
International Journal of Hybrid Innovation Technologies

Vol.3, No.1 (2023), pp.29-40

http://dx.doi.org/10.21742/ijhit.2653-309X.2023.3.1.03

eISSN: 2653-309X IJHIT

Comparing Abstractive and Extractive Approach for Text

Summarization

Pinak Divecha
1
 and Jinan Fiaidhi

2*

1,2*
Department of Computer Science, Lakehead University, Canada

2*
jfiaidhi@lakeheadu.ca

Abstract

Researchers are interested in text summarizing because of its practical uses. We

investigated and implemented both Abstractive and Extractive approaches to text

summarization in this paper. These techniques have been used to summarize not only simple

text but also general text and documents. This paper provides both a supervised and

unsupervised technique to summarize, depending on the goal. Abstractive summarization is

based on supervised learning, in which the text is interpreted and examined using advanced

natural language techniques, and a new shorter text is generated that contains the most

significant and helpful text from the original text. These summaries are more complex and

perform similarly to summaries created by humans. We implemented both of the approaches

in this paper based on their real-world application, as well as the summaries evaluation

process. The approach compares the genuine human-written summary with the machine-

generated summary, judging the quality of the summary based on the summary's significant

terms and length. Overall, such a paper might be extremely beneficial to people in a variety

of situations.

Keywords: Text summarization, Abstractive, Extractive, Recurrent neural network

1. Introduction

People have been devastated by the amount of knowledge available online in the form of

media, journal and magazine articles, expert opinions, blogs, personal experiences, books,

encyclopedias, and web pages in recent years due to the dramatic rise of the internet.

Individuals will not be able to read all of the information and extract useful information from

it. This minimizes the reading time and document selection process, so this type of situation

requires the study of automatic text summarization. According to Ref et al. [1], a summary is

defined as "The generated text which is formed from more than one text resource has

comparatively vital information however it is not more than half of the authentic text(s) and

usually, appreciably much less than that". News article summaries, maintaining a patient's

medical history for future treatment, discovering important content in encyclopedias,

collecting useful information from films, and information summaries for corporate or

government officials are some real-world applications of automatic summarizations.

Article Info:

Received (May 14, 2023); Review Result (June 15, 2023); Accepted (July 30, 2023)

Comparing Abstractive and Extractive Approach for Text Summarization

30 Pinak Divecha and Jinan Fiaidhi

Figure 1. Extractive summarization

Extractive summarization and Abstractive summarization are the two types of text

summarizing methodologies. Extractive text summarization [Figure 1] is a process that

focuses on the important text or sentences within the text, then ranks the important sentences

using various methods such as the word probability method, term frequency-inverse

document frequency method, graph-based method, and machine learning based method, and

generates summaries using the ranked sentence. As a result, when extractive summarization is

used, each word or text in the summary belongs to the original text.

On the other hand, abstract summarization [Figure 2] is based on deep learning, in which

completely new words and phrases are generated, separate from the original text, but the

context of the sentences is kept, allowing us to interpret the resulting summary as human-

made. To put it another way, this method uses powerful natural language processing

algorithms to analyze text and provide a summary [2]. As a result, the abstract summary

approach is substantially more difficult than the extractive summary approach. The extractive

summary is shown to be more effective because it does not involve natural language creation

or semantic representations.

There are primarily two ways to evaluate summaries: human review and machine

evaluation. In human evaluation, human experts score the generated summaries based on how

well they cover the main idea of the text, the answers to the queries, and grammatical errors.

In the automatic evaluation, on the other hand, the review is carried out by a machine, which

compares the abstractive or extractive summaries with the original human-generated

summaries. Rouge score [3], BLEU (bilingual evaluation understudy) score, and F-score are

examples of automatic evaluation.

Figure 2. Abstractive summarization

International Journal of Hybrid Innovation Technologies

Vol.3, No.1 (2023), pp.29-40

Copyright ⓒ 2023 Global Vision Press 31

2. Literature review

In recent years, the field of automatic text summarizing has gotten a lot of interest as a way

to overcome the difficulties of producing decent summaries. In the field of extractive and

abstract summarization, some substantial research work has been done, as described below.

