
Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

http://dx.doi.org/10.21742/ajemr.2020.5.3.01

Print ISSN: 2207-5380, eISSN: 2207-290X AJEMR

Copyright ⓒ 2020 Global Vision Press (GV Press)

Developing Machine Learning Coding Similarity Indicators

for C and C++ Corpuses

Ajinkya Kunjir
 1

 and Jinan Fiaidhi
2

1
Student, Department of Computer Science, Lakehead University,

Thunder Bay, Ontario, Canada
2
Professor, Department of Computer Science, Lakehead University,

Thunder Bay, Ontario, Canada
1
akujnir@lakeheadu.ca,

2
jfiaidhi@lakeheadu.ca

Abstract

In the digital era of technology and advanced automation, data or information is

vulnerable to copying, altering, and claiming someone else's work as their own. Source code

theft or e-plagiarism is challenging to track in hundreds of assignments submitted by

students. Despite the year's efforts, the digital plagiarism detection software currently

available performs well enough for a naïve programmer to detect literal plagiarism. The

available source code similarity detectors provide insufficient results when a student uses

complex strategies such as word substitution or reordering programming constructs. To

overcome the above-mentioned challenges, this research aims to deliver an assistive forensic

engine for the professors and teaching assistants to evaluate the similarities in the student's

assignments. This research's primary objective is to help the evaluators get closer to the

sophisticated code thieves and abide by the university's academic dishonesty regulations. The

proposed forensic similarity detection engine's constructive methodology is specially

designed for studies where C and C++ programming languages are majorly used in

academic assignments. After selecting the ATM (Attribute counting metrics), the system

implementation is divided into two phases, where phase one consists of lexical analysis and

tokenizer customization. The second phase mostly consists of rolling out the supervised

learning algorithm on the generated data to classify the comparison of two files as a truth

value. The similarity elements and observations recorded can be represented to the

evaluators in the form of visualizations for ease of understanding and efficient decision

making. The paper also relates the proposed system with the previous and existing system and

mitigates the past issues noted in the latter half.

Keywords: Similarity detection, E-Plagiarism, Tokenization, Lexical analysis, Distance

algorithm, Euclidean distance

1. Introduction

In a world full of advanced technology, searching for programming solutions, coding help,

tutorials, and examples of source codes is a regular activity for programmers pursuing their

topic of interest. Because of the high availability and convenience, digital documents can be

Article history:

Received (June 29, 2020), Review Result (September 4, 2020), Accepted (October 13, 2020)

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

2 Ajinkya Kunjir and Jinan Fiaidhi

easily copied, duplicated, and discarded across several platforms. The issues and challenges

relating to digitalization have given rise to copying and cheating phenomena among

individuals, which is often referred to as 'Plagiarism'. According to the most basic definition,

plagiarism can be explained as copying/owning someone else's work without consent or not

giving inventor credits to the initial owner. According to Parker et al. [1], a plagiarized

program is a copied or modified version of another owner‟s source code with minor edit

activities in the area of digital computer programming. In this research article, we will be

focusing on e-plagiarism and similarity detection in C-C++ assignments submitted

electronically to the web portal. Similarity detection is a complex mechanism for trivial

plagiarism in source codes provided by undergrad and graduate students. The main objective

of the proposed system is to aid/assist the teaching assistants to get closer to the source codes,

which have a high degree of similarity. The detailed analysis and conclusions derived from

the computation will be sufficient enough to target the plagiarized assignments submitted by

the students. Plagiarism at an academic level is unacceptable as it brings no justice to the

workers of original content. Every university now has an academic dishonesty regulation,

which is an immoral and illegal act of plagiarism resulting in non-monetary penalties.

Source code duplication has been increased over the years and is problematic for the future

of innovations. One among the first few researchers for plagiarism and similarity detection

was Ottenstein [2] who published the first article in 1976 and emphasized more on operands

and operators. Matija [3] described the never-ending work on source code similarity and

plagiarism techniques and stated that the already existing tools had not been upgraded or

updated for ten years, and also, there have not been any new inventions of relevance. Over the

years, unskilled students' tendency has changed from adding more spaces and beautifying the

code with comments to modifying the facial features such as identifiers, comments, an order

of functions, and indentation of the code to avoid the same view or structural aesthetics. The

sophisticated or skilled plagiarists are capable of altering the core components of code such as

operators, declarations, expressions, constructors, control structures, and initializations. Al-

Khanjari [4] in their publication on 'Plagdetect plugin' described the purpose of ATM's, SM's,

and Hybrid techniques combining the formers ones. The authors made use of ATM (10

attributes in the matrix) combination with Equivalence ratio in their system to compute the

similarities between multiple java class files. To shed some light on the sophisticated

plagiarist tricks, consider the segment of the C++ code given below. The two sections belong

to two student assignments, such as Student1 and Student2, wherein this case Student1 is the

rightful owner of the code, and Student2 is a semi-skilled plagiarist. The second one has

copied the former student‟s code and altered it in a decent way of not catching the eye of the

examiner for a case of plagiarism or misconduct.

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 3

Table 1. C++ segment alteration: semi-skilled plagiarist

Student 1.cpp Student2.cpp

#include <iostream>

using namespace std;

int main() {

 int x, y;

 int sum;

 cout << "Type a number: ";

 cin >> x;

 cout << "Type another number: ";

 cin >> y;

 sum = x + y;

 cout << "Sum is: " << sum;

 return 0;

}

#include<stdio.h>

#include <iostream> //input output header file

#include<string>

using namespace std;

int main() {

int result; //variable to store the result

int a, b;

 cout << "Enter a number ";

 cin >> a;

 cout << "Enter another number ";

 cin >> b;

 result = a + b;

 cout << "The result is: " << result;

 return 0;

}

It is very trivial for Student2 to modify the first assignment by simply putting fillers in the

code and a few more edit operations. The changes made by Student2 in Student1‟s

assignment are mentioned below as follows:

To get away with plagiarism on the first line, I added two more unneeded header files.

(Changes highlighted in Student2.cpp section of the table)

The container variables for values have been renamed.. „Int result‟ for „int sum‟, „x‟ and

„y‟ changed to „a‟ and „b‟.

Marked two comments to introduce a new aspect if compared with assignment1.cpp

The above three edit operations allowed Student2.cpp to score 3-4 new lines in the code.

