
International Journal of Smartcare Home 

Vol.1, No.1 (2021), pp.75-84 

https://dx.doi.org/10.21742/26531941.1.1.07 

 

 

eISSN: 2653-1941 IJSH 

Copyright ⓒ 2021 Global Vision Press 

Malicious Code Characteristics Visualization using API 
 

 

JiHun Kim1, SungWon Lee2, and JongHee Youn3* 1 

1,2Student, Department of Computer Engineering, Yeungnam University, 

280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea 
3*Professor, Department of Computer Engineering, Yeungnam University, 

280 Daehak-Ro, Gyeongsan, Gyeongbuk, Republic of Korea  
1f13521@naver.com, 2noke15@ynu.ac.kr, 3*youn@yu.ac.kr 

Abstract 

The massification of malware through the generation of malware variants poses security 

threats to overall social and industrial societies. Since the quantity of malware is too big to 

simply analyze and defend against malware per se, it is inevitable to maximize the efficiency 

based on efficient analysis methods. In this study, the API is divided into 25 categories, and the 

interaction and frequency of the API are made into 25 * 25pixel images based on the matrix 

using RGB values. The Euclidean distance algorithm is applied to measure color similarity, 

and the similarity of mutual malicious behavior is calculated based on the final value of the 

Euclidean distance. As a result of comparing the similarity calculated by this method with the 

similarity calculated using the existing similarity calculation method, the similarity was 

calculated to be 5% to 10% higher on average. 

 

Keywords: Malware, Binary analysis, Visualization, Similarity 

 

1. Introduction 

Malware analyzing methods are implemented through largely two mechanisms. First, static 

analysis is a technique to identify malicious behaviors by analyzing the structure or certain 

binary patterns of malware at the code level, which enables more in-depth and detailed analysis 

but will require much time and effort and add considerable difficulties to analysis if 

technologies obstruct static analysis such as execution file compression and code obfuscation 

are applied to malware. Another analysis method is dynamic analysis, which is executing 

malware in a virtual machine to analyze the malicious behavior. This method has the advantage 

of enabling a clear understanding of malicious behaviors even when execution file compression 

or code obfuscation has been applied to malware because malware is executed for analysis. 

However, this method is not suitable for analyzing trigger-based malware that runs at a certain 

time or when the user's certain action is taken. 

The present study adopts static analysis as the main analysis method. Despite that static 

analysis is conducted; the effects of dynamic analysis can be expected because the run streams 

of codes are tracked and analyzed. In addition, in the present study, malicious behaviors are 

analyzed through the APIs collected during analysis, and malware is made into images based 

on the frequencies and interactions of the APIs. Since the acts of malware imaging as such can 

be visually analyzed and malware variants and similar pieces of malware can be easily analyzed 

 
Article history:  

Received (March 9, 2021), Review Result (April 3, 2021), Accepted (June 10, 2021) 



Malicious Code Characteristics Visualization using API 

 

 

 

76                JiHun Kim, SungWon Lee, and JongHee Youn 

through comparison between different pieces of malware, in the present study, the similarities 

of malware images are also calculated. 

 

2. Related works 

Although early studies that collected APIs to judge malicious behaviors listed API 

sequences, collected the log information regarding the use of APIs [1] or used the frequencies 

of APIs to judge malicious behaviors, recently, mathematical algorithms such as the nearest 

neighbor search algorithm [2] or the Longest Common Subsequence (LCS) [3] are applied to 

increase the speed and enhance the accuracy. Many studies have also proposed various methods 

for identifying malicious behaviors and one example of which is visualization [4]. The 

statistical values or opcodes of the APIs called in the binary codes are shown as an image or 

[5] in the form of file map images. In addition, dynamic analysis is sometimes utilized to 

express the statistics of the APIs used as thread maps [6] or extract and visualize the entropy of 

the files [7]. Such studies for visualization can more clearly identify malicious behaviors, and 

2D-based cross-sectional images are also useful for verifying the similarities of malware 

variants and families [8]. The similarity calculations as such can be applied with qualified 

algorithms such as the Cosine similarity algorithm [9] and Jaccard distance algorithm [10] to 

calculate high similarities. However, such methods show classification rates that vary with how 

data are processed and used and show low-performance speed because they have relatively 

large amounts of calculations. In addition, since they should calculate large amounts of data, 

they require large amounts of the necessary information and their calculations may become 

complicated depending on the algorithm used. In the present study, the run stream will be 

searched to improve the efficiency of the speed to identify malicious behaviors based on the 

API information collected and the foregoing will be developed for visualization. In addition, 

similarities will be calculated to analyze the similarities of malware variants and malware 

families to complement the limitations of existing studies and maximize efficiency. 