We employed the TextRank algorithm for extractive summarization, which was first

published in the publication TextRank: Bringing Order into Texts [3]. We introduced the

TextRank algorithm, a graph-based ranking model for processing text and using it for various

applications in natural language processing, in this work. Our proposed method is an

unsupervised learning method that requires no data training, making it highly adaptable to

other domains, languages, and genres. The major reason this algorithm works so well is that it

analyzes information recursively extracted from the entire text rather than just the local text.

It employs an iterative mechanism to go beyond the simple graph mechanism and rank the

phrases according to the text's relevance. The system represents sentences in an article with a

weighted undirected graph and orders them using Google Page Rank [4]. They used the single

document evaluation task on 567 articles from the Document Understanding Evaluations to

test the text Rank algorithm [4]. They employed a technique called automated evaluation. The

rough score and outcome for the 100-word single-document summary were around 0.48,

indicating that the algorithm works effectively for single-document summaries [4].

We focused on the recurrent neural network (RNN) and long short-term memory (LSTM)

architecture with an attention mechanism for abstract summarization. Deep Learning Based

Abstractive Text Summarization: Approaches, Datasets, Evaluation Measures, and

Challenges [2] was the subject of our review. We have detailed in this article the many

datasets that are accessible for abstract summarization, as well as the various ways that are

available to construct summaries utilizing the datasets after they have been generated. These

dataset links are attached in Appendix A.

The numerous approaches available for evaluating the summary are briefly outlined in the

appendix. There are various datasets available but we are using Amazon Fine Food Reviews

and News Summary datasets whose links are attached in the appendix. Then explain how the

RNN-LSTM model performs text summarization for both single-sentence and multi-sentence

summarization, as well as what role the attention mechanism plays in natural language

processing, as it was already used for neural machine translation, and how it aids in

improving the results in text summarization tasks. Data preprocessing in the datasets helped

me to improve these outcomes. All of the above-mentioned work such as RNN-LSTM, and

page rank algorithm [5] which is an automatic text summarization method, was extremely

beneficial in terms of gaining a foundational understanding of both approaches to the

summary, which we then attempted to apply to certain text summarization applications. The

extractive summarization with the Text Rank algorithm [6] is briefly explained in the next

section, as well as how to utilize the method to generate summaries from text and Wikipedia

webpages.

3. Methodology

We’ll give you a quick overview of the architecture of the approaches I've applied in this

part.

Pre-processing

The data preparation stage is necessary since the accuracy of the algorithm will be low if

we utilize the raw data as input data. The first step we took with the raw data was to break it

Comparing Abstractive and Extractive Approach for Text Summarization

32 Pinak Divecha and Jinan Fiaidhi

down into individual sentences. After separating the phrases, we eliminated the stop words

from each one since, as we saw previously when comparing sentences based on similarity, the

algorithm favors stop words over other significant terms. After that, we eliminated any

punctuation marks such as "the," "a," "an," "in," and so on, as well as looking for and

removing duplicate terms. This is the most common method and is used by many researchers

working in the natural language domain.

[Table 1] shows the preprocessing output on a few sentences which are used to train the

model. In the table, you can see the sentences are converted into lower cases, which is

followed by the removal of HTML tags, elimination of punctuation and special characters,

and removal of stop words. The sentences obtained after the preprocessing are used for word

embedding which is covered in the following section.

Table 1. Shows some examples of preprocessing

GloVe for Unsupervised Learning [7]

As we all know, machines cannot grasp the English language or any other language in the

same way that humans can, therefore we must utilize word embeddings to translate sentences

into vectors, where each word has its vector that the machine can understand and operate

with. We used GloVe [7] word embedding, which is one of many word embeddings available

for converting words into vectors.

International Journal of Hybrid Innovation Technologies

Vol.3, No.1 (2023), pp.29-40

Copyright ⓒ 2023 Global Vision Press 33

Figure 2. (b) GloVe implementation

GloVe [7] is a new global log-bilinear regression model for unsupervised word

representation learning that outperforms previous models on tasks such as word analogies,

word similarity, and named entity recognition. Following the conversion to vectors, the next

step is to create a similarity matrix and identify the key sentences for a summary.