2. Literature survey

In the past few years, several research pieces have shown the statistics of plagiarism

detection in a student programming environment in academics where marked assignment

submission is involved. Faidhi et al. [5] in their research provided an in-depth analysis of

program similarity and reported plagiarism for 'Pascal' programming language. The paper's

literature survey consists of multiple software science measures included in the set of

analyses, such as time complexity of the program, running time, length measures, absolute

errors, and language level. A metric of 10 measures each was determined for program

similarity. The first metric measures' m1 to m10' are supposedly intended towards a novice

programmer's alterations, leading to an act of plagiarism. A few examples to give for the first

set would be several characters, comments, indented lines, and blanks per line followed by

the number of identifiers, reserved words, and variety of each. The second set of measures

mostly attempts to qualify hidden/intrinsic features of program structure, which also indicates

the flow of control. Talking about metrics and ratios, Al-Khanjari [4] addressed the

plagiarism problem for beginner programmers in their critical review on 'PlagDetect', 2010.

The novel research focused on evaluating the multiple existing metrics for plagiarism

detection and then selecting an effective and appropriate ATM (Attribute counting metrics)

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

4 Ajinkya Kunjir and Jinan Fiaidhi

for detecting similarities in java source codes. Unlike ATMs, SM techniques compare the

program structures of multiple files and make up the result to spot the similarities.

Simply put, the SM approach begins with breaking down the source code into a stream of

tokens and then compare the streams of programs to detect standard segments. Thomas

McCabe [6] mentioned the complexity measure for the similar metrics described in the paper.

The authors and inventors of the PlagDetect tool carried their final procedures with

equivalence ratio (similarity coefficient) and ATMs for investigating java assignments, and

validation has shown promising results in a comparative study executed against JPlag and

YAP tools. The plagiarism detection method proposed in this paper is an effective

combination of ATMS and SMs, also called a hybrid approach to define the combination of

both techniques. The core idea is divided into two stages, such as initial lexical analysis and

final comparison analysis after breaking down the code into tokens and lexemes further. The

lexical tokenizer designed for lexical analysis is responsible for categorizing the lexemes into

identifiers, keywords, mathematical operators, numerical operators, logical operators, and

other operators. The other comment tokenizer alongside the lexical one is supposed to count

the occurrences of comments with the line number and compare it with other submitted

assignments in a parallel processing environment. In the second and the last phase of the

proposed system, the string similarity distance between the segments of categories formed in

the first stage is calculated using a plethora of distance algorithms in Java. The distance

calculation is in chronological order starting from the first comparison such as keywordi =

keywordn, math operatorsi = math operatorsn, and goes on till the last category. More details

and information on the working system, comparison procedure, and summary of findings are

explained in the later sections of this paper.

Zoran Djuric and Dragan Gasevic [7], in their research on the source code similarity

detection system (SCSDS), describe the performance of their system when tested against the

JPlag tool for detecting similarities when lexical and structural modifications are applied to

the plagiarized code. The authors mention all kinds of lexical and structural changes a

plagiarizer can edit in the paper to acquire in-depth knowledge about the study. In the

comparative analysis with the JPlag tool, SCSDS outclassed the results on the test set with a

huge difference between the statistical F-measures/scores of both the tools. The reason being

the qualitative design of the tokenizer of the SCSDS tool, which holds meaningful semantic

information about the lexemes. Adding more functionality to one system can improve the

system's accuracy and reduce computing speed and worse time complexity. The authors from

[7] added several similarity algorithms to increase the weights of the system dimensionality.

The other limitation and disadvantages of SCSDS stated in the paper should be worked on in

the future. Wise [8] from the department of computer science, University of Sydney,

Australia illustrates the working of the first YAP tool's successor, YAP3 (Yet Another

Parser). YAP3 is an improved version of YAP that focuses on an underlying algorithm:

Running-Karp-Rabin Greedy-String-Tiling (RKS-GST). The specialty of the system is to

detect transposed subsequences in the source codes. The system is not vulnerable to the

source code manipulated with additional lines by a novice programmer. The system working

for YAP3 is not complicated as the second phase after generating token sequences mainly

consists of discarding comments & string constants, translating uppercase to lower-case,

reordering functions, and passing the strings to the Karp-Rabin method parameters.

According to the author of the paper [8], just like the Plague tool, even the latest version of

YAP does not entirely parse the source code beyond identifiers and keywords. The ability of

YAP3 to generate tokenizers provides flexibility to the weighted algorithm, and hence the

functionality is expandable.

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 5

Whale [9] in his research mentioned that the popular previous approaches to plagiarism

detection based on attribute counting measures are not adequate, and hence, the idea of the

'Plague' tool came into the picture. The mechanism of Plague works in a two-stage process

where similar features are identified from the source codes in the population. The

representation used for the final stage is the syntactic and semantic token analyzed from the

first stage. The high selectivity potential is gained by detailed representation, whereas the

high recall is achieved with the robustness of the least common subsequence's length

calculations. The authors [10] who worked on solving semantic searches for source code aims

to address the issue of complexity in the usage of semantic search approaches as the exiting

approaches entail the programmer to define complicated queries to get desired results;

however, the results often contain unnecessary matches that require manual filtration. The

same authors have devised an approach where a programmer can use incomplete and

lightweight specifications using an SMT solver that identifies programs from a repository that

match the specifications provided by the programmer. The authors test the approach on

subsets of the Java string library, Yahoo! Pipes mash-up language, and SQL select statements

to gauge the effectiveness and efficiency that evaluates each domain. The results of the

approach described in the paper are useful in the domains mentioned but the focus should be

on the generality that addresses the problems of more complex constructs. The future scope of

the approach is to test on a wider range of programs. The author in their paper [11] provides

comprehensive information on plagiarism. A detailed account of plagiarism is, how it affects

the research community, what accounts for plagiarism, and types of plagiarism provided by

the authors. Along with that the method of plagiarism detection (manual and computer-aided)

along with the process in which these methods work is discussed in detail. The paper's main

focus is on the Free Text Detection technique under the Computer-Aided Technique that is

categorized into the Lexical and Semantic-based detection technique. The authors provide

comparisons of all the detection techniques and conclude that more work needs to be done in

the Semantic-based detection technique. The paper also provides a survey on various offline

and online tools available to detect plagiarism and an extensive comparison of various

parameters.

