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Abstract 

The objective of this manuscript is to present a neural network algorithm for boosting the 

relevancy rank of 50000 documents (1000 results for each query) retrieved by our traditional 

algorithm that ranks a top on the list of algorithms participated in the National Institute of 

Standards and Technology (NIST). The assessors in NIST explore and evaluate web retrieval 

technological approaches over a large collection of Web data. Considering the deficiency of 

current learning to rank approaches lacks the continual learning ability, we introduce a new 

lifelong learning model that combines web search items with artificial neural networks. 

Working with the metaphor of our neural network algorithm, each node represents a search 

item while items potentially learned through observing other items towards optimized 

communications in the learning environment. Once all items built the relevancy ranks at the 

end of the iteration, top items would make their decision to declare the relevancy paths for 

moving to the next iteration. At that end, items would discover some ranking decisions in the 

available paths as relevant or not. The algorithm integrates unbiased relevance ranks while 

provides an explicit controller that balances the selection of documents to maximize the 

marginal relevance in top k results. Theoretical and empirical analysis showed that, with small 

compromises on long list ranking, our proposed method achieves superior relevancy and 

efficiency compared with the state-of-the-art algorithms meanwhile the rate of ranking is 

coupled to the size of the learning environment. 

 

Keywords: Deep learning, Convergence analysis, Ranking aggregation, Supervised 
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1. Introduction 

Learning-to-Rank is a class of algorithmic techniques that use supervised machine learning 

to solve evaluation problems in search relevancy ranks. Until a few years ago, the publications 

in learning algorithms were available in private-scientific-sectors and technical areas. The scale 

of relevancy and diversity of ranking on the final ranking list astound users, that is, losing any 

item on the list would cause little or no impact on the list as a whole due to the majority 

robustness of the related clauses. Information collected from items might be able to make a 

complex task needed for high levels of collaboration and coordination between items before 

being viewed to the users. However, the learning environment plays a vital and essential role 

in the mechanisms of solving some types of learning complex problems [1]. Most of the 

learning solutions tasks splits-up the process apart while small sections of input data are passed 
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for learning in several stages. That means, portions of content examine its local information 

and make neighborhood actions to update the status of learning in the next stages. This 

technology becomes rather complex in the distributed learning while researchers did not 

assume formal solutions for solving such problems [2]. Algorithms that are conducted in the 

training of ranking techniques might use local information to generate insights and enterprise 

results. Transferring this technology to web information retrieval models is not an easy task 

because in traditional ranking models a list of top 10 ranked items reveals the necessary 

information for Adhoc tasks expected by the user’s queries. Enormous and more classes of data 

become more knowledgeable, and some are available implicitly for ranking mechanisms in the 

forms of abstracts, in which, each new data added to the list instincts the emulation behaviors 

of observed items. In neural network algorithms, the hypothesis of observing knowledge is 

sufficient for unlearned examples to be learned by experienced examples [3]. While the new 

item monitors the experienced items, it might compute the affection presence of irrelevant 

items. Yet, the ranking mechanisms can solve complex problems as organized tasks [4]. 

However, when comparing web learning environments with neural learning environments, 

there are common interesting features recommended for common attributes. Although tasks of 

successful deep learning neural networks in real-world problems need to be done fairly, moving 

ranking models towards the optimal paths for enhancing long-term learning becomes extremely 

strong. The vast majority of our distributed environment relies on the idea that the network is 

professionally adapted and the collection of items retrieved from the distributed resources 

represents the feed-forward networks by accepting vectors of inputs and producing singular 

output for each network. While the feed-forward networks are adjusted frequently using back-

propagation algorithms, the most common network errors are adjusted by the difference 

between actual outputs and observed outputs when items learn in each network. As a result, 

Learning-to-Rank has become one of the most crucial fields in machine learning algorithms 

[5][6][7]. While ranking algorithms play a central portion of the information retrieval problems, 

web ranking has become one of the most ambiguous algorithms to deal with presenting relevant 

information tasks on the web [5][8]. While small numbers of potentially relevant items are 

identified for rendering fast query evaluation, top items with the heuristic models in the 

literature of accelerating process are utilized in a static quality score and tiered indexes [5]. 

However, despite machine learning models are computationally expensive, they have been used 

automatically to improve documents relevancy ranking upon building neural algorithms for 

significantly increasing the ranking performance. While this process is run extremely slowly 

on a single machine, fine-grained or coarse-grained parallelisms might be hardly utilized by 

machine clusters. Thus, efficient implementation of Artificial Neural Network (ANN) models 

helps to build an acceptable model on a frequently updated dataset while the task could be 

broken down into smaller ones [9]. Anyways, apart from traditional ranking algorithms that 

present statistical ranked results, the dynamic ranking paradigms that change ranking results on 

the fly have been received more and more attention academically. The notation of dynamic 

Learning-to-Rank is to learn and adapt ranking models based on real-time user feedback in 

which past user interactions and result distributions might impact the exposure of future results. 

Despite the impact of user examination biases exposed implicitly, dynamic Learning-to-Rank 

allows ranking systems to present multiple ranked lists in a single request which makes it 

possible to explicitly control or balance the exposure of results in different groups for ranking 

web (i.e., race, gender, etc.). 

The rest of this paper is organized as follows: Section 2 reveals some related work. Section 

3 defines the metaphor of the learning network. Section 4 elaborates on the data labeling 

mechanism. Section 5 outlines the features construction technique, while Section 6 describes 
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the learning algorithm. Section 7 shows the experimental evaluation measures, and conclusion 

remarks are presented in the last Section 8. 
 