Here we have used the GloVe [7] word embedding as you can see in [Figure 2(b)]. To

arrive at a consolidated vector for a sentence, we will first retrieve vectors (each with 100

elements) for the constituent words in the sentence, and then take the mean/average of those

vectors [6].

Approach for Extractive Text Summarization

As previously stated, extractive summarization generates summaries by picking the most

relevant words or sentences from the original text. The main goal of our suggested method is

to provide a bullet-point summary of the text or document. We used the Text Rank algorithm

[5] because there are several techniques for generating the extracted summary. The algorithm

is called Text Rank because it functions similarly to Google's PageRank algorithm.

Comparing Abstractive and Extractive Approach for Text Summarization

34 Pinak Divecha and Jinan Fiaidhi

Figure 3. Extractive flow diagram

TextRank is an unsupervised method for automated natural language text summarization.

It's a technique known as extractive summarization. Graph-based ranking algorithms use data

derived from the graph structure to determine the value of a vertex in a graph. Text Rank is a

natural language processing extractive summarization approach based on graphs. The Text

Rank will be applied to the text created by the movies or Wikipedia pages. [Figure 3] depicts

the algorithm's total operation. We'll start by extracting text from the article or videos and

converting it to text. After that, each text will be broken down into sentences. We can readily

interpret phrases in several languages as humans, but our machine only understands binary.

As a result, we must turn the text into a vector, which requires the usage of word embeddings,

which will be covered in depth later. We need to find the similarity between the phrases after

transforming the text into vectors, and we used cosine similarity to do so. Graphs will be

created from the generated similarity matrix. The important sentences will then be sorted

using the PageRank algorithm, and the top-ranking sentences will be used as a summary.

Table 2 shows the ranking of the sentences calculated using the graph ranking algorithm.

For the similarity, we have used the cosine similarity. Here, users can define the length of the

summary, making sure that it should not exceed the total length of the input paragraph. The

above ranking is done for the input sentence given in Table 3 below.

Table 2. Ranking of the sentences based on the cosine similarity

International Journal of Hybrid Innovation Technologies

Vol.3, No.1 (2023), pp.29-40

Copyright ⓒ 2023 Global Vision Press 35

Table 3. Input paragraph

Approach for Abstractive Text Summarization

The seq2seq model can be used to process and make the model understand sequential data.

Traditional feed-forward neural networks take all available test instances into account

separately. For example, if we use any individual stock as our sequential information, it is

dependent on several factors such as the stock's opening value, volume, current price, and so

on. The previous day's stock price is the most important factor in predicting the stock price.

Such a dependency can be handled by a typical network. The recurrent neural network (RNN)

is used in this case [Figure 4] [8].

RNNs can handle sequence inputs, but they struggle with longer sequences. RNNs are

fantastic for short contexts, but we need our models to be able to grasp and recall the context

behind the sequences in the same way that a human brain can. This is not doable with a

simple RNN. A huge amount of irrelevant data can obstruct the flow of pertinent data to the

point where it is required. In this case, a Recurrent Neural Network fails [8]. RNN only

retains things for a short length of time, therefore it may be repeatable if we just need the

knowledge for a short period, but once a large number of words are fed in, it becomes

forgotten. It completely transforms the existing data by introducing a function to add new

details.

Figure 4. RNN has loops

As a result, the entire information is transformed, with no distinction made between

'essential' and 'non-essential' data. Long Short-Term Memory Networks are a modified variant

of RNNs that can be used to overcome this problem [11]. LSTMs employ multiplications and

additions to make tiny modifications to the data. LSTMs can determine whether the

Comparing Abstractive and Extractive Approach for Text Summarization

36 Pinak Divecha and Jinan Fiaidhi

information is remembered or forgotten when it passes via a process known as cell states.

Each cell state has three dependencies based on the information available.

 The prior state of the cell (the available information in the memory after the

previous time step);

 The previously concealed state (the generated output from the previous cell);

 The current time step's input (The new information that we will provide).