3. Proposed system

As mentioned in the previous section, there are many complicated challenges to be faced

with developing an automatic plagiarism detection system under certain situations. The first

issue that needs to be addressed is setting up the corpus (set of documents) with the system's

code design. The second challenge lead by the former one is the connectivity of corpus with

the source codes for data retrieval and data processing by our plagiarism detector system. The

proposed system is built using java programming language and trivial issues faced in the

development process are class integration, database connection, front end setup, and data

encapsulation. Figure-1given below explains the work-flow of the system starting from

inputting the chosen dataset to ANTLR Tokenizer. To introduce ANTLR (Another tool for

Language Recognition) in this paper is as a tokenizer for our programming language. This

tokenizer consists of 'C' and 'C++' language grammar for processing the source codes and

breaking them down into lexemes, also referred to as 'Lexical Analysis'. The lexemes are

further processed through the 'Token Categorizer' where the lexemes are categorized into

identifiers, keywords, mathematical operators, logical operators, and other operators.

Following to categorization of lexemes, each group is fed to the distance similarity algorithms

such as Jaro, Jaro-Winkler, Levenshtein, cosine similarity, dice coefficient, and least common

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

6 Ajinkya Kunjir and Jinan Fiaidhi

substring for computation of values. Our similarity detection process can be explained in

three stages given as under:

(1) Pre-Processing: This stage involves document(s) retrieval and uploads from the corpus

set at the back-end. The document corpus consists of student assignments from the IEEE

Homework programming dataset in this case, where each student 'N' submits a folder

composed of 'Ni' number of assignments in it. Mathematically, a set of assignments' Ni‟ is a

subset of student folder „N‟ such as Ni ϵ N. In the proposed dataset, each subfolder „Zi‟

ranging from 1 to 6 is within the subfolders A2016, A2017, B2016, and B2017. The details

about the dataset are mentioned in section IV. Once the necessary documents are retrieved for

comparison, they are fed to the file matching loop in the intermediate stage processing. The

main objective of this pre-processing stage is to maximize the accuracy of document

searching and to fetch from the corpus.

Figure 1. Hypothetical structure and work-flow of the proposed system

(2) Intermediate Processing: The second stage, followed by pre-processing, comprises

three key components: File matching comparator or loop, ANTLR Tokenizer, and mainframe

system component, which has similarity distance algorithms and controller functionality for

the comparison. The detailed description of the working of each part mentioned above is

given below as follows:

(a) File Matching Loop / Comparator - The 'N' student assignment folders are lined up in a

working directory or path specified in the program. For a use case in undergrad school, all

students are given multiple applications to code in the C/C++ programming language.

Therefore, one assignment has three to four source codes at maximum in one folder when

they electronically submit it to the subject professor.

The logic of comparing file 'A' from the first folder with all other files in the same folder

makes sense without any extra loss of time. The comparator involved in the intermediate

stage will compare „Ni‟ of folder one with the rest „n‟ numbers of „Ni' going on till the last

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 7

file in the folder path specified. The comparator loop will continue matching the next file, i.e.,

Ni + 1, in line after „Ni' from folder one and keep matching with the other files in the same

folder. The files to compare are then passed to the sequence of tokenizers for breaking down

the files into lexemes and teaming up with their categories such as keywords, mathematical

operators, logical operators, numerical, and other operators.

(b) ANTLR Tokenizer- The general introduction of ANTLR is given at the start of section

III. To dive deep into the tool, ANTLR uses the LL1 parser for reading and processing textual

files. The plugin for ANTLR is available from its website (https://www.antlr.org/) and can be

installed in the IDE environment such as an eclipse or IntelliJ IDEA. The ideal IDE platform

preferred for developing this kind of system with heavy data handling and building grammars

for parsing is IntelliJ IDEA. This tokenizer in the series is supposed to break down the stream

of code into lexemes by referring to the „C‟ or „CC++‟ grammar. The program has been

constructed in such a way that it can detect the extension of source codes in the given path

such as „.c‟ or „.cpp‟ and choose the grammar file accordingly. The second tokenizer has

exclusive use for detecting new lines, comments, and line numbers for the corresponding

printouts. The lexical tokenizer, which is ANTLR, generates tokens in clusters of identifiers,

keywords, arithmetic operators, logical and other operators for both the files and lists out the

count for each cluster, including multiples. The next tokenizer in the queue has its expertise in

detecting newlines and comments in the same set of files with the number of occurrences. The

clusters/sets obtained from the source codes are compared with each other based on similarity

distance algorithms in the mainframe system.

(c) Mainframe System- This essential component of the intermediate pre-processing stage

has a collection of distance similarity algorithms to compare the clusters and give out the

result. The ideal distance algorithms to be considered would be cosine similarity measure, N-

grams, Levenshtein distance, Jaro, Jaro-Winkler, Sorensen dice coefficient, and least common

substring the length of common subsequence. The performance evaluation and working of all

the similarity algorithms based on distance methods are illustrated in the 'Similarity Measures

Techniques' section in the latter half of this paper. The proposed research can also be framed

as a comparative study of string similarity distance algorithms on a massive chunk of data

where the results of all the categories of two files, i.e., keywords, math operators, logical

operators, and other operators will be aggregated into one value for the ease of classification.

The results obtained from this study will be summarized in a tabular format and displayed to

the user operating at the front-end in the form of reports and visualizations.

(3) Post Processing: This is the final stage of the hypothetical structure of the system. The

results from pre-processing and intermediate processing are validated in the form of reports

and presented to the system's end-users. The stakeholders or users using the front-end of the

system would be assignment evaluators such as Professors, Graduate assistants, and other

fields related faculty. The result data/information could be visualized in charts, bar graphs,

treemaps, column data charts, or maybe as simple as possible. The potential open-source tools

considered and used in this research for representing analytics and visualizations are Google

charts, ChartJS and Fusion Charts.

4. Data description

Generating source code datasets using artificial techniques is a challenging task and

indirectly reflects various realistic situations. A good number of previous researches

experimented on the output of „jury‟ existing tool for measure algorithms [12]. As a lack of

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

8 Ajinkya Kunjir and Jinan Fiaidhi

description of the standard datasets in existing researches, the new homework programming

dataset is presented in this research to work with the proposed system. The „Programming

Homework Dataset for Plagiarism Detection‟ was uploaded on IEEE-Dataport by Vedran

Ljubovic, University of Sarajevo [13]. The dataset is developed from the students'

assignments for the subject – Introduction to C in one semester and assignments of C++ in

other for the years 2016 and 2017. All the final source codes submitted by the students are

available at http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-

detection and on AWS for comparison by the already existing plagiarism detection tools like

JPlag, YAP3, MOSS, and PlagDetect. The homework assignment zip extract consists of full

traces of student activity and keystrokes generated by setting the IDE to a time limit autosave

during homework development. The IDE also helped passing out the output information from

the compiler, debugger, and student assignment to a safe corner of the repository.