2. Related works 

It is known that several internet search engines have been built their approaches based on 

Learning-to-Rank algorithms [9][10]. The functions are different from the underlying machine 

learning algorithms and training dataset volumes. During the learning process, the algorithm 

must rank k documents for computing the relevancy cost function. When k is '1', the model is 

called point-wise and the cost function is computed by assigning a value to the single document 

for comparing with the relevance value. When k is '2', the model is called pairwise and two 

documents are specified to determine which one is more relevant. Otherwise, the model is 

called list-wise whilst the relevancy cost is applied on the whole list of documents. Some 

examples of point-wise models were proposed by [11][12][13], some examples of pair-wise 

models were proposed by [12][14], and examples of list-wise models were proposed by 

[15][16][17]. The RankNet and LambdaMART algorithms [18][19] were other examples of 

ANN that utilized Learning-to-Rank models to define single output for pairs of documents. A 

new continual learning idea that combines a multi-agent autonomy learning mechanism with a 

molecular immune mechanism for ranking is proposed [19]. Balancing the relevance and 

fairness of information exposure was considered as one of the key problems for modern IR 

systems [20]. Theoretical and empirical analysis showed that the proposed algorithm was 

efficiently evaluated by movie, news, and personal data. Even with small compromises on long 

list fairness, the method could achieve superior efficiency and effectiveness comparing to the 

state-of-the-art algorithms in both relevance and fairness of top rankings. The models that serve 

web-scale traffic with billions of training examples were limited expressiveness in the cross-

network at learning more predictive feature interactions. Despite significant research progress 

made, many deep learning models in production still rely on traditional feed-forward neural 

networks to learn feature crosses inefficiently [21]. The analysis and evaluation of Learning-

to-Rank models based on ensembles of regression trees were proposed by [22]. Even the most 

traditional Information Retrieval (IR) evaluation metrics differ from library to library, objective 

evaluation and comparison between trained models are difficult tasks. Apart from tree-based 

models which require extensive features to engineer and handle textual features, neural ranking 

models could effectively handle sparse features through embedding mechanisms. Recently [23] 

used a supervised dataset, MSLRWEB30K, where all the ground-truth labels of each training 

query were used during the optimization process to provide a convenient open-source platform 

for evaluating and developing Learning-to-Rank models based on deep neural networks. There 

are numerous algorithms available in today's world regarding Learning-to-Rank problems in 

web search paradigms that are related to our research, e.g., context-aware search [24] that 

integrated different context information into a ranking model, the proposed approach improved 

the ranks of commercial search results which ignored contextual information. A machine 

learning framework [25] for compositing the presence of multiple relevant verticals assumed 

freshness into account and sensitive queries in federated searches [26], a gradient boosted 

decision tree was utilized for learning the training data. Personalized search [10] that mined 

various data sources in LinkedIn was inferred searchers' intents, e.g., hiring, job seeking, etc. 

as well as extended the concept of homophile to capture the search results' similarities on many 

aspects. Thereafter, learning to rank was applied to combine these signals with standard search 

features. Practical challenges in applying learning to rank methods in the E-Commerce search, 

including feature representation, obtaining reliable relevance judgments, and optimally 
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exploiting multiple user feedback signals; such as click rates, add-to-cart ratios, order rates, and 

revenue [27]. Various techniques were proposed in the area of learning to rank, for instance, 

Support Vector Machines (SVM) [28][29], Decision Trees [12], Artificial Neural Networks 

[13], Boosting [18], Reinforcement Learning [30], etc. Despite the breakthrough in the neural 

networks, many approaches [21][22][23][31] built upon neural networks which were referred 

to as neural ranking models. 

However, our approach is highly complementary to the aforementioned algorithms. Yet, to 

the best of our experience, we are committed to building an in-depth comparable Learning-to-

Rank algorithm based on Web track volume across several benchmark datasets. 

 

3. Metaphor of learning networks 

Practical algorithms often learn more about data that is refined over time. Data in 

collaborative learning is given in a matrix, in which, rows correspond to users instead of 

domains whereas columns correspond to objects. Learning-to-Rank algorithms have been used 

to enhance the ranks of items and produce ranks similar to that available in the training data. In 

our perspective, features and local information play the largest source of learning algorithms 

and consequently incorporate for improving the previous algorithms [32]. Local information 

and features collection help the network to converge their objects to the optimal solution under 

the condition 0 < q < 1. The collection of networks could converge to the isomorphic edges in 

weight space using locally stored information. In other words, given a similar input vector, each 

network could produce similar output for each vector if converged by local information. 