Figure 5. The repeating module in an LSTM contains four interacting layers in a figure

The LSTM architecture takes three inputs: X_t is the current time step input, h_t-1 is the

last unit's output, and C_t-1 is the last unit's memory. The outputs h_t and C_t, on the other

hand, correspond to the current output and memory of the same unit, respectively. As a result,

when this single unit makes a decision, creates a new output, and alters its memory, it

considers the current input, prior output, and previous memory. In LSTM, two gates can be

used to accomplish this task:

 Memory checkpoint

 Forget about the gate

Figure 6. Input gate layer

The flow of the memory control gate work is depicted in [Figure 6] in the highlighted area.

It accepts data from the old C_t-1 memory. The forget gate, which performs element-wise

multiplication, is the first "X." Multiplying the old memory C_t-1 with a vector close to 0

International Journal of Hybrid Innovation Technologies

Vol.3, No.1 (2023), pp.29-40

Copyright ⓒ 2023 Global Vision Press 37

indicates that the majority of the old memory should be forgotten. The "+" operator, which is

a piece-wise summation, is the next operation. It will bring together old and new memories.

The "X" operator below the "+" sign, on the other hand, is in charge of determining how

many portions of fresh memory will be merged into the existing memory and then updating

the memory as new memory C_t becomes available.

Figure 6(b) shows a single-layer neural network with the following inputs: h_t-1, the

previous LSTM block's output, X_t, the current LSTM block's input, C_t-1, the previous

block's memory, and finally a bias vector b_0. This neural network employs a sigmoid

activation mechanism to generate the forgotten valve as an output vector, which can then be

added to the old memory C t-1 via element-wise multiplication.

Figure 7 (a): This step helps to decide what new information we need to store in the cell

The single-layer neural network in [Figure 7(a)] acts as a new memory gate, accepting the

same inputs as the forget gate except for the bias vector. It is in charge of regulating the

amount of influence a new memory can have on an older memory. A different neural

network, on the other hand, is responsible for the creation of new memory [14]. It's a simple

one-layer network with tanh activation. The output of the new memory gate and this layer

will be elementally multiplied before being combined with the old memory. C_t represents

the overall result of this operation, as seen in [Figure 7(b)].

Figure 7 (b). Output layer

This is the last phase in the LSTM block's output generation process, as shown in [Figure

8]. To generate output, this phase uses a bias vector, a fresh memory, the previous output h_t-

Comparing Abstractive and Extractive Approach for Text Summarization

38 Pinak Divecha and Jinan Fiaidhi

1, and the input X _t as inputs. The quantity of new memory that is delivered to the following

LSTM block is controlled by this valve.

We have implemented this LSTM method in my model and ran the model for a variety of

epochs but for 14 epochs the loss reaches a minimum of 2.3 and for the test cases the model

can generate the most effective sentences for the abstractive approach when we have used the

News Summary Dataset.

Figure 8: Results of abstractive text summarization

[Figure 8] shows the output result of the abstractive text summarization model. Here the

original summary is the summary generated by humans while the predicted summary is the

summary generated by our model where we have used the LSTM and attention layer.

Performance

Working on both the method i.e. abstractive and extractive methods, the extractive method

is unsupervised learning and it doesn't require any model to be trained. Thus, the extractive

method is pretty fast in execution. Also, it generates the summary from the input sentences.

On the other hand in an abstractive method, we have trained the model on the two different

datasets [12][13]. Here the news summary [12] dataset is a multiline article dataset while the

Amazon review [13] dataset is a single-line article dataset. Our model generates better

outcomes in single-line datasets compared to the multiline articles. Also, in terms of training

the model, our model takes 2-3 days to get trained on GPU.

4. Conclusion

The researchers described and shown the approaches we used for automatic text

summarizing for news article datasets, Wikipedia pages, any textual content, and text

documents in this work. The researchers looked at both the extractive and abstract

summarizing methodologies. And also used the attention mechanism with recurrent neural

network models that use LSTM encoders and decoders. The proposed abstractive model

works well for single-line documents compared to multiline documents. The model gives the

best output after 14 epochs as the loss reaches a minimum value of 2.3. With this

hyperparameter, the model can regenerate better results compared to another number of

epochs (5,6,10,12). Here we can't compare the two approaches as the attractive model

generates a new summary based on the input while the extractive method finds the rank of the

input sentences and lists the sentences based on rank for a summary.