The instructions for the dataset go as an archive folder having three subparts in it as

follows:

(1) Source codes – The actual source code assignments submitted by the students are

stored in the /src folder inside the archive. The subfolders under „src‟ are named A2016,

A2017, B2016, and B2017. Each subfolder listed above contains more subfolders inside for

individual assignments. Students were required to solve 16-22 assignments in each course,

labeled as “Z1/Z1”, “Z1/Z2”, and “Z2/Z1” and so far till the end. The C/C++ source codes

solved by the students are stored in these subfolders with an anonymous name. All the traces

AutoSaved after every few seconds by the IDE are saved in the archive's stats folder. This

folder is again segregated into subfolders named after courses, and the subfolder contains files

ending with extension '.stats' for every student (name stays anonymous). The stats

information is stored in JSON format (Key = value pairs). Figure 2 shown below gives a

concept map view of the IEEE dataset where there are four courses- A2016, A2017, B2016,

B2017, and assignments for each course is described as Z1/Z1.Z5/Z2 for each course.

Figure 2. Dataset concept map

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 9

(2) Ground Truth - The instructions and format for JSON files is described in the

readme.txt file present in the folder. The ground truth files list the individual and group of

students involved in plagiarism due to code similarities detected in their assignments. The

three ground truth files starting from 'ground-truth-anon.txt' contain a full list of plagiarisms,

ground-truth-static-anon.txt based on source code similarity, and ground-truth-dynamic-

anon.txt based on only failures due to 'oral defense'.

Some statistics generated by V. Ljubovic and E. Pajic[14] for the course „A‟ in 2016 and

2017 i.e. A2016 & A2017 in their latest research published and accepted at IEEE in the year

2020 is shown below in [Table 2] as follows:

Table 2. Statistics for courses a2016 and a2017

Course A2017

Student enrolled 488

Number of assignments 20

Submitted files 5733

Files per assignment 125-444

Average file size (bytes) 1317.23

Changes per file 1-7740

Plagiarized Solutions 699 (12.2%)

We all know that in a three-four-year-long course, the degree of homework participation,

in the beginning, is way more than the involvement in the end. If the participation is 90% in

the beginning, it closes up to 10-15% in the final semester of the course. As the willing

participation increases, plagiarism decreases, and it‟s vice versa in a long-term graduation

program. The technique used to overcome the plagiarism index and balance out the

proportion was to make 20% of the total students deliver oral-defense of their homework. The

ground truth files were constructed on a marking system where the students who failed to

defend their homework defense were marked as 'Plagiarized' in the file. Proper classification

of homework is a must-needed feature in a similarity detector tool, but every tool handles the

situation differently. Some tools have defined a threshold on assignment length. Some have

pre-defined heuristics, and a few tools will simply mark all the students as plagiarized and

leave unsupervised decisions to a human evaluator. A decent approach for avoiding

overfitting with the proposed system in this paper would be to divide the dataset into training

and testing datasets for the underlying machine learning algorithm. As explained at the

beginning of this section, the normal ground truth file contains all the plagiarized files. In

addition to the normal file, two more ground truth files have been added, such as static for

similar homework documents and dynamic ones. They exclude original authors and keep

those who have no similar pairs. In the ground file, the assignments are represented in similar

files, such as triplets and quadruplets. When it comes to evaluating a newly developed

plagiarism tool, one does not need to identify similar document pairs but should be able to

count false positives and false negatives inclusive of detected pairs.

5. Similarity measure methods

According to the work-flow explained in the primary and intermediate stages of the

proposed system, the source code breaks down into the number of lexemes/tokens and is

forwarded to the tokenizers deployed within the lexical analysis phase. The tokens are mostly

strings, integers, characters, and operators stored in separate containers or cluster sequences

after the tokenizers categorize them into keywords, math operators, numeric operators, and

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

10 Ajinkya Kunjir and Jinan Fiaidhi

others. The distinct sequences from containers in the file comparison stage are concatenated

together in one sequence. They are evaluated with distance similarity algorithms to compute

the similarity distance between the string sequences. In this section, we describe the potential

distance-similarity algorithms taken into consideration for this research. Section VI gives a

brief comparison of all the similarity algorithms with advantages, disadvantages, and

limitations respectively.

5.1. Distance-similarity algorithms

(1) Levenshtein Distance

Levenshtein distance, also called edit distance, is defined as the similarity between two

string sequences 1' and's 2'. The algorithm focuses on the minimum number of changes

required to convert string's 1' into string's 2' with an operation such as insertion and deletion

in string's 1'. In the programming area, the algorithm can be illustrated as lev (s1, s2) where

the value lies between 0 and 1. The values closer to '0' indicate less similarity and nearer or

equal to '1' indicate a greater measure of similarity. For example, lev (hello, hell) will fall

somewhere between 0.8 and 1 as just one letter of's 1' is missing in's 2'. The mathematical

equation for Levenshtein distance is given below as equation (1):

 () ∫ ∫

 ()

 ()

 () ()

 ()

 (1)

In the above equation, 1(ai bi) is the indicator function set to zero initially and equal to 1

otherwise. Lev(a,b) (i,j) = distance between first i characters of string „a‟ and first j characters

of string „b‟. The best example for Levenshtein distance between „HONDA‟ and

„HYUNDAI‟ is 3 and edit changes using insertion, substitution, and deletion operations. The

wider applications of Levenshtein distance in string matchings falls under dynamic

programming, and the pseudocode for DP approach for Levenshtein distance is given below:
int LevenshteinDistance (char s[1..m], char t[1..n])

 // d is a table with m+1 rows and n+1 column

 declare int d [0..m, 0..n]

 for i from 0 to m

 d [i, 0]: = i

 for j from 0 to n

 d [0, j]: = j

 for i from 1 to m

 for j from 1 to n

 {

 if s[i] = t[j] then cost: = 0

 else cost: = 1

 d [i, j]: = minimum (

 d [i-1, j] + 1, // deletion

 d [i, j-1] + 1, // insertion

 d [i-1, j-1] + cost // substitution

)

 }

 return d [m, n]

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 11

(2) Jaro Distance Algorithm

Like any other algorithm, Jaro similarity measures the distance between two string

sequences. The value of Jaro (s1, s2) mostly ranges between 0 to 1, where two strings are

equal when the value is 1 and not equal at all when a value is zero. The mathematical formula

for Jaro and a detailed explanation on value calculation is given under as follows as equation

2:

 {

(

| |

| |

)

 (2)

From the equation above,

x = number of matching characters,

t = half the number of transpositions,

|s1| and |s2| = lengths of string s1 and s2

The matches are accurate if they are not farther than *
 (| | | |)

+ and t = half the

number of characters in both strings in a different order.