Assume a set of m items (1, 2..., k..., m), where m ∀ k ∈ learned items includes an optimal 

object ‘Ɽ’ while other items under learning denoted by ‘∂’, m is the total number of items in 

the list, 𝜋𝑖𝑗  (𝑡) is the amount of information at rank 𝑒𝑖𝑗 (i, j ∈ m) due to some items at time 

instant t. If Ɽ anticipated in the list, the entire list would converge to reproduce Ɽ behavior. The 

player Ɽ produced constant examples data that create stabilizers focused on the learning 

algorithms to follow. We began by formalized the concept list of items that responds to its local 

stimulus. At that end, the proposed list represents a collection of items randomly weighted the 

represented items under learning. Objects tend to persist in learning when they faced a 

manageable challenge in a continuous learning process while others tend to fix the output 

patterns. Deep learning models are often performed by forwarding and backward propagation 

in ANN. Systematically thought, the backward propagation algorithm trains weights in a 

multilayer feed-forward neural network. As such, forward propagation (fprop) corresponds to 

recalculate the final score based on the new parameter values, whereas backward propagation 

(backprop) corresponds to recalculate the parameters. We committed to making the gain 

function into a sigmoid logistic function while the back-propagation trains each item. For back-

propagation to work properly, we need to compute the desired output of errors and to back-

propagate through the gained network. While this would normally come from a predefined set 

of exemplars, we defined the desired output based on the outputs of other items on the unranked 

list. A set of items for a given network used to compute the desired output is called network 

neighborhood. At that end, we could define the desired output of a given network to represent 

the average output vector of all items in the network neighborhood. Averaging output over 

several networks might reduce the convergence time and this would resist the desired outputs 

to random variations. Finally, we define two measures of convergence in the collection of 

networks using the mean squared error. If there are p networks in the collection and 

𝑦𝑗
𝑣(𝑛) was the output vector v in the network j at time instant t, then 
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𝐴𝑗
𝑣(𝑡) =

1

𝑝−1
 ∑ 𝑦𝑗

𝑣(𝑡)𝑝
𝑗=1

𝑗 𝑖

      (1) 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑗(t)= √∑ (𝑦𝑗(𝑡) − 𝐴𝑖(𝑡))2
𝑖∈𝑁𝑒𝑡𝑤𝑜𝑟𝑘    (2) 

The Convergence represents the difference of squares output in the root-mean-square 

deviation error from the average output; it is useful to measure how far the network is from 

others. This measure differs from the standard deviation and does not divide based on the rank-

size regularity, and it is useful to see the total errors rather than the average error. When Ɽ is 

not available in the collection, we measure how far the collection is from learning behavior. If 

the desired output of Ɽ is 𝑑𝑣, then: 

𝐸𝑟𝑟𝑜𝑟 (t)=√∑ (𝑑𝑗(𝑡) − 𝐴𝑖(𝑡))2
𝑖     (3) 

This measure shows how far the items consensus from the desired output; and essentially, 

the convergence measuring has seen by Ɽ. This measure will be used as the most useful and 

effective for computing the convergence of items in the list. Eventually, the speed of converges 

increases exponentially regarding the number of items on the list that shares the same 

operations or functions. 
 

4. Data labeling  

Currently, there are two platforms to build training data: human judgments and exploring 

searching-log data. In the first one, that we used, a set of queries is randomly selected from the 

query logs of the search algorithm. Assuming that multiple search systems were available, 

submit queries to the search algorithms would select all top-ranked documents. At that end, 

each query would be associated with multiple documents. Human judges would then be 

requested to make relevant judgments on all query-document pairs. Relevance judgments are 

often measured at five scores: High Relevant (HR), Relevant (R), Good (G), Fair (F), and 

irrelevant (I). The human judgment makes relevancy ranks from the viewpoints of average 

users; for instance, if a query is ‘Apple’ and the webpage is “apple.com”, then the score is ‘HR’; 

whereas, the Wikipedia topic about ‘Apple’ is ‘R’, and so on. Ranks represent a relevancy 

assignment to the query-document pairs. Relevancy judgment on a query-document pair could 

be performed by a judicial process and then conducted by a majority selecting process. 

Learning-to-Rank benchmark datasets have also been presented by [33]. In the second platform, 

data stored in query logs of web search engines could be used to add valuable insight into 

understanding information-searching pairs, but some limitations had been faced in this method. 

First, certain types of data might not be available in the searching log as users’ identities became 

the most common example. The IP address typically represents the “user” in a transaction log. 

Since more than one user might use a computer, the IP address is an imprecise representation 

of the user. Search engines addressed this somewhat limitation by using cookies. Second, there 

is no way to collect demographic data when using query logs in a naturalistic setting. Third, the 

query log does not record the searchers’ goals, the searchers’ motivations, or other qualitative 

aspects. Query logs also do not record the underlying situational, cognitive, or affective 

elements in the searching process. However, while crowdsourcing is often useful for obtaining 

relevance judgments for Web search, it does not work as well for E-Commerce search due to 

difficulty in eliciting sufficiently fine-grained relevance judgments [21]. 
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5. Features construction 

In machine learning, features play a vital element in the algorithms. Learning effective 

feature crosses is the key behind building recommender systems. However, the sparse and large 

feature space requires exhaustive search to identify effective crosses. The Deep & Cross 

Network (DCN) was proposed to automatically and efficiently learn bounded-degree predictive 

feature interactions. Models that served web-scale traffic with billions of training examples, 

DCN showed limited expressiveness in its cross-network at learning more predictive feature 

interactions. Although significant research progress made, many deep learning models in 

production still rely on traditional feed-forward neural networks to learn feature crosses 

inefficiently. In light of the pros/cons of DCN and existing feature interaction learning 

approaches, an improved framework DCN-V2 was proposed by [34] to make DCN more 

practical in large-scale industrial settings. 

By featuring, the ranking model f (q, d) is defined as f (x) where x is a feature vector for q 

and d. Features in objective learning are used for combining multiple ranking metrics 

formulated by pairs and often represented by numerical vectors or feature vectors [35][36]. 