5. Future Work

The researchers like to work on a hybrid strategy for text summarizing in the future after

implementing both strategies to increase the quality of the machine-generated summary.

International Journal of Hybrid Innovation Technologies

Vol.3, No.1 (2023), pp.29-40

Copyright ⓒ 2023 Global Vision Press 39

While generating a summary, such a method will consider the most significant term and keep

it in the same form, perhaps improving the summary's quality. With the Django framework,

the researchers would like to develop an application. In that application, it will use the model

built using the hybrid strategy and summarize the audio, and Wikipedia summaries.

Acknowledgment

We wanted to deeply thank Dr. Jinan Fiaidhi, who took a keen interest in my paper and

helped us all along, till the completion of our paperwork by providing all the necessary

information, guidance, and suggestions for achieving such good results. We would like to

express our gratitude towards our classmates who suggested some ideas to improve my paper

results.

Appendix A

There are three different files which are Jupyter notebook files. To run the Jupyter

Notebook, install Anaconda as it provides all the requirements to run the Juypter Notebook.

To install the Anaconda installer for Windows kindly go through the steps shown in this link:

https://docs.anaconda.com/anaconda/install/windows/. To run the Python file as well as the

jupyter notebook, the following libraries will be required, among them many libraries are pre-

installed with Anaconda.

 pandas: Pre installed with anaconda.

 NumPy: Pre-installed with Anaconda.

 random: Pre-installed with anaconda.

 matplotlib: Pre-installed with anaconda.

 sklearn: conda install scikit-learn

 Tensorflow: pip install tensorflow==2.4

Here, to run the code, I'm using a specific version of TensorFlow which is 2.4. The jupyter

notebook contains the importing of data, pre-processing of data, defining the model, and

running the model on a test case.

References

[1] D. R. Radev, E. Hovy, & K. McKeown, “Introduction to the special issue on summarization,” Computational

linguistics, vol.28, no.4, pp.399-408, (2002)

[2] D. Suleiman and A. Awajan, “Deep learning based abstractive text summarization: Approaches, datasets,

evaluation measures, and challenges,” Mathematical Problems in Engineering, (2020) DOI:

10.1155/2020/9365340

[3] A. Pai, “Comprehensive guide to text summarization using deep learning in Python,” June 10, 2019,

analyticsvidhya.com

[4] R. Mihalcea and P. Tarau, P. TextRank: Bringing Order into Texts, (2004)

[5] M. V. Balipa, H. Jathanna, C. Ramasamy, and Balasubramani, “Text summarization for psoriasis of text

extracted from online health forums using text rank algorithm,” International Journal of Engineering and

Technology, (2018)

[6] S. G. Tanwi, V. Kumar, Y. S. Jain, and B. Avinash, “Automatic text summarization using text rank,”

International Research Journal of Engineering and Technology (IRJET), (2018)

[7] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,” EMNLP, 14,

15321543, (2014) DOI: 10.3115/v1/D14-1162

Comparing Abstractive and Extractive Approach for Text Summarization

40 Pinak Divecha and Jinan Fiaidhi

[8] P. Srivastava, “Essentials of deep learning: Introduction to long short term memory,” (2017)

analyticsvidhya.com

[9] S. Yan, “Understanding LSTM and its diagrams,” (2017) medium.com

[10] F. Shaikh, “Essentials of deep learning sequence to sequence modeling with attention (using Python),” (2018)

analyticsvidhya.com

[11] A. Pai, “Comprehensive guide to text summarization using deep learning in python,” (2019)

analyticsvidhya.com

[12] https://www.kaggle.com/datasets/sunnysai12345/news-summary?select=news_summary_more.csv

[13] https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews

https://www.kaggle.com/datasets/sunnysai12345/news-summary?select=news_summary_more.csv

