stages of the 

proposed system, the source code breaks down into the number of lexemes/tokens and is 

forwarded to the tokenizers deployed within the lexical analysis phase. The tokens are mostly 

strings, integers, characters, and operators stored in separate containers or cluster sequences 

after the tokenizers categorize them into keywords, math operators, numeric operators, and 
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others. The distinct sequences from containers in the file comparison stage are concatenated 

together in one sequence. They are evaluated with distance similarity algorithms to compute 

the similarity distance between the string sequences. In this section, we describe the potential 

distance-similarity algorithms taken into consideration for this research. Section VI gives a 

brief comparison of all the similarity algorithms with advantages, disadvantages, and 

limitations respectively. 
 

5.1. Distance-similarity algorithms 

(1) Levenshtein Distance 

Levenshtein distance, also called edit distance, is defined as the similarity between two 

string sequences 1' and's 2'. The algorithm focuses on the minimum number of changes 

required to convert string's 1' into string's 2' with an operation such as insertion and deletion 

in string's 1'. In the programming area, the algorithm can be illustrated as lev (s1, s2) where 

the value lies between 0 and 1. The values closer to '0' indicate less similarity and nearer or 

equal to '1' indicate a greater measure of similarity. For example, lev (hello, hell) will fall 

somewhere between 0.8 and 1 as just one letter of's 1' is missing in's 2'. The mathematical 

equation for Levenshtein distance is given below as equation (1): 

      (   )   ∫    ∫

      (     )   

      (     )   

      (       )   (     )

   (   )

 
                       (1) 

In the above equation, 1(ai bi) is the indicator function set to zero initially and equal to 1 

otherwise. Lev(a,b) (i,j) = distance between first i characters of string „a‟ and first j characters 

of string „b‟. The best example for Levenshtein distance between „HONDA‟ and 

„HYUNDAI‟ is 3 and edit changes using insertion, substitution, and deletion operations.  The 

wider applications of Levenshtein distance in string matchings falls under dynamic 

programming, and the pseudocode for DP approach for Levenshtein distance is given below: 
int LevenshteinDistance (char s[1..m], char t[1..n]) 

   // d is a table with m+1 rows and n+1 column 

   declare int d [0..m, 0..n] 

  

   for i from 0 to m 

       d [i, 0]: = i 

   for j from 0 to n 

       d [0, j]: = j 

  

   for i from 1 to m 

       for j from 1 to n 

       { 

           if s[i] = t[j] then cost: = 0 

                          else cost: = 1 

           d [i, j]: = minimum ( 

                                d [i-1, j] + 1, // deletion 

                                d [i, j-1] + 1, // insertion 

                                d [i-1, j-1] + cost   // substitution 

                            ) 

       } 

   return d [m, n] 
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(2) Jaro Distance Algorithm 

Like any other algorithm, Jaro similarity measures the distance between two string 

sequences. The value of Jaro (s1, s2) mostly ranges between 0 to 1, where two strings are 

equal when the value is 1 and not equal at all when a value is zero. The mathematical formula 

for Jaro and a detailed explanation on value calculation is given under as follows as equation 

2: 

                 {
        

 

 
(
 

|  |
  

 

|  |
  

   

 
)          

    (2) 

From the equation above, 

x = number of matching characters, 

t = half the number of transpositions, 

|s1| and |s2| = lengths of string s1 and s2 

The matches are accurate if they are not farther than *
    (|  | |  |)

 
+    and t = half the 

number of characters in both strings in a different order. 

Consider s1 = „rover‟ and s2 = „flower‟, here the matching characters is three such as [o, e, 

r] in a different order. Number of characters not in order = 4 i.e.  In s2 = [f, l, o, w]. 

Therefore, t = 4/2 = 2. From the above equation 2, Jaro similarity can be calculated as = 1/3 * 

((3/5 + 3/6 + (3-2)/3) = 0.4719. The strings „rover‟ and „flower‟ have a Jaro similarity 

measure of 0 < 0.4719 < 1.  