Such representation is usually named bag-of-features and analogous to the Bag of Words 

(BoW) and vector space models that are used in information processing for documents 

representation. Elements in vectors are named features and divided into three types:  

(a) Static features: Such features depend on the documents only; for instance, PageRank, 

document's length, etc. Such features could be pre-computed during the offline ranking mode. 

They used to compute document static rank to speed up the evaluation processor. 

(b) Dynamic features: Such features depend on the contents of documents and the query 

string, such as Term Frequency (TF) and Term Frequency Inverse Document Frequency (TF-

IDF) scores or non-machine learning functions. 

(c) Query features: They depend on the query keywords exclusively, e.g., the number of 

terms in a query string.  

Language modeling scores in document zones, e.g. title, body, anchors text, and Uniform 

Resource Locator (URL) are examples of other features. A feature vector 𝑋𝑖,𝑗= Ǿ (𝑞𝑖, 𝑑𝑖,𝑗) is 

built from each query-document pair (𝑞𝑖, 𝑑𝑖,𝑗), i=1, 2, 3, …, m; j=1, 2, 3, …, 𝑛𝑖, where Ǿ 

denotes the feature functions that match the functions of query and document. Assuming 𝑋𝑖= 

{𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, …, 𝑋𝑖,𝑛𝑖}, we represent the training dataset as S={𝑋𝑖, 𝑌𝑖,} 
  i=1,..,m. The goal is 

to train the local ranking function f(q, d) = f(x) that assigns ranks to  textual and non-textual 

document-query pair features (q, d), or equivalent to feature vector x.  

The technique of selecting relevant features, usually so-called feature engineering, is very 

important in web ranking. We extracted the relevant features from the distributed resources to 

represent the components in the learning algorithm. In web search, PageRank has been used 

widely for evaluating features because it connects differing viewpoints and thoughts in a single 

place. It works by counting the number and quality of links to a page to determine the rough 

estimation of how important the website is. The underlying assumption is that more important 

websites are likely received more links from other websites. However, other features are also 

utilized in web search, e.g., IDF, local rank, global rank, or query occurrences, alongside title, 

anchor, URL, and body. Such features impacted highly in item relevancy weights. We 

computed the cosine similarity measure between the query terms and Metadata terms. We 

assumed that the terms on snippets are more scattered over the document body than on the titles 

and URLs, in which, we assigned 0.3, 0.2, and 0.1 as a normalized value to URLs, titles, and 

https://en.wikipedia.org/wiki/Bag_of_words
https://en.wikipedia.org/wiki/Vector_space_model
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/TF-IDF
https://en.wikipedia.org/wiki/TF-IDF
https://en.wikipedia.org/wiki/Language_modeling
https://en.wikipedia.org/w/index.php?title=Zone_(information_retrieval)&action=edit&redlink=1
https://en.wikipedia.org/wiki/Feature_engineering
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snippets, respectively. While global rank and page rank play the major features for moving the 

relevant pages to the top on the resulting list [15][28], they extracted from an authoritative 

website e.g., Alexa.com2. The inverse document frequency was computed by the number of 

items in a lookup field on the document involves similar query terms, as follows: 

              𝐼𝐷𝐹𝑘= 1+ 𝑙𝑜𝑔2 
𝑛

𝑑𝑘
     (4) 

where d𝑘 denotes the document frequency at term k, 𝑛 denotes the number of documents in 

the collection.  

In terms of local rank, we assume that at most 10 items were retrieved from each resource, 

and thus, the sequences of items were ranked from "0" to "1". During our training session, the 

cost function r(𝑑𝑖)(1 −  𝑜1(𝑑𝑖 , 𝑑𝑗))2 is applied as  r(𝑑𝑖) - r(𝑑𝑗) = 1, where r(d) is a relevancy 

label or document d. 

 

6. Learning principle 

In this section, we will demonstrate two important aspects: (1) what would happen if the 

algorithms were not pre-programmed but rather learned? (2) Could the imitation of items in the 

ranking list be sufficient to each other of a new item? Our experiments were centralized under 

these issues, thereafter, untrained items were tested to learn a complex behavior using imitation 

of other items in the neighborhood. Two learning algorithms are discussed in this section as 

shown in [Figure 1] and [Figure 2]. The proposed network involves three hidden layers with a 

single output, represented as: 

 S = f (x ;θ) = f (∑ 𝑤𝑗𝑗 . 𝑓𝑗 (∑ 𝑤𝑗𝑘𝑥𝑘𝑘  + 𝑏𝑗𝑘)+b)   (5) 

where 𝑥𝑘  is the k-th of input x; 𝑤
𝑗

𝑘 , 𝑏𝑗𝑘 , and 𝑥𝑘  are the weight, offset, and activation 

function of the first layer, respectively; 𝑤𝑗 , b, and f are the weight, offset, and activation 

parameters of the second layer, respectively; S is the final output; and θ is the feature vector. 

The activation function is a sigmoid function (nonlinear function). A sigmoid function is a 

squashing or S-shaped function, which limits the output to a range between 0 and 1. It is a 

bounded, differentiable, and real function defined for all real-input values and has a non-

negative derivative at each point which is exactly one inflection point. 