 

3. Proposed method 

The present study adopts static analysis that analyzes malware at the code level as a basic 

mechanism. The code-level analysis process in the present study follows a mechanism very 

similar to symbolic execution. However, the analysis in the present study does not inject any 

unknown quantity (symbol) in the process of observing the stream but does observe the entire 

stream to examine the entire stream of the malware being analyzed. 

In addition, the frequencies and interacting relationships of the APIs collected are analyzed 

to use the APIs for imaging. The relevant API-based images enable visual identification of 

malware behaviors. The final purpose of the present study is to calculate the similarities of 

images that express malicious behaviors to figure out the similarities of malware variants and 

similar malware. 

 

3.1. Static execution path exploration 

The core of the static execution path search in this paper is that the instruction set and 

subroutine are divided into true and false ones according to the branch instruction before they 

are searched. As for the branch point, comparison instructions such as cmp and tests that occur 

before the branch instructions are issued are made through logical operation instructions such 

as xor. We divide true and false marks according to the branch instructions to search all 

instruction sets and subroutines. 



International Journal of Smartcare Home 

Vol.1, No.1 (2021), pp.75-84 

 

 

Copyright ⓒ 2021 Global Vision Press           77 

The codes on the left of [Figure 1] are binary codes for showing static execution path 

searches. The binary code in [Figure 1] is visualized as shown in the figure on the right. This 

mechanism is applied equally even when there are subroutines in the instruction set. 

 

Figure 1. Example of static execution path exploration 

In this study, the path is expressed based on the Windows API. However, there is a problem 

that the number of APIs is too large to make the APIs into nodes. To solve such problems, the 

APIs will be reclassified into 25 upper categories through the functions of the APIs so that 

behaviors can be judged and the temporal efficiency can be enhanced.  

The method proposed in this study enables the understanding of the interactions between 

APIs because it uses execution path searches despite that it is a static analysis so that the effects 

of dynamic analysis can be expected. 

 

3.2. Graph visualization 

In the present study, 25 categorized API nodes and edges related to normal, true, and false 

marks are visualized to identify malicious behaviors. The information used for the visualization 

consists of 25 categorized API nodes and frequencies related to normal, true, and false marks. 

Table 1. Composition of graph visualization 

Node Edge color 
Color Characteristics 

of edges 

25 API 

categories 

Normal True False Increase by 50 every time the 

frequency increases by 1 R G B 

[Table 1] shows the composition of graph visualization. First, 25 nodes are fixed as absolute 

paths, and marks, i.e., normal, true, and false, constitute the color information of edges with R, 

G, and B colors, respectively. The RGB colors consisting of 0 to 255 increases by 50 every 

time the frequency of the marks increases. This is because the maximum number of frequencies 

1 loc_401460:   

 

2  mov eax, [esp+argc] 

3  sub esp,44h 

4  cmp eas,2 

5  Push ebx 

6  push ebp 

7  push ebi 

8  jzn loc_401488 

9 loc_401484:   

10  xor eax,eax 

11  jmp short loc_40148D 

12 loc_401488:   

13  sbb eax,eax 

14  sbb eax,0FFFFFFFFh 



Malicious Code Characteristics Visualization using API 

 

 

 

78                JiHun Kim, SungWon Lee, and JongHee Youn 

was identified as 5 in the mutual actions of the API categories in the present study. Of course, 

a larger number of frequencies may be identified. However, if the color information is close to 

255, the fact that the frequency of API mutual actions is sufficiently meaningful and the 

increment value of 50 was derived as an appropriate value to enhance the visibility to show 

color information in comparison with the frequency numbers of other categories. Therefore, it 

can be seen that higher numbers of frequencies related to normal, true, or false marks indicate 

colors closer to red, green, or blue, respectively. Figure 2 shows a graph made by imaging the 

malicious behaviors of Gen:Variant.Zusy.210164, which is actual malware, according to the 

proposed method. Each fixed node consists of API categories and the colors of the edges 

connected between the nodes have RGB values that change the frequency numbers of mutual 

actions of the APIs. The graph images as such enable malicious behavior analysis through the 

identification of API interactions. 

 

Figure 2. Gen:Variant.Zusy.210164 malicious behavior 

However, the graph images as such are not suitable for calculations of similarities because 

the malicious behaviors in the present study are shown as API categories expressed with nodes 

and interactions expressed with edges, and adaptability and accuracy cannot be expected from 

similarities calculated with the color information and the information such as the shapes of 

edges. This is because when color information on graph images is enlarged into pixel units, 

other colors than the colors of the edges appear due to distortion, etc. Therefore, in the present 

study, APIs' mutual actions are reconverted into simple 25 * 25-pixel images and used in the 

calculations of the similarities. 