Consider s1 = „rover‟ and s2 = „flower‟, here the matching characters is three such as [o, e,

r] in a different order. Number of characters not in order = 4 i.e. In s2 = [f, l, o, w].

Therefore, t = 4/2 = 2. From the above equation 2, Jaro similarity can be calculated as = 1/3 *

((3/5 + 3/6 + (3-2)/3) = 0.4719. The strings „rover‟ and „flower‟ have a Jaro similarity

measure of 0 < 0.4719 < 1.

(3) Jaro-Winkler Algorithm

The Jaro-Winkler distance measure is similar to the Jaro algorithm in most cases where the

prefix of both the strings doesn't match. They both produce different values when the prefix

of both the strings doesn't match. The prefix scale 'p' in Winkler gives more accurate answers

when strings have a common prefix of length 'L‟. The Jaro-Winkler similarity measure is

defined as follows in equation 3:

JW = J + Sf * L*(1 - J) (3)

Where, J = Jaro measure obtained from above block,

Sf = scaling factor (0.1 by default),

L = length of matching prefix (max 4 characters long). Here for „rover‟ and „lower‟ we

have L = 0.

The computation, JW = 0.4719 + 0.1 * 0 * (1 – 0.4719) = 0.4719. The Jaro-Winkler and

Jaro in this case are equal. The results may be different for strings such as „Logitech‟ and

„Lotto‟, where L =2.

(4) Sorensen Dice Coefficient (DC)

The Sorensen dice coefficient or dice index is a statistical tool used to gauge the similarity

of two samples. This invention intended to differentiate the similarity between two distinct

sequences. Assume „1' and „2' to be two distinct data sequences and |s1| and |s2| be the

cardinalities of the same sets. The dice index /coefficient equals twice the number of elements

common to both sets divided by the sum of cardinality sets. The mathematical equation for

DC or DI (Dice Index) is given below in equation 4 as follows:

 | |

| | | |
 (4)

The only difference between the Jaccard coefficient and DCS is that Jaccard counts the

true positives once in both denominator and numerator and DCS falls in between 0 and 1 for

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

12 Ajinkya Kunjir and Jinan Fiaidhi

two discrete sets. The DCS for string similarities is a variance of the normal DCS form and

uses bigrams of the strings for computation, as shown in equation 5:

 (5)

Here, 'nb' is the number of bigrams found in both strings, and 'nx' & 'ny' denote the number

of bigrams found in string X and Y, respectively. Consider the words' Deer' and 'Dear', the set

of bigrams in each word world be as follows:
X = {de, ee, er}, Y = {de, er, ar}

The common bigram between both the strings is {de}. Therefore, the DCS we obtain after

calculation by putting in equation (5) is (2.1) / (3 + 3) = 0.33.

(5) Longest Common Substring (LCS)

Another Dynamic Programming (DP) approach considered in this proposed similarity

detection engine after Levenshtein distance is the longest common substring (LCS) for

assuring string similarity without any resulting numerical value. Being a DP implementation,

this algorithm has a time complexity of O(nm) where space is utilized more than time. The

definition of LCS is simple as it identifies a substring in's 1' and checks for the same in's 2'.

The algorithm also has the functionality of keeping track of the substring's maximum length

and displaying it on the console. An example for LCS detection is given below in words as

there is no exclusive statistical explanation for it in the world of algorithms.

k-common substring problem ϵ LCS (X, Y, m, n) = Max (LCSuff(X,Y,I,j)) where 1 <= i ,j

<= m, n. Max (LCSuff) is the equation where both the strings lengths is reduced by 1 if the

last characters match.

Local similarity algorithms

(1) Cosine Similarity Measure

Cosine similarity can be defined as a document similarity metric that is used to measure

the similarities between two documents irrespective of the size. It measures the cosine of the

angle between two vectors in a 2D multi-dimensional space. The vectors selected for

measurement can be strings, arrays, and value objects in a coded algorithm. The core

programming language used for developing the proposed system is Java, and hence, forming

the vectors from the tokenization approach is not cumbersome in the procedure. The main

advantage of this method is it can conclude that two documents can be oriented together even

if they're far apart because of size irregularities. Like the other techniques stated above, the

result value of cosine similarity ranges between 0 and 1. The similarity percentage is less if

the cosine angle is big and high when the angle is small. The cosine similarity is implemented

for document similarity in two ways as described below:

Approach 1: Consider 'A' and 'B' as two document vectors and measure the cosine

similarity angle between the two vectors to justify the similarity between two documents in

the range of 0 to 1. This approach is favorable for the researchers, which focuses on

occurrences of a word for checking document similarity.

Approach 2: Tokenize the document to form categories for simplification and then

concatenate the distinct features into one complete vector. Follow this procedure for all the

documents and then calculate the cosine angle between the vectors. The result for this

approach would be more effective than approach one as the vector would contain all distinct

elements from all the categories. The mathematical formula for cosine similarity is given

under equation 6:

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 13

 ()

|| |||| ||

∑

√∑

√∑

 (6)

In the equation above, 'X' and 'Y' are the two vectors of attributes, and cosine similarity is

represented as a dot product and magnitude. The result obtained from this formula will be '1'

if the documents are clones and '0' if they're the opposite. In the case of IR (Information

retrieval) the angle between two 'term' vectors cannot be > 90 degrees. Gunawan [15] in their

research on finding text relevance via cosine similarity mentioned the use of cosine similarity

measures to find the relevancy of a suitable topic in multiple documents. The authors divided

the system implementation into three stages such as pre-processing (removing punctuations

from documents, converting all text to lower-case, etc.), intermediate (keyword weighing

between 0 and 1) and the last stage involves cosine angle measure to give out relevancy in

terms of '0' or '1'.

(2) N-grams similarity measure

The core concept and motive behind n-gram similarity is improvising the concept of the

mainstream LCS (Longest Common Subsequence) to encompass n-grams rather than

unigrams. Assume n-gram similarity as function 'Sn', where 'n' is a fixed parameter of 'S'. The

other widely used measure other than LCSR (LCS Ratio = LCS / length of the longer string)

is NED (Normalized edit distance) for n-grams, n>1. We need to emphasize more on

normalization and affixing before moving forward with n-gram for word similarity.