 

 

Figure 1. Query to the documents training process 

                                                        
2 http://www.alexa.com 
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Figure 2. Query to documents testing process 

6.1. Objects learning 

At every time instant t, assuming the input is a random vector of length n, each item is evenly 

distributed in a weighted variable, and the threshold value is 0.5, the output is defined as a final 

vector over the space of features, as input = (𝑥1, 𝑥2, … , 𝑥𝑛)  where  𝑥𝑖  𝜖 {0, 1} 

f(q, d) = f(x, ℓ) = f ( ∑ 𝑊𝑗𝑗 .𝑓𝑗 ( ∑ 𝑊𝑗𝑘𝑘 𝑋𝑘+𝑏𝑗) + 𝑏𝑘)    (6) 

where  𝑋𝑘 is the k-th element of input x,  𝑊𝑗𝑘, and 𝑏𝑗𝑘; 𝑓𝑗  is the weight, offset, and activation 

function of the first layer;  𝑊𝑗, b, and f are the weight, offset, and activation function of the 

second layer; and L is the final output and ℓ is the parameter vector.  

The activation function is sigmoid or non-linear. The neighborhood of the network was 

tested statically as a bi-connected graph (for example, people sitting around the table where the 

two people on either side of a person are that person's neighborhood) and dynamically (for 

example, any randomly selected pair of people at that table). However, dynamic testing creates 

a neighborhood with some interesting effects on the rate of convergence in the resulting list 

[37]. As with any updating scheme, one could implement it synchronously or asynchronously. 

While asynchronous implementation is much easier to code through iteration every network, in 

turn, synchronous implementation is much more representative in real-world scenarios, and this 

might be seen counterintuitive paradigm. Synchronicity means each item did not have access 

to the updates made by other items. Regardless of whether the actions took place at identical 

times or not, if each independent only has its available information, it is essentially updated 

synchronously. To achieve this, it first computes a dynamic nearest neighbor solution for each 

network; then, generates the average neighbor outputs overall data in epochs. Every epoch is 

randomized suitably at each input-output vector pair. The back-propagation algorithm requires 

two parameters to function that aspect, the learning rate and the momentum constant. Due to 

numerical instabilities and implementation issues, the momentum constant was left at zero and 

compensated by taking a small learning rate of ɳ=0.3. To prevent saturation problems, the 

network would cut back the desired outputs from (0 and 1) to (0.005 and 0.995) by a well-

known heuristic. 

Using interaction data to improve relevance for the user's next query is an important task to 

transform the framework of learning to rank to re-rank items or objects for matching a user 

model. Such models are often accumulated over time based on the user's browsing behavior. 

Interaction between data is important to map each session in the learning models, then novel 

features were estimated. Extensive experiments on test collections from the TREC session track 

showed a statistically significant improvement over learning algorithms [38]. 
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6.2. Objects ranking  

In this section, we will use the input and output as a distinctive meaningful collection to 

learn a particular behavior. Using the same network template, we taught one to three networks 

using XOR functions and then placed them as trained items in the collection of random 

networks. The ratio of Ɽ was changed the object ∂ from 1:9 to 1:3, and the size of an object ∂ 

in the neighborhood from 9 to 3. This makes each object Ɽ to see other objects in the 

neighborhood. In most cases, the collection converged to correct solutions except when very 

few Ɽ is available meanwhile the neighborhood is too large. This is due to the reason that the 

output vector of object Ɽ did not change the average neighborhood significantly enough for 

back-propagation to move fast in the convergence direction. When the ratio of Ɽ in ∂ is high, a 

large neighborhood size would likely have a large fraction of item Ɽ in item ∂, hence, it is likely 

very well converged. Similarly, if the ratio of item Ɽ in ∂ is small and the neighborhood is small 

too, the network would converge well. This is because item Ɽ was part of an observed 

neighborhood and has a greater effect on the output vector and consequently produced a back-

propagation of large error gradient sufficient to move down [Figure 3]. 

The construction of our network and the successful convergence of ranking items in an XOR 

function led to generalizing the attempt to model any arbitrary Boolean function, assume values 

from a set of two elements, usually {0,1} of the Boolean domain, f: {0,1}𝑘  {0,1} where k is 

a non-negative integer. Though this may not seem a large improvement. The ability to model 

any such function implies this list could learn to compute any function towards sufficient 

accuracy as Boolean logic is isomorphic to digital computers.  We choose to simulate the four 

input Boolean function (ab) ∧ (c ∨ d), but there is no particular significance to this function. 

Sixteen input vectors were selected randomly for each output while other functions could work 

as well. To compromise a larger input size, we expanded the network template to include two 

hidden layers with four neurons in each. The second layer was added in this assumption because 

the conjunction of two terms might require one layer to compute the terms and another layer to 

compute the conjunction. This assumption might not available instantly but they converged and 

were discovered later. The inputs and output were chosen as binary variables with the same 

displacement from 0 to 1, as before. The learning rate and the momentum constant involve the 

same value as others. The experiments run two times using Ɽ - ∂ ratio 3:6 and the dynamic 

neighborhood of size 3. The experiments took approximately 16000 epochs to converge, we 

expect these larger networks would converge but likely took much longer, nearly ten times as 

long. One epoch means that each sample in the training dataset had an opportunity to update 

the internal model parameters. Assuming we have a dataset with 200 samples (rows of data) 

and an update size of 5 and 1,000 epochs. This means that one epoch will involve 40 iterations 