 

3.3. Pixel image similarity 

In the present study, 25 API nodes composed of absolute paths and frequency numbers 

related to Normal, True, and False actions are constructed into R, G, and B color information, 

respectively for visualization. The similarities of the malware images in which the actions were 

expressed as such can be compared through color comparisons between pixels. 

In the present study, the similarities of the colors of all pieces of pixel information on two 

images being compared are calculated through the algorithm for Euclidean distances in the 

color space. Figure 3 shows 6 * 6-pixel images intended to present examples of pixel image 

similarity calculations and the pixels were enlarged for easy understanding. One square means 

one pixel.  



International Journal of Smartcare Home 

Vol.1, No.1 (2021), pp.75-84 

 

 

Copyright ⓒ 2021 Global Vision Press           79 

 
 

 

Figure 3. Test pixel images 

The similarity between the color distances per pixel of these two images becomes closer to 

1 as the colors become more similar and it can be seen that RGB: 255, 0, 0, and RGB: 255,50,0 

are 99% similar colors. Therefore, if the colors of all the pixels of the two images are the same, 

the color similarity is calculated as 1.  

 

4. Experiment and discussion 

In the present study, the similarities of different pieces of malware will be verified based on 

the similarities of the images of the relevant pieces of malware. The pieces of malware adopted 

for the verification of similarities are malware variants with similar malicious behaviors. The 

sets of malware variants classified into the same categories are called malware families.  

[Figures 4] and [Figure 5] show the malicious behavior of two malware families, Zusy and 

Confiker made into pixel images. 

   

     Zusy.260481        Zusy.210164        Zusy.Elzob 

Figure 4. Gen:Variant.Zusy family visualization 

   

      Conficker.C2       Conficker.A1      Conficker.Z.03 

Figure 5. W32/Confiker.worm family visualization 



Malicious Code Characteristics Visualization using API 

 

 

 

80                JiHun Kim, SungWon Lee, and JongHee Youn 

It can be seen that Zusy uses complex APIs because the pixels are evenly distributed. 

However, compared to Zusy, Confiker show intensively distributed pixels on some parts. This 

malicious behavior pixel image can be used as basic data to grasp the malicious behavior 

through the API. Based on the malicious behavior pixel images as such, the APIs being mainly 

used can be identified and the results can be used as basic data to understand malicious 

behaviors. 

Table 2. Gen:Variant.Zusy similarity 

 Zusy.260481 Zusy.210164 Zusy.Elzob 

Zusy.260481 1 79.1471 76.933 

Zusy.210164  1 75.550 

Zusy.Elzob   1 

Table 3. W32/Confiker.worm similarity 

 Conficker.C2 Conficker.A1 Conficker.Z.03 

Conficker.C2 1 82.561 86.392 

Conficker.A1  1 83.543 

Conficker.Z.03   1 

The results are as shown in [Table 2] and [Table 3]. First, about Zusy, although the pixels 

are evenly distributed, it can be seen that the positions and colors of the pixels in three pieces 

of malware are shown to be similar. Therefore, the similarities were calculated to be at least 

75%. In the case of Confiker, the fact that the positions of the pixels indicated by the colors are 

intensive and the colors are similar can be seen through the calculated similarity, 82%.  

In the present study, three similarity verification methods, that is, Jacquard Index, the NCD, 

and the nearest neighbor algorithm, are applied to the 930 samples experimented with in the 

present study in the same system to analyze the proposed method and evaluate the time 

performance of the method. Here, the NCD measures similarities based on files, and the 

Jacquard Index and the nearest neighbor algorithm measure similarities based on codes. All 

four methods including the proposed method indicate higher similarities when the values are 

closer to 100 and indicate the average values of similarities. 

Table 4 Malware Family Sample DataSet 

Type Family Data Set 

Gen.Variant 

Zusy 192 

Kazy 170 

Buzy 82 

Gen:Heur 

MSIL.Krypt 74 

Conjar 28 

KS 28 

Naffy 24 

W32.Trojan 
Graftor 149 

Clicker 24 

W32.Virus Sality 37 

Win32.Worm Allaple 75 

Trojan:Downloader Barys 47 

Total 12 930 



International Journal of Smartcare Home 

Vol.1, No.1 (2021), pp.75-84 

 

 

Copyright ⓒ 2021 Global Vision Press           81 

[Table 4] shows sample data of malicious codes used for similarity comparison in this study. 

Figure 6. Detection efficiency 

[Figure 6] is a graph of the statistics of detection rates compiled by applying the four 

similarity verification methods to 12 malware families. Overall, compared to other methods, 

we were able to confirm satisfactory performance. In particular, the similarity of families with 

more than 100 samples, such as Zusy, Kazy, and Graftor, showed that the method proposed in 

this study showed higher similarity than other methods. 