(3) Jaro-Winkler Algorithm 

The Jaro-Winkler distance measure is similar to the Jaro algorithm in most cases where the 

prefix of both the strings doesn't match. They both produce different values when the prefix 

of both the strings doesn't match. The prefix scale 'p' in Winkler gives more accurate answers 

when strings have a common prefix of length 'L‟. The Jaro-Winkler similarity measure is 

defined as follows in equation 3: 

JW = J + Sf * L*(1 - J)      (3) 

Where, J = Jaro measure obtained from above block, 

Sf = scaling factor (0.1 by default), 

L = length of matching prefix (max 4 characters long). Here for „rover‟ and „lower‟ we 

have L = 0.  

The computation, JW = 0.4719 + 0.1 * 0 * (1 – 0.4719) = 0.4719. The Jaro-Winkler and 

Jaro in this case are equal. The results may be different for strings such as „Logitech‟ and 

„Lotto‟, where L =2.  

(4) Sorensen Dice Coefficient (DC) 

The Sorensen dice coefficient or dice index is a statistical tool used to gauge the similarity 

of two samples. This invention intended to differentiate the similarity between two distinct 

sequences. Assume „1' and „2' to be two distinct data sequences and |s1| and |s2| be the 

cardinalities of the same sets. The dice index /coefficient equals twice the number of elements 

common to both sets divided by the sum of cardinality sets. The mathematical equation for 

DC or DI (Dice Index) is given below in equation 4 as follows: 

    
  |      |

|  | |  |
      (4) 

The only difference between the Jaccard coefficient and DCS is that Jaccard counts the 

true positives once in both denominator and numerator and DCS falls in between 0 and 1 for 
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two discrete sets. The DCS for string similarities is a variance of the normal DCS form and 

uses bigrams of the strings for computation, as shown in equation 5: 

                
   

     
     (5) 

Here, 'nb' is the number of bigrams found in both strings, and 'nx' & 'ny' denote the number 

of bigrams found in string X and Y, respectively. Consider the words' Deer' and 'Dear', the set 

of bigrams in each word world be as follows: 
X = {de, ee, er}, Y = {de, er, ar} 

The common bigram between both the strings is {de}. Therefore, the DCS we obtain after 

calculation by putting in equation (5) is (2.1) / (3 + 3) = 0.33. 

(5) Longest Common Substring (LCS)  

Another Dynamic Programming (DP) approach considered in this proposed similarity 

detection engine after Levenshtein distance is the longest common substring (LCS) for 

assuring string similarity without any resulting numerical value. Being a DP implementation, 

this algorithm has a time complexity of O(nm) where space is utilized more than time. The 

definition of LCS is simple as it identifies a substring in's 1' and checks for the same in's 2'. 

The algorithm also has the functionality of keeping track of the substring's maximum length 

and displaying it on the console. An example for LCS detection is given below in words as 

there is no exclusive statistical explanation for it in the world of algorithms. 

k-common substring problem ϵ LCS (X, Y, m, n) = Max (LCSuff(X,Y,I,j)) where 1 <= i ,j 

<= m, n. Max (LCSuff) is the equation where both the strings lengths is reduced by 1 if the 

last characters match.  

Local similarity algorithms 

(1) Cosine Similarity Measure 

Cosine similarity can be defined as a document similarity metric that is used to measure 

the similarities between two documents irrespective of the size. It measures the cosine of the 

angle between two vectors in a 2D multi-dimensional space. The vectors selected for 

measurement can be strings, arrays, and value objects in a coded algorithm. The core 

programming language used for developing the proposed system is Java, and hence, forming 

the vectors from the tokenization approach is not cumbersome in the procedure. The main 

advantage of this method is it can conclude that two documents can be oriented together even 

if they're far apart because of size irregularities. Like the other techniques stated above, the 

result value of cosine similarity ranges between 0 and 1.  The similarity percentage is less if 

the cosine angle is big and high when the angle is small. The cosine similarity is implemented 

for document similarity in two ways as described below: 

Approach 1: Consider 'A' and 'B' as two document vectors and measure the cosine 

similarity angle between the two vectors to justify the similarity between two documents in 

the range of 0 to 1. This approach is favorable for the researchers, which focuses on 

occurrences of a word for checking document similarity. 