(updates) to the model and a total of 40,000 updates cycled in 40,000 iterations during the entire 

training process. Also, we observed the XOR networks did not converge and the network would 

correctly classify most of the inputs (i.e., present outputs approximately 0.005 to 0.995) but 

was not classified outputs in 0.25 or 0.75. If the network output is used in a discrete simulation, 

the limitation of values presents the correct answers. Results were not limited strictly due to 

uncertain answers which means the possible uncertainty in actual group learning could not be 

reflected and therefore could be useful as opposed to a source of error. 
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Figure 3. ∂ -learning convergence using an XOR function 

6.3. Risk minimization 

In a typical scenario, measuring the loss function of ranking results for a given query was 

proposed f with a loss function F(f(x), 𝑦∗)), which was a common sensitive rank. Thereafter, 

the aim of the Learning-to-Rank algorithm is to learn the optimal ranking function over a 

hypothesis space S that might minimize the expected risks, as defined below: 

𝑀𝑖𝑛 𝐹(𝑓)𝑓∈𝑆  = 𝑀𝑖𝑛𝑓∈𝑆  ∫ 𝐹(𝑓(𝑥), 𝑦∗)𝑑𝑃(𝑥,
 

𝑥 .𝑦
𝑦∗)   (7) 

Because F(f) is obvious to directly optimize the function and the joint distribution is 

undefined, the risk minimization approximates the expected risk, which is defined as follows:  

  𝑀𝑖𝑛 𝐹(𝑓; 𝐿)𝑓∈𝑆  = 𝑀𝑖𝑛𝑓∈𝑆
1

𝑛
 ∑  𝑛

𝑗=1 𝐹 (𝑓(𝑥𝑗), 𝑦  
𝑗
∗)    (8) 

Mostly, the Learning-to-Rank algorithms of such kind differ in how they define the surrogate 

loss function, which consequently classified the algorithms in three categories: Point-wise, 

Pair-wise, and List-wise, as mentioned. 

 

7. Experimental evaluation 

The information retrieval evaluation campaigns provide sets of queries and relevance 

judgments of expected solutions for proposed queries. Learning approaches in web information 

retrieval are typically evaluated for two tasks, diversity and Adhoc. Although diversity retrieval 

is similar to Adhoc retrieval it applies different judging processes and evaluation metrics. The 

goal of the diversity task is to return a ranked list of pages that represent a complete coverage 

for a query string while avoiding any duplication in the final resulting list. Performance 

evaluation in the ranking algorithm is disbursed by comparison between the ranking list outputs 

proposed by a model and also a ranking list is given as ground truth. The Adhoc task documents 

are judged concerning the topic as a whole. The goal of an Adhoc task is to return a ranking of 

the documents in the collection in order of decreasing the probability of relevancy ranking. The 

probability of relevance of a document is considered independent of other documents that 

appear before it in the results list. For the Adhoc task, documents are judged based on the 

description fields. For the diversity task, relevance is judged separately for each subtopic. 
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7.1. Measuring metrics 

Analysis measures are widely utilized in information retrieval and other alternative fields, 

e.g., Normalized Discounted Cumulative Gain (NDCG), Discounted Cumulative Gain (DCG) 

[30], Mean Average Precision (MAP) [31], and Mean Reciprocal Rank (MRR). DCG measures 

documents ranking quality which often uses to measure the effectiveness of the algorithm.   

DCG measures the usefulness, or gain, of a document based on its position in the result list. 

nDCG produces the maximum possible DCG through position p. MAP is the average of AP. In 

some context, we compute AP for each class and average them. In the retrieval system, when a 

system has returned a ranked list of top 20 items, it is considered most relevant to query.  RR 

is 1 if a relevant document was retrieved at rank 1, otherwise, it is 0.5 if it was retrieved at rank 

2, and so on. Given a query 𝑄𝑖 and a set of documents 𝐷𝑖, suppose that πi is a ranking list on 𝐷𝑖, 

and 𝑌𝑖 is a set of scores on 𝐷𝑖. DCG measures how the relevance of the ranking list at that score. 

More contrast, DCG at position k is defined as: 

DCG(k) = ∑ 𝐺(𝑗). 𝐷(𝜋𝑖(𝑗)) 𝑗:𝜋𝑖(𝑗 )≤𝑘    (9) 

where G denotes a gain function, D denotes a position of discount function, and πi(j) denotes 

the position of 𝐷𝑖𝑗 in πi. 

Thus, the result is seized the highest k positions on the ranking list πi. DCG represents the 

accumulative gain of accessing data from position ‘1’ to position k with discounts on positions. 

NDCG at position k for 𝑞𝑖 is defined as follows: 

NDCG(k) = 𝐷𝐶𝐺𝑚𝑎𝑥(𝑘) 
−1  ∑ 𝐺(𝑗)𝐷(𝜋𝑖(𝑗)) 𝑗:𝜋𝑖(𝑗 )≤𝑘   (10) 

where 𝐷𝐶𝐺max(k) 
−1  represents the normalizing value chosen an ideal ranking value of NDCG 

score that positioned k at ‘1’. 

In an excellent ranking, the documents with higher ranks are hierarchically higher and their 

multiple excellent rankings for a query and documents. The gain function is often outlined as 

an associated mathematical function of grade. Satisfaction of accessing data exponentially 

increases once the rank of relevancy increases too. For example, 

G(j) = 2 
𝑦𝑖,𝑗-1      (11) 

where yi,j denotes the rank of 𝑑i,j 
  in list πi 

 .  

The discount function is often referred to as a logarithmic function of position. Satisfaction 

of accessing data logarithmically decreases once the position of data accessing increases. 