Normalization is defined as a method of discounting the words being compared. The length of

LCS of generated strings grows in-hands with the length of the strings. For Similarity X

Distance, when n =1, the similarity is LCSR, and the distance will be NED. For n =2, the

similarity is BI-SIM and distance as BI-DIST. The classification measure goes on as Tri, quad

to 'n' where n = [3, 4….' n']. Affixing adds sensitivity to the symbols at string boundaries,

which qualifies them for participation in fewer n-grams than internal symbols. The authors in

the paper [16] proposed n-gram similarity and distance measures N-SIM & N-DIST

incorporate normalization and affixing to enhance the n-gram procedure's performance. The

simple definition of n-gram goes as 'common sequence of 'n' items from a sequence of speech

and the things that can be letters, characters, or words. Saima Sultana and Ismail Biskri [17]

in their research described a methodology that uses the notion of n-gram characters due to

their nature of the sentences to be analyzed. The primary step of the methodology is to

assume two short sentences such as 'Similarity' and 'Dissimilarity' and remove the special

characters, punctuations, and stop-words.

Convert all the letters and characters to lower-case as 'similarity' and 'dissimilarity'.

Producing n-grams of characters of the strings where n = 1, n = 2 (Bigrams) and n = 3

(Trigrams) etc. till n = „n‟.

Using trigrams, the example will be:

String 1 = similarity = „sim‟,‟imi‟,‟mil‟,‟ila‟,‟lar‟,‟ari‟,‟rit‟,‟ity‟

String 2 = dissimilarity = „dis‟,‟iss‟,‟ssi‟,‟sim‟,‟imi‟,‟mil‟,‟ila‟,‟lar‟,‟ari‟,‟rit‟,‟ity‟

Forming two distance matrices to calculate the distance between the pair of 'n-gram'

characters leads to measuring the similarity between two large strings. For example, (sim,

sim) from (string1, string2) will be '0' and the same for (imi, imi), (ity, ity), (lar, lar), and so

on. The positive and negative correlation values can also be obtained and referred to as

distance.

The next step would be to remove negative values as the distance cannot be negative.

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

14 Ajinkya Kunjir and Jinan Fiaidhi

Calculate the similarity and dissimilarity from the two matrices for the given two strings.

The precise values can be obtained by using popular co-occurrence measures such as dice,

overlap, Jaccard and cosine.

(3) Greedy String Tilling – Karp Robin Problem (GST-KRP)

Michael J. Wise [18] proposed the use of the “Greedy String Tiling and Running Karp-

Rabin matching (GST - KRP)” algorithm in the areas of plagiarism/similarity detection and

other applications such as DNA Matching, amino acids, etc. GST algorithm is based on the

concept of one-to-one string matching and can deal with the substring transposition. A

Running Karp-Rabin method, which has an average close-to linear-complexity has been

suggested for computing GST values wisely. The three important features of the GST

algorithm are 'maximal match', 'tile', and 'minimum match length'. We will describe the

working of the algorithm along with the definition for each of the above-mentioned features

in this section as given below.

Let „P‟ be the pattern (Pattern is usually the shorter string among the two strings) and T be

the text string.

Maximal-Match: In any line of comparison with GST, a match is said to be a „maximal

match‟ when the substring Pp of the pattern string „P‟ starting at p matches element-by-

element, a substring Tt of text T (the other string). The match goes on until the end of the

string is reached. A maximal match can be shown as max (p, t, s), where s = length of the

match, „p‟ & „t‟ are matching points.

Tile: A tile is a one-to-one association of substring of P with a matching substring of T. For

tile formation from a maximal match, tokens of two substrings are marked and become

unavailable for further matches. In simple words, tile formation is directly dependent on a

maximal match and can be denoted as tile (p, t, s) where s is the length of the tile.

Minimal Match: A minimal match is just a maximal match below some defined length

threshold. A minimum match length can be one but a value > 1. Assume that there is a current

maximal match length 'maxmatch' (maxmatch >minmatch) which is the length of the largest

maximal-matches obtainable from P and T. The algorithm =, more or less, the pseudocode:

provided by the author from the paper [19] has been provided in the code box given above.

To optimize the regular GST algorithm, the minimum match-length was put greater than 1,

and the results obtained have the optimal values. The worst-case - time complexity of GST

being O(n3), the algorithm can be tuned in several ways to improve the performance and

reduce the worst-case complexity. The explanation of Karp-Rabin or Running-Karp-Rabin

and how the novel algorithm computes GST values will be explained in the second version of

this paper.

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 15

6. Comparative study of existing tools

Over the past few years, automated similarity detection engines have been developed for

identifying plagiarism in student source codes. The previous researches have stated that the

most effective approaches have been about tokenizing student assignments into bits and

pieces and looking for long common substrings/subsequences between the sequences. The

researchers seem to follow structured metrics referred to as the development of MOSS,

PlagDetect, JPlag, and YAP tools. The attribute counting metrics (ATMs) and similar

measurements designed for the approach consist of various measures already mentioned in

section I – Introduction of this paper. The early plagiarism detectors tools such as JPlag,

Sherlock [20][21], Sim, and Plaggie have been discussed quite a few times in the research

papers. 'Sim', 'Plaggie' and 'JPlag' are software that uses a token-based approach for detecting

similarities in programming assignments, and 'Sherlock' is a tool based on digital signature

recognition for plagiarism checking. There are several other e-plagiarism checkers available

for study but could not be verified practically as the command-line version was never

developed for them and could not be automated for public use. To pursue a case study of all

available tools, quantitative measurement is required to generate a value 'i' for comparing (x,

y), where 'x' and 'y' are two files in a basic comparator. Chaiyong Ragkhitwetsagul [22], in

their research paper on the comparison of code similarity analyzers, described the five

experimental scenarios for pervasive modifications: obfuscators, clone detectors, and other

software in regards to all the available similarity detectors in or before the year 2017.

Fetching some information from the referenced paper, the table given below shows the list of

tools with their similarity measures, details, default parameters, and year of development.

Table 3 provides the audience with a detailed comparison of all categories of similarity

detectors such as plagiarism detection tools (PD), clone detector tools (CD), and others (O),

which also includes compressors and mini-tools. In addition to the comparison of the tools

with their similarity measurement calculation, we have added details, default parameters, and

the year of the invention along with the research paper reference in the columns of the same

table.