Approach 2: Tokenize the document to form categories for simplification and then 

concatenate the distinct features into one complete vector. Follow this procedure for all the 

documents and then calculate the cosine angle between the vectors. The result for this 

approach would be more effective than approach one as the vector would contain all distinct 

elements from all the categories. The mathematical formula for cosine similarity is given 

under equation 6: 
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In the equation above, 'X' and 'Y' are the two vectors of attributes, and cosine similarity is 

represented as a dot product and magnitude. The result obtained from this formula will be '1' 

if the documents are clones and '0' if they're the opposite. In the case of IR (Information 

retrieval) the angle between two 'term' vectors cannot be > 90 degrees. Gunawan [15] in their 

research on finding text relevance via cosine similarity mentioned the use of cosine similarity 

measures to find the relevancy of a suitable topic in multiple documents. The authors divided 

the system implementation into three stages such as pre-processing (removing punctuations 

from documents, converting all text to lower-case, etc.), intermediate (keyword weighing 

between 0 and 1) and the last stage involves cosine angle measure to give out relevancy in 

terms of '0' or '1'. 

(2) N-grams similarity measure 

The core concept and motive behind n-gram similarity is improvising the concept of the 

mainstream LCS (Longest Common Subsequence) to encompass n-grams rather than 

unigrams. Assume n-gram similarity as function 'Sn', where 'n' is a fixed parameter of 'S'. The 

other widely used measure other than LCSR (LCS Ratio = LCS / length of the longer string) 

is NED (Normalized edit distance) for n-grams, n>1. We need to emphasize more on 

normalization and affixing before moving forward with n-gram for word similarity. 

Normalization is defined as a method of discounting the words being compared. The length of 

LCS of generated strings grows in-hands with the length of the strings. For Similarity X 

Distance, when n =1, the similarity is LCSR, and the distance will be NED. For n =2, the 

similarity is BI-SIM and distance as BI-DIST. The classification measure goes on as Tri, quad 

to 'n' where n = [3, 4….' n']. Affixing adds sensitivity to the symbols at string boundaries, 

which qualifies them for participation in fewer n-grams than internal symbols. The authors in 

the paper [16] proposed n-gram similarity and distance measures N-SIM & N-DIST 

incorporate normalization and affixing to enhance the n-gram procedure's performance.  The 

simple definition of n-gram goes as 'common sequence of 'n' items from a sequence of speech 

and the things that can be letters, characters, or words. Saima Sultana and Ismail Biskri [17] 

in their research described a methodology that uses the notion of n-gram characters due to 

their nature of the sentences to be analyzed. The primary step of the methodology is to 

assume two short sentences such as 'Similarity' and 'Dissimilarity' and remove the special 

characters, punctuations, and stop-words. 

Convert all the letters and characters to lower-case as 'similarity' and 'dissimilarity'. 

Producing n-grams of characters of the strings where n = 1, n = 2 (Bigrams) and n = 3 

(Trigrams) etc. till n = „n‟. 

Using trigrams, the example will be: 

String 1 = similarity = „sim‟,‟imi‟,‟mil‟,‟ila‟,‟lar‟,‟ari‟,‟rit‟,‟ity‟ 

String 2 = dissimilarity = „dis‟,‟iss‟,‟ssi‟,‟sim‟,‟imi‟,‟mil‟,‟ila‟,‟lar‟,‟ari‟,‟rit‟,‟ity‟ 

Forming two distance matrices to calculate the distance between the pair of 'n-gram' 

characters leads to measuring the similarity between two large strings. For example, (sim, 

sim) from (string1, string2) will be '0' and the same for (imi, imi), (ity, ity), (lar, lar), and so 

on. The positive and negative correlation values can also be obtained and referred to as 

distance. 