D(𝜋𝑖(j)) = 
1

𝑙𝑜𝑔2(1+𝜋𝑖(𝑗))
     (12) 

where π𝑖(𝑗) denotes the position of 𝑑i,j 
  in ranking list π𝑖. 

Hence, the DCG and NDCG metrics at position k for q𝑖 are defined as: 

DCG(k) = ∑  𝑗:𝜋𝑖(𝑗 )≤𝑘
2𝑦𝑖,𝑗−1

𝑙𝑜𝑔2(1+𝜋𝑖(𝑗))
    (13) 

NDCG(k) = 𝐷𝐶𝐺𝑚𝑎𝑥(𝑘) 
−1  𝐷𝐶𝐺 (𝐾)     (14) 

The DCG and NDCG are additionally averaged over queries (i = 1, ···, m), NDCG has an 

impact on giving high scores to the ranking lists of relevant documents. In the optimal ranking, 

NDCG score at every position is almost '1'; otherwise, it is imperfect rankings. MAP is 

another metric that is also widely utilized in information retrieval. In MAP, the score of 
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relevancies is computed at two levels, ‘1’ and ‘0’. Given query q𝑖, associated documents D𝑖, 

ranking list πi on D𝑖, and labels y𝑖 on D𝑖, the Average Precision (AP) of q𝑖  is computed as: 

AP =  
∑ 𝑃(𝑗) .  𝑦𝑖,𝑗

𝑛𝑖

𝑗=1

∑  𝑦𝑖,𝑗

𝑛𝑖

𝑗=1

     (15) 

where πi(j) denotes the position of 𝑑𝑖,𝑗  in πi. P (j) represents the precision until reaching the 

position  𝑑𝑖,𝑗  for 𝑞𝑖. 

Labels are either '1' or '0', and Average Precision represents average precision overall 

positions of documents with label '1' for query 𝑞𝑖. Average precision scores are additionally 

averaged over queries to become the Mean Average Precision (MAP). However, the relevance 

and primary effectiveness measures for two query tasks are defined by calculating the graded 

precision of the top ten items [41], or the rank at k ‘P@k’. Documents are ranked either: Nav. 

(navigational), Key (top relevance), HRel (highly relevant), Rel (minimally relevant) or Non 

(non-relevant). The relevancy of each web resource is determined by calculating the graded 

precision of the documents list that belongs to similar resources. It takes the graded relevance 

levels of the top ten documents into account. Similarly, topic relevancy for a given query is 

defined by the best-performing search in the index. The final evaluation of binary relevance 

rank is determined by a threshold, by which, the results with a minimum graded precision, e.g., 

0.5, were considered relevant. The threshold assumption was chosen based on data analysis, 

and for most queries, there were only a small set of relevant items. If no item exceeds the 

threshold for a given query, the top items with the maximum relevancy features are considered 

relevant. 

 

7.2. Loss functions 

In information retrieval, the true loss function is often ranged between ‘0’ and ‘1’. In ranking, 

there are different methods to outline the true loss function. The true loss functions might be 

those used by NDCG and MAP. Experimentally, we have  

L(F(x), y) = 1 – NDCG      (16) 

and  

L(F (x), y) = 1 – MAP      (17) 

Assuming a permutation value of π is defined by F (x), hence NDCG for n items is showed 

as follows: 

NDCG = 
1

𝐺𝑚𝑎𝑥
 ∑ 𝐺(𝑗)𝐷(𝜋(𝑗))𝑗:𝜋(𝑗 )≤𝑛     (18) 

G(j) = 2 
𝑦𝑗-1  , D(𝜋(𝑗)) =  

1

𝑙𝑜𝑔2(1+𝜋(𝑗))
   (19) 

where 𝑦𝑖 denotes the score of items i, π(i) denotes the score of objects i in π, G denotes the 

gain function, D denotes the position of discount function, and Gmax denotes the normalizing 

parameter. 

Assuming a permutation value of π is defined by F(x), hence MAP for n items is defined as 

follows: 

MAP =  
∑ 𝑃(𝑗) .  𝑦𝑗

𝑛

𝑗=1

∑  𝑦𝑗

𝑛

𝑗=1

     (20) 
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where y𝑗  denotes the score of item j at 1 or 0, π(j) denotes the score of object j at π, and p(i) 

is the precision until reaching the score of item j, defined by: 

P(i) = 
∑ 𝑦𝑗 𝑗:𝜋(𝑗 )≤𝜋(𝑖 ) 

𝜋(𝑖 )
     (21) 

The true loss functions in NDCG and MAP are not continuous, they are based on sorting 

F(x). 

 

7.3. Experimental results 

Effective precisions for some queries were registered but for few queries, the precisions were 

low because the relevancy results were far away from the informational queries and near to the 

navigational queries which means they selected only from specific resources. In few cases, the 

retrieval documents were deemed relevant based on our experiments but they were not if 

compared with the user's relevancy judgments. Because users have different viewpoints at 

different times, it is difficult to recall all relevant documents for involving all users' needs in 

one relevancy judgment. Also, we had a few irrelevant precisions, in some cases, since the 

queries were categorized as ambiguous. Evaluation experts at the Text Retrieval Conference 

(TREC) and NIST had assessed our system using 50 test queries, and the overall graded 

precision was '0.405' as the best accuracy compared with other algorithms. Figure 4 and Figure 