Greedy-String-Tilling Algorithm
Tiled_tokens_length: = 0

Repeat

maxmatch: = minimum-match-length

starting at the first unmarked token of P, for each Pp do

starting at the first unmarked token of T, for each Tt do

j: = 0

while Pp+ j = Tt+ j AND unmarked (Pp+ j) AND unmarked (Tt+ j) do

j: = j + 1

if j = maxmatch then add match (p, t, j) to list of matches of length j

else if j > maxmatch then start new list with match (p, t, j) and maxmatch: = j

for each match (p, t, maxmatch) in list

if not occluded then /* Create new tile */

for j: = 0 to maxmatch - 1 do

mar k_token (Pp+ j)

mar k_token (Tt+ j)

Tiled_tokens_length: = Tiled_tokens_length + maxmatch;

Until maxmatch = minimum-match-length

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

16 Ajinkya Kunjir and Jinan Fiaidhi

Table 3. A comparison table showing similarity calculation, details, default parameters, year, and

references for each tool

Tool category Similarity Calculation Details Year and Reference

(PD) SIMTEXT
Tokens and string

alignment
Min. run size

1999

Gitchell and Tran [18]

(PD) SIMJAVA
Tokens and string

alignment
Min. run size

1999

Gitchell and Tran [18]

(PD) SHERLOCK Digital signatures Chain length, zero bits
2002

Pike R and Loki [19]

(PD) JPLAG-TEXT
Tokens, GST(Greedy

String Tiling), Karp-Rabin
Min. no. of tokens

2002

Prechelt [20]

(PD) JPLAG-JAVA
Tokens, GST(Greedy

String Tiling), Karp-Rabin
Min. no. of tokens

2002

Prechelt [20]

(CD) CCFX
Tokens and suffix tree

matching
Min. no. of tokens

2002

Kamiya [21]

(CD) YAP
Tokens, GST(Greedy

String Tiling), Karp-Rabin

Tokenization and GST

matching

1996

Michael J. Wise [8]

(PD) PLAGGIE N/A (Not disclosed) Min. no. of tokens
2006

Ahtanein [22]

(CD) DECKARD
Characteristic vectors of

AST optimized by LSH

Min. no. of tokens

Sliding window size

Clone similarity

2007

Jiang [23]

(CD) NICAD
TXL and string matching

(LCS)

Percentage of unique

code

Min. no. of lines

Code abstraction

Variable renaming

2008

Roy and Cardy [24]

(CD) ICLONES
Tokens and generalized

suffix tree
Min. of tokens

2009

Gode and Koschke [25]

(O) COSINE
Cosine similarity from

machine learning library
N/A

2011

Pedregosa et al [26]

(O) FUZZYWUZZY Fuzzy string matching Similarity calculation
2011

Cohen [27]

(O) NGRAM
Fuzzy search using n-

gramme
N/A

2012

Poulter [28]

(CD) SIMIAN
Line-based string

comparison

Min. no. of lines

Ignoring variables,

whitespaces, identifiers

2015

Harris [29]

(O) DIFFLIB Gestalt pattern matching
Ignoring whitespace,

auto junk heuristic

2016

Python Software

Foundation [30]

(O) DIFF Equation N/A 2016

(O) BSDIFF Equation N/A 2017

(O) JELLYFISH
Approximate and Phonetic

String matching
Edit distance algorithm

2016

Turk and Stephens [31]

(C) 7ZNCD NCD with 7z Compression level N/A

(C) BZIP2NCD NCD with bzip2 Compression level N/A

(C) GZIPNCD NCD with gzip Compression level N/A

(C) XZ-NCD NCD with xz Compression level N/A

(C) ICD
Regular NCD (Normalized

Compression Distance)

Compression level,

block size
N/A

(C) NCD Regular NCD Compression level
2015,

Cilibrasi [32]

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 17

The authors also validated the performance of all the tools mentioned in [Table 3] above

with a dataset consisting of java source codes mentioned in the paper [33][34][35][36]. The

performance factors evaluated were Truth values (T), false positive (FP), false negative (FN),

accuracy, precision, recall, the area under curve (AUC), and F1-score. The detailed

comparison of the proposed forensic engine's previous tools based on the similarity

measures/calculations will be discussed in the successor of this current paper.

7. Conclusions

In many academic institutions, source code plagiarism is still an ongoing concern and

disrespects academic awards' moral integrity. Several students digitally submit their

assignments to the repository and this makes it challenging for the evaluator to check and

compare one assignment with others for plagiarism. The existing similarity detection tools

use inefficient approaches such as Attribute Counting Metrics (ATM) with the tokenization

approach that involves the Longest Common Substring (LCS) search method. A bunch of

similarity detector engines prefers using hashing techniques and syntax tree/AST modifiers

for file matching if the focus is on the line-word comparison. It is a complicated decision to

make when it comes to recommending a tool above all others. MOSS, YAP3, and JPlag are

well used within the professional academic community because of their various advantages

for all kinds of programming language. Few notable disadvantages of these similarity

detectors are lack of visual support (GUI), batch file processing, and a robust assistant tool.

The similarity detection engine proposed in this paper tries to resolve the complexities and

challenges faced by the evaluators and examiners at professional institutes where students

upload their assignments digitally. The system follows a systematic ATM alongside a

tokenizer (ANTLR) driven mainframe controlling system delivering lexical analysis

computation with multiple algorithms. The IEEE homework programming dataset comprising

of 'c' and 'cpp' courses assignments is given as a path to the program and assignments are

evaluated in batches. The similarity measures considered for this experimentation include

cosine similarity, n-grams, Levenshtein distance, Jaro & Jaro-Winkler, and coefficients such

as Dice, Jaccard, and F-1. An average score of all these methods is obtained to classify if two

assignments are plagiarized or not. Adding a novelty feature to this implementation apart

from the detection process, the research intends on developing a web application for

representing analysis of student assignment comparison and a machine learning touch for

classification of a contrast.

8. Future work

The current research can be expanded in the future by extending the detection process to

the next level, which is syntactical analysis. The construction of a parser tree using ANTLR

for one source code is complex and therefore will be more difficult to do the same for a bunch

of files in a parallel processing environment. The expansion will improve the comparison

accuracy as the source code controls, and constructs will be evaluated. Various parse tree

algorithms for recursive descent parser and LR/LL can be used for similarity detection.

Diagrammatic representations of critical analysis and insights within the comparison process

will be essential and play a key role in the future for this kind of research.