The next step would be to remove negative values as the distance cannot be negative. 
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Calculate the similarity and dissimilarity from the two matrices for the given two strings. 

The precise values can be obtained by using popular co-occurrence measures such as dice, 

overlap, Jaccard and cosine. 

(3) Greedy String Tilling – Karp Robin Problem (GST-KRP) 

Michael J. Wise [18] proposed the use of the “Greedy String Tiling and Running Karp-

Rabin matching (GST - KRP)” algorithm in the areas of plagiarism/similarity detection and 

other applications such as DNA Matching, amino acids, etc. GST algorithm is based on the 

concept of one-to-one string matching and can deal with the substring transposition. A 

Running Karp-Rabin method, which has an average close-to linear-complexity has been 

suggested for computing GST values wisely. The three important features of the GST 

algorithm are 'maximal match', 'tile', and 'minimum match length'. We will describe the 

working of the algorithm along with the definition for each of the above-mentioned features 

in this section as given below. 

Let „P‟ be the pattern (Pattern is usually the shorter string among the two strings) and T be 

the text string.  

Maximal-Match: In any line of comparison with GST, a match is said to be a „maximal 

match‟ when the substring Pp of the pattern string „P‟ starting at p matches element-by-

element, a substring Tt of text T (the other string). The match goes on until the end of the 

string is reached. A maximal match can be shown as max (p, t, s), where s = length of the 

match, „p‟ & „t‟ are matching points.  

Tile: A tile is a one-to-one association of substring of P with a matching substring of T. For 

tile formation from a maximal match, tokens of two substrings are marked and become 

unavailable for further matches. In simple words, tile formation is directly dependent on a 

maximal match and can be denoted as tile (p, t, s) where s is the length of the tile. 

Minimal Match:  A minimal match is just a maximal match below some defined length 

threshold. A minimum match length can be one but a value > 1. Assume that there is a current 

maximal match length 'maxmatch' (maxmatch >minmatch) which is the length of the largest 

maximal-matches obtainable from P and T. The algorithm =, more or less, the pseudocode: 

provided by the author from the paper [19] has been provided in the code box given above. 

To optimize the regular GST algorithm, the minimum match-length was put greater than 1, 

and the results obtained have the optimal values. The worst-case - time complexity of GST 

being O(n3), the algorithm can be tuned in several ways to improve the performance and 

reduce the worst-case complexity. The explanation of Karp-Rabin or Running-Karp-Rabin 

and how the novel algorithm computes GST values will be explained in the second version of 

this paper. 
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6. Comparative study of existing tools 

Over the past few years, automated similarity detection engines have been developed for 

identifying plagiarism in student source codes. The previous researches have stated that the 

most effective approaches have been about tokenizing student assignments into bits and 

pieces and looking for long common substrings/subsequences between the sequences. The 

researchers seem to follow structured metrics referred to as the development of MOSS, 

PlagDetect, JPlag, and YAP tools. The attribute counting metrics (ATMs) and similar 

measurements designed for the approach consist of various measures already mentioned in 

section I – Introduction of this paper. The early plagiarism detectors tools such as JPlag, 

Sherlock [20][21], Sim, and Plaggie have been discussed quite a few times in the research 

papers. 'Sim', 'Plaggie' and 'JPlag' are software that uses a token-based approach for detecting 

similarities in programming assignments, and 'Sherlock' is a tool based on digital signature 

recognition for plagiarism checking. There are several other e-plagiarism checkers available 

for study but could not be verified practically as the command-line version was never 

developed for them and could not be automated for public use. To pursue a case study of all 

available tools, quantitative measurement is required to generate a value 'i' for comparing (x, 

y), where 'x' and 'y' are two files in a basic comparator.  Chaiyong Ragkhitwetsagul [22], in 

their research paper on the comparison of code similarity analyzers, described the five 

experimental scenarios for pervasive modifications: obfuscators, clone detectors, and other 

software in regards to all the available similarity detectors in or before the year 2017. 