5 show the detailed comparison between approaches using accuracy at P(20) and nDCG(20), 

respectively. The best approach proposed by the University of Glasgow "uogTr" was 

reformulated the user's initial query with a Terrier data-driven learning model which was a 

framework for the fast computation of document features. It is used with state-of-the-art 

learning to rank logistic regression algorithm based on gradient-boosted regression trees. In a 

realistic setting, the predictive model did not capture the complex interactions among the 

variables in data. In logistic regression, the interaction could be included through various 

degrees of interaction terms but the uogTr approach was normally led to computational 

challenges in a model estimation poor fit. Contrary to our proposed method, logistic regression 

did not provide a technique focusing the computations on the smallest subset of variables like 

decision variables to the target variable. Our previous approach "DFalah" was ranked third, it 

used relations and connections between terms' impacts in documents' titles and its contents. The 

"ICTNET" ranking algorithm used the Learning-to-Rank platform to combine multiple features 

but the performance was poor due to the low quality of training data that did not fit the proposed 

algorithm. The QUT_Para algorithm proposed word associations in natural language 

processing known as syntagmatic and paradigmatic associations (words in first and second-

order). Our proposed approach 'SAMA' brings an empirical improvement in overall 

performance compared with other approaches that used a corpus of 50 million documents 

including all resources and testing queries. Despite the related models are a bit old but 

comparisons between different approaches in information retrieval must have a similar dataset 

and testing queries. However, experimental results have shown that the ranking methods used 

neural networks are statistically outperformed than the ranking methods used SVM and Naive 

Bayes, for two reasons: (1) it is more often to assume the probability of a phrase being a key-

phrase in a relative sense than in an absolute sense, (2) features for specifying whether a phrase 

is a key-phrase are also relative. 

However, to show how the setting of activation function affects the performance of different 

Learning-to-Rank methods by the deep neural networks, we apply the same training framework 

for all the methods. Specifically, we used a simple 3-layer feed-forward neural network, where 

the size of the hidden layer is set as 100. Each method is evaluated with different activation 
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functions, we report its best performance and the corresponding activation function in Table 1. 

We note that Lambda Rank achieved the best performance if compared with similar work, but 

our proposal achieves better performance in all nDCG ranks concerning the number of layers 

of the scoring function from 2 to 20. Furthermore, it is noted that the performance values of 

both SAMA and Lambda Rank fluctuate when changing the number of hidden layers rather 

than a proportional improvement. One possible explanation is that: as the number of hidden 

layers increases, the ability to approximate more complex ranking functions (i.e., the model 

capacity) also increases. However, too many hidden layers might result in overfitting. To 

summarize, the factors, such as different activation functions and the number of layers, greatly 

affect the performance of a neural Learning-to-Rank method. Careful examinations of these 

factors are highly recommended in experimental comparisons of different Learning-to-Rank 

methods.  

 

 
 

            Figure 4. Accuracy at P(10)                                Figure 5. Accuracy at nDCG (20)        

Table 1. The performance of different learning-to-rank methods 

Method Function nDCG@1 nDCG@3 nDCG@5 nDCG@`0 nDCG@20 

RankMSE ReLU 0.446 0.430 0.432 0.447 0.469 

RankNet ELU 0.444 0.434 0.439 0.455 0.479 

LambdaRank RReLU 0.467 0.449 0.452 0.468 0.491 

ListNet ReLU 0.454 0.432 0.434 0.450 0.473 

ListMLE ELU 0.452 0.434 0.439 0.455 0.476 

RankCosine LeakyReLU 0.446 0.430 0.434 0.448 0.471 

ApproxNDCG Sigmoid 0.447 0.426 0.428 0.442 0.465 

WassRank ELU 0.449 0.430 0.434 0.449 0.470 

ST-ListNet ReLU 0.450 0.434 0.438 0.453 0.475 
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8. Conclusion 

Web search engines researchers are widely used Learning-to-Rank algorithms to improve 

searching performance, meanwhile, ANN algorithms have been significantly used for 

enhancing learning quality. The major contribution of this manuscript is a supervised learning 

task for a powerful learning schema. Although enormous algorithms in the neural network have 

been used in many fields, the thematic analysis of convergence throughout learning is much 

less. Based on our experiments with the XOR problem, which took approximately 16000 

epochs to converge or when the XOR networks proceeded within the error rate of 0.04, larger 

networks convergence took much longer and perhaps nearly ten times as long. Others 

ultimately converges proceeded within 4X10−3 of the desired output after one million epochs, 

these networks never converged much closer than 0.02 within the same period. However, it 

could be difficult to rank the items from disparate sources in real-time, as this requires multiple 

predictive algorithms and deep learning concepts. The professional implementation is essential 

to timely generate acceptable neural network models on frequently updated training datasets. 

Efficiently mapping the query levels on the neural network computation and data structure and 

fully utilizing inherent fine-grained concurrency are the most important assumptions which 

must be considered. The speedup took up to 17.9X over the software implementation on 

datasets from a commercial search engine. We evaluate and compare our algorithm with 

existing state-of-the-art methods on both synthetic and real-world crawled datasets. Theoretical 

and empirical analysis shows that our method can achieve significant efficiency and 

effectiveness improvements in top k relevance. We faced many issues, including coordination, 

synchronization, conjunctions, and ranking multiple autonomous web resources, which 

consequently led to the context of a robust approach. In the future, we will further explore the 

possibility of extending ANN for more general ranking scenarios or construct a new Learning-

to-Rank model that integrates the optimization of relevance and web from the bottom of model 

design. 
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