Acknowledgment

This paper is part of the first author MSc Thesis.

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

18 Ajinkya Kunjir and Jinan Fiaidhi

References

[1] A. Parker and J. Hamblen, “Computer algorithms for plagiarism detection,” IEEE Transactions on Education,

vol.32, no.2, pp.94-99, May

[2] K. J. Ottenstein, “An algorithmic approach to the detection and prevention of plagiarism,” SIGCSE Bull,

vol.8, no.4, pp.30-41, December

[3] M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection tools used in Academia: A systematic

review,” ACM (2019)

[4] Z. Al-Khanjari, J. A. Fiaidhi, R. Al-Hinai, and N. S. Kutti, “PlagDetect: A java programming plagiarism

detection,” Plug-in. ACM Inroads magazine, (2010)

[5] J. A. W. Faidhi and S. K. Robinson, “An empirical approach for detecting program similarity within a

university programming environment,” Computers and Education, vol.11, no.1, pp.11-19

[6] T. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol.2, no.4, pp.308-320

[7] Z. Đurić and D. Gasevic, “A source code similarity system for plagiarism detection,” The Computer Journal,

vol.56, pp.70-86, (2013) DOI: 10.1093/comjnl/bxs018

[8] M. J. Wise, “YAP3: Improved detection of similarities in computer program and other texts,” ACM SIGCSE

Bulletin, vol.28

[9] G. Whale, “Identification of program similarity in large populations,” The Computer Journal, vol.33, no.2,

pp.140-146

[10] K. T. Stolee, S. G. Elbaum, and D. Dobos, “Solving semantic searches for source code,” (2012)

[11] S. Yousf, M. Ahmad, and S. Nasrullah, “A review of plagiarism detection based on lexical and semantic

approach,” pp.1-5, (2013) DOI:10.1109/C2SPCA.2013.6749430

[12] M. Mozgovoy, “Enhancing computer-aided plagiarism detection,” Ph.D. Dissertation, University of Joensuu,

Department of Computer Science and Statistics, (2007)

[13] V. Ljubovic, “Programming homework dataset for plagiarism detection,” IEEE Dataport, Aug., (2020) DOI:

10.21227/71fw-ss32

[14] V. Ljubovic and E. Pajic, “Plagiarism detection in computer programming using feature extraction from ultra-

fine-grained repositories,” in IEEE Access, vol.8, pp.96505-96514, (2020) DOI:

10.1109/ACCESS.2020.2996146

[15] R. Cilibrasi and P. M. B. Vitanyi, “Clustering by compression,” Trans Inf Theory, vol.51, no.4, pp.1523-1545,

(2005)

[16] D. Gunawan, C. A. Sembiring, M. A. Budiman, “The implementation of cosine similarity to calculate text

relevance between two documents,” Journal of Physics: Conference Series. 978. 012120. 10.1088/1742-

6596/978/1/012120, (2018)

[17] G. Kondrak, “N-gram similarity and distance,” in: Consens M., Navarro G. (eds) string processing and

information retrieval, SPIRE 2005, Lecture Notes in Computer Science, vol.3772, Springer, Berlin,

Heidelberg, (2005) DOI: 10.1007/11575832_13

[18] S. Sultana, and I. Biskri, “Identifying similar sentences by using n-grams of characters,” (2018)

[19] J. Turk and M. Stephens, “A python library for doing approximate and phonetic matching of strings,”

https://github.com/jamesturk/jellyfish, (2016)

[20] M. Joy and M. Luck, “Plagiarism in programming assignments,” Technical Report, University of Warwick,

Coventry [PDF] (BibTeX)

[21] M. S. Joy and M. Luck, “Plagiarism in programming assignments,” IEEE Transactions on Education, vol.42,

no.2, pp.129-133

[22] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code similarity analyzers,” Empire Software

Eng, vol.23, pp.2464-2519, (2018) DOI: 10.1007/s10664-017-9564-7

Asia-Pacific Journal of Educational Management Research

Vol.5, No.3 (2020), pp.1-20

Copyright © 2020 Global Vision Press (GV Press) 19

[23] G. David and T. Nicholas, “Sim: A utility for detecting similarity in computer programs,” SIGCSE Bulletin

(Association for Computing Machinery, Special Interest Group on Computer Science Education), vol.31,

pp.266-270

[24] R. Pike and Loki, “The sherlock plagiarism detector,” https://www.sydney.edu.au/engineering/

[25] L. Prechelt, G. Malpohl, and M. Philippsen “Finding plagiarisms among a set of programs with JPlag,”

Journal of Universal Computer Science, vol.8, (2003)

[26] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFInder: Amultilinguistic token-based code clone detection

system for large scale source code,” Trans Softw Eng, vol.28, no.7, pp.654-670, (2002)

[27] A. Ahtiainen, S. Surakka, and M. Rahikainen, “Plaggie: GNU-licensed source code plagiarism detection

engine for java exercises,” In: Baltic sea, no.6, pp.141-142, (2006)

[28] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable and accurate tree-based detection of

code clones,” pp.96-105, (2007) DOI: 10.1109/ICSE.2007.30

[29] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of near-miss intentional clones using flexible pretty

printing and code normalization,” In: ICPC‟08, pp 172-181, (2008)

[30] N. Gode and R. Koschke, “Incremental clone detection,” In: CSMR‟09, pp 219-228, (2009)

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, and V. Dubourg, “Scikit-learn: Machine learning in python,” J Mach Learn Res, pp.2825-2830, Oct,.

(2011)

[32] A. Cohen, “Fuzzywuzzy: Fuzzy string matching in python,” http://chairnerd.seatgeek.com/fuzzywuzzy-

fuzzy-string-matching-in-python/, accessed date: 14 Mar., (2016)

[33] G. Poulter, “Python n-gram 3.3,” https://pythonhosted.org/ngram/, accessed date: 14 Feb., (2016)

[34] S. Harris, Simian - similarity analyzer, version 2.4. http://www.harukizaemon.com/simian/, accessed date: 14

Feb., (2016)

[35] Python Software Foundation Difflib – helpers for computing deltas, http://docs.python.org/2/library/

difflib.html, accessed date: 14 Feb., (2016)

[36] M. Wise, “String similarity via greedy string tiling and running Karp−Rabin matching,” Unpublished Basser

Department of Computer Science Report

Developing Machine Learning Coding Similarity Indicators for C and C++ Corpuses

20 Ajinkya Kunjir and Jinan Fiaidhi

This page is empty by intention.