Fetching some information from the referenced paper, the table given below shows the list of 

tools with their similarity measures, details, default parameters, and year of development.  

Table 3 provides the audience with a detailed comparison of all categories of similarity 

detectors such as plagiarism detection tools (PD), clone detector tools (CD), and others (O), 

which also includes compressors and mini-tools. In addition to the comparison of the tools 

with their similarity measurement calculation, we have added details, default parameters, and 

the year of the invention along with the research paper reference in the columns of the same 

table. 

 

 

Greedy-String-Tilling Algorithm 
Tiled_tokens_length: = 0 

Repeat 

maxmatch: = minimum-match-length 

starting at the first unmarked token of P, for each Pp do 

starting at the first unmarked token of T, for each Tt do 

j: = 0 

while Pp+ j = Tt+ j AND unmarked (Pp+ j) AND unmarked (Tt+ j) do 

j: = j + 1 

if j = maxmatch then add match (p, t, j) to list of matches of length j 

else if j > maxmatch then start new list with match (p, t, j) and maxmatch: = j 

for each match (p, t, maxmatch) in list 

if not occluded then /* Create new tile */ 

for j: = 0 to maxmatch - 1 do 

mar k_token (Pp+ j) 

mar k_token (Tt+ j) 

Tiled_tokens_length: = Tiled_tokens_length + maxmatch; 

Until maxmatch = minimum-match-length 
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Table 3. A comparison table showing similarity calculation, details, default parameters, year, and 

references for each tool 

Tool category Similarity Calculation Details Year and Reference 

(PD) SIMTEXT 
Tokens and string 

alignment 
Min. run size 

1999 

Gitchell and Tran [18] 

(PD) SIMJAVA 
Tokens  and string 

alignment 
Min. run size 

1999 

Gitchell and Tran [18] 

(PD) SHERLOCK Digital signatures Chain length, zero bits 
2002 

Pike R and Loki [19] 

(PD) JPLAG-TEXT 
Tokens, GST(Greedy 

String Tiling), Karp-Rabin 
Min. no. of tokens 

2002 

Prechelt  [20] 

(PD) JPLAG-JAVA 
Tokens, GST(Greedy 

String Tiling), Karp-Rabin 
Min. no. of tokens 

2002 

Prechelt  [20] 

(CD) CCFX 
Tokens and suffix tree 

matching 
Min. no. of tokens 

2002 

Kamiya  [21] 

(CD)  YAP 
Tokens, GST(Greedy 

String Tiling), Karp-Rabin 

Tokenization and GST 

matching 

1996 

Michael J. Wise [8] 

(PD)  PLAGGIE N/A (Not disclosed) Min. no. of tokens 
2006 

Ahtanein  [22] 

(CD)  DECKARD 
Characteristic vectors of 

AST optimized by LSH 

Min. no. of tokens 

Sliding window size 

Clone similarity 

2007 

Jiang  [23] 

(CD)  NICAD 
TXL and string matching 

(LCS) 

Percentage of unique 

code 

Min. no. of lines 

Code abstraction 

Variable renaming 

2008 

 

Roy and Cardy [24] 

(CD)  ICLONES 
Tokens and generalized 

suffix tree 
Min. of tokens 

2009 

Gode and Koschke [25] 

(O) COSINE 
Cosine similarity from 

machine learning library 
N/A 

2011 

Pedregosa et al [26] 

(O)  FUZZYWUZZY Fuzzy string matching Similarity calculation 
2011 

Cohen [27] 

(O) NGRAM 
Fuzzy search using n-

gramme 
N/A 

2012 

Poulter [28] 