This can highlight efficiency in automating the analysis of malware by calculating similarity 

to other similarity methods even for a family of large numbers of samples. This means that the 

method proposed in the present study will calculate similarities to be higher than other 

similarity verification methods even in the case of families consisting of many samples 

highlighting its efficiency in automation for analysis of massive malware. 

 

5. Conclusion 

Although the basic analysis method is static analysis, the effect of dynamic analysis can be 

expected because the method proposed in the present study searches the execution paths and 

the mutual actions of the APIs collected during analysis and the frequency numbers are used to 

analyze malicious behaviors. 

In the present study, the Euclidean distance algorithm was applied to measure color 

similarities and the similarities of mutual malicious behaviors are calculated based on the final 

values of Euclidean distances. By this method, the similarity was calculated to be 5% to 10% 

higher on average than other conventional methods. However, the method proposed in the 

present study spends a lot of time in deriving resultant values because it analyzes samples, 

visualizes the samples, and calculates the similarities of the visualized samples. Therefore, it 

requires a lot of time for the analysis of 10,000 or more malware samples. In future studies, to 

complement the limitations as such, measures to overcome the difficulties in the analysis due 

to the massification of malware will be prepared through the optimization of analysis methods. 



Malicious Code Characteristics Visualization using API 

 

 

 

82                JiHun Kim, SungWon Lee, and JongHee Youn 

Acknowledgments 

This research was supported by the Yeungnam University Research Grant and the National 

Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) 

(No.2018R1D1A1B07050647). 

 

References 

[1] C. I. Fan, H.W. Hsiao, C. H. Chou, and Y. F. Tseng, “Malware detection systems based on API log data mining,” 

2015 IEEE 39th annual computer software and applications conference, vol.3, (2015) 

[2] I. Firdausi, A. Erwin, and A. S. Nugroho, “Analysis of machine learning techniques used in behavior-based 

malware detection,” 2010 second international conference on advances in computing, control, and 

telecommunication technologies. IEEE, (2010) 

[3] J. J. Blount, D. R. Tauritz, and S. A. Mulder, “Adaptive rule-based malware detection employing learning 

classifier systems: a proof of concept,” 2011 IEEE 35th Annual Computer Software and Applications 

Conference Workshops, IEEE, (2011) 

[4] M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind, D.A. Keim, and W. Aigner, “A survey of visualization 

systems for malware analysis,” Eurographics Conference on Visualization (EuroVis), (2015) 

[5] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, "Malware Images: Visualization and automatic 

classification," Proceedings of the 8th international symposium on visualization for cybersecurity, (2011) 

[6] P. Trinius, T. Holz, J. Göbel, and F.C. Freiling, “Visual analysis of malware behavior using treemaps and thread 

graphs,” 2009 6th International Workshop on Visualization for Cyber Security, IEEE, (2009) 

[7] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and packed malware,” IEEE Security and 

Privacy 5.2, pp.40-45, (2007) 

[8] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware detection methods,” Proceedings of the 3rd 

Hackers’ Workshop on computer and internet security (IITKHACK’09), (2009) 

[9] A. Karnik, S. Goswami, and R. Guha, “Detecting obfuscated viruses using cosine similarity analysis,” First 

Asia International Conference on Modelling and Simulation (AMS'07), IEEE, (2007) 

[10] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: Feature hashing malware for scalable triage and semantic 

analysis,” Proceedings of the 18th ACM conference on Computer and communications security, (2011) 

 

 
 

Authors 
 

Jihun Kim, M.S. 

 He received an M.S. degree in Computer Engineering from Yeungnam 

University, South Korea. His research interests include Binary analysis, 

Malware Analysis, and Visualization. 

 

 

 



International Journal of Smartcare Home 

Vol.1, No.1 (2021), pp.75-84 

 

 

Copyright ⓒ 2021 Global Vision Press           83 

Sungwon Lee, M.S. 

He received an M.S. degree in Computer Engineering from Yeungnam 

University, South Korea. His research interests include Binary analysis, 

Malware Analysis, and embedded systems. 

 

 

 

 

 

Jonghee Youn, Ph.D, Professor 

He received the B.S. degree in the school of electrical engineering and 

computer science from Kyungpook National University, Daegu, Korea, 

in 2003 and the Ph.D. degree in electrical engineering and computer 

science from the Seoul National University in 2011. He is currently an 

Assistant Professor in the Department of Computer Engineering at 

Yeungnam University. His research interests are broadly in the areas of 

a compiler, software optimization, embedded systems, mobile 

computing, and Security. 

  



Malicious Code Characteristics Visualization using API 

 

 

 

84                JiHun Kim, SungWon Lee, and JongHee Youn 

This page is empty by intension. 