(CD)  SIMIAN 
Line-based string 

comparison 

Min. no. of lines 

Ignoring variables, 

whitespaces, identifiers 

2015 

 

Harris [29] 

(O) DIFFLIB Gestalt pattern matching 
Ignoring whitespace, 

auto junk heuristic 

2016 

Python Software 

Foundation [30] 

(O) DIFF Equation N/A 2016 

(O) BSDIFF Equation N/A 2017 

(O) JELLYFISH 
Approximate and Phonetic 

String matching 
Edit distance algorithm 

2016 

Turk and Stephens [31] 

(C) 7ZNCD NCD with 7z Compression level N/A 

(C) BZIP2NCD NCD with bzip2 Compression level N/A 

(C) GZIPNCD NCD with gzip Compression level N/A 

(C) XZ-NCD NCD with xz Compression level N/A 

(C) ICD 
Regular NCD (Normalized 

Compression Distance) 

Compression level, 

block size 
N/A 

(C) NCD Regular NCD Compression level 
2015, 

Cilibrasi  [32] 
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The authors also validated the performance of all the tools mentioned in [Table 3] above 

with a dataset consisting of java source codes mentioned in the paper [33][34][35][36]. The 

performance factors evaluated were Truth values (T), false positive (FP), false negative (FN), 

accuracy, precision, recall, the area under curve (AUC), and F1-score. The detailed 

comparison of the proposed forensic engine's previous tools based on the similarity 

measures/calculations will be discussed in the successor of this current paper.  

 

7. Conclusions 

In many academic institutions, source code plagiarism is still an ongoing concern and 

disrespects academic awards' moral integrity. Several students digitally submit their 

assignments to the repository and this makes it challenging for the evaluator to check and 

compare one assignment with others for plagiarism. The existing similarity detection tools 

use inefficient approaches such as Attribute Counting Metrics (ATM) with the tokenization 

approach that involves the Longest Common Substring (LCS) search method. A bunch of 

similarity detector engines prefers using hashing techniques and syntax tree/AST modifiers 

for file matching if the focus is on the line-word comparison. It is a complicated decision to 

make when it comes to recommending a tool above all others. MOSS, YAP3, and JPlag are 

well used within the professional academic community because of their various advantages 

for all kinds of programming language. Few notable disadvantages of these similarity 

detectors are lack of visual support (GUI), batch file processing, and a robust assistant tool. 

The similarity detection engine proposed in this paper tries to resolve the complexities and 

challenges faced by the evaluators and examiners at professional institutes where students 

upload their assignments digitally. The system follows a systematic ATM alongside a 

tokenizer (ANTLR) driven mainframe controlling system delivering lexical analysis 

computation with multiple algorithms. The IEEE homework programming dataset comprising 

of 'c' and 'cpp' courses assignments is given as a path to the program and assignments are 

evaluated in batches. The similarity measures considered for this experimentation include 

cosine similarity, n-grams, Levenshtein distance, Jaro & Jaro-Winkler, and coefficients such 

as Dice, Jaccard, and F-1. An average score of all these methods is obtained to classify if two 

assignments are plagiarized or not. Adding a novelty feature to this implementation apart 

from the detection process, the research intends on developing a web application for 

representing analysis of student assignment comparison and a machine learning touch for 

classification of a contrast.  

 

8. Future work 

The current research can be expanded in the future by extending the detection process to 

the next level, which is syntactical analysis. The construction of a parser tree using ANTLR 

for one source code is complex and therefore will be more difficult to do the same for a bunch 

of files in a parallel processing environment. The expansion will improve the comparison 

accuracy as the source code controls, and constructs will be evaluated. Various parse tree 

algorithms for recursive descent parser and LR/LL can be used for similarity detection. 

Diagrammatic representations of critical analysis and insights within the comparison process 

will be essential and play a key role in the future for this kind of research. 
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