
International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018), pp.1-16

http://dx.doi.org/10.21742/ijseia.2018.12.2.01

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2018 SERSC

A Constraint-Based Verification Approach for Java Bytecode

Programs
1

Safaa Achour, Ali Chouenyib and Mohammed Benattou

LASTID Laboratory, Ibn Tofail University, Kénitra, Morocco

safaa.achour@uit.ac.ma, chouenyib@gmail.com, mbenattou@yahoo.fr

Abstract

In this paper, we propose a constraint based analysis technique to detect the

inconsistencies between a Java application and its specification at the Bytecode level. The

main objective of our approach is not only to exploit the information of the user

specification but also the memory constraints generated from the Java Bytecode of the

application. Indeed, this allows us to detect the possible non-conformance between a

program and its specification and also to explore the execution paths of the application

looking at which of them may contain such inconsistencies. Nevertheless, the testing

application and the user specification are not in the same level of abstraction. Thereby,

we propose to wrap the method under test with its specification expressed as pre/post

specifications at the Bytecode level, using the Static Bytecode Instrumentation.

Keywords: Software verification; Static Bytecode Instrumentation; ASM, Pre/Post

Specifications; Java Bytecode; Constraints

1. Introduction

Testing is an essential activity in software engineering. In the simplest terms, it

amounts to observing the execution of a software system to validate whether it behaves as

intended and identify potential malfunctions [1]. In this context, Model-Based Testing

(MBT) has become an efficient way for validating an implementation. While the program

is being developed, based on informal requirements, the formal model is written,

validated and verified. Tests are derived from the model and run on the System Under

Test (SUT).

Indeed, in object oriented modeling, a formal specification defines operations by

collections of equivalence relations and is often used to constrain class and type, to define

the constraints on the system states (invariant), to describe the pre- and post-conditions on

operations and methods, and to give constraints of navigation in a class diagram [2].

Various approaches use constraint solving techniques together with annotated programs

either to produce test cases or to verify program correctness [3].

Although the verification process, which are based on mathematical proofs, allow

guaranteeing the absence of certain classes of errors, the testing methods can stimulate

properly the behavior of software by applying inputs and checking if the specifications are

respected in the output. However, tests reliability depends on the count of test oracles and

the efficiency of the input data to parse the maximum states of the SUT. In this context,

constraint-based testing introduced by Offutt in 1991 [4], combines a symbolic execution

and dynamic constraint solving [5] in order to generate test inputs.

However, often these techniques are restricted to source code level programs, while for

many applications one needs to be able to also verify the executable code, i.e., Java

Bytecode. Different possible reasons for this exist: Java Bytecode program can have bugs

since the methods used for Java software testing does not necessarily remove all possible

Received (September 15, 2017), Review Result (February 6, 2018), Accepted (February 18, 2018)

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

2 Copyright ⓒ 2018 SERSC

bugs from its source program. Furthermore, the source code of an application is not

always available; and even this is the case, structural testing requirement can still be

derived and used to assess the quality of a given test set [6]. On the other hand, the

Bytecode is already free of compilation errors and optimized for execution. So, we think

that, the testing methods for Java applications at the Bytecode level are necessary. In Java

testing context, we have the assurance that if we dispose for each method of each class of

its specification and its Bytecode, we can firstly detect the invalid execution errors, and

we can secondly perform code coverage of the testing method under test.

Several works have adapted structural testing techniques on program at the Bytecode

level. These works include extracting a control flow graph from Bytecode programs

[7][8], performing symbolic execution of Bytecode [9], or using constraint based

techniques to generate test inputs from java Bytecode programs [10, 11]. However, few of

them have been interested in testing the behavior of the Bytecode program with respect to

its specification. The main purpose of our testing approach is to extract testing

information from Java Bytecode program and its functional specification expressed in

pre/post conditions and invariant. As it is known, the SUT and the user specification are

not at the same level. The program is at Bytecode level whereas the specification is in

high-level of abstraction. In Java software context, we deal with two issues: how can we

specify Java Bytecode programs, and how we can check execution paths of the target

application to detect a non-conformance with the user specification.

In this paper we propose, to specify the Java Bytecode program at the Bytecode level

using Static Bytecode Instrumentation. The main idea of the proposed work is to wrap the

Method Under Test with its user specification by adding (statically) assertions in the form

of precondition, post-condition and invariant and to check the expected behavior of the

given method at the Bytecode level. Our approach aims to detect non-conformance

between a given Byte code program and its specification in the context of unit testing.

This paper is organized as follow: Section 2 presents the Java Bytecode testing

problem and its related work, Section 3 gives a brief description of the Java Virtual

Machine (JVM) representation and the existing memory constraint model, Section 4

describes our proposed testing approach, Section 5 presents an example of Byte code

program, its specification, and describe how the Wrapped Method of the given example is

translated to the Constraint Memory Model, finally section 6 gives some concluding

remarks and outline our future works.

2. Related Work

Several works have adapted structural testing techniques on program at the Bytecode

level. These works include extracting a Control Flow Graph from Bytecode program,

performing symbolic execution of Bytecode, or using constraint based techniques to

generate test inputs from java Bytecode programs. In [8], the authors show how the

general control flow graph can be generated from a given java card Bytecode program

extracted from the CAP file. In [12], they describe a coverage testing tool named JABUTI,

designed to test Java programs and Java-based components. The proposed tool extracts

from the java Bytecode the intra-method control-flow and data-flow testing requirements

used to generate or assess the quality of a given test set. In [9], the paper presents Symbolic

PathFinder (SPF); a software analysis tool that combines symbolic execution with model

checking for automated test case generation and error detection in Java Bytecode

programs. The authors present in [13] a new rule-based testing (RBT) approach to

automated generation of test inputs from Java Bytecode without using fitness functions.

In [10], the authors describe a goal-oriented method that aims at building an input state

of the Java Virtual Machine that can drive program execution towards a given location

within the Bytecode. We can distinguish two principal contributions in the proposed

works: firstly the authors perform backward exploration at the Bytecode level; and

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 3

secondly they propose a new constraint-based model of the JVM defined with the notion

of constrained memory variable. They implement their approach in a tool called JAUT

that can generate input memory states for reaching specific location within Java Bytecode

programs.

There are several approaches to automatic test data generation based on formal

specifications. In [14], they propose an approach for generating test data based on OCL

constraints using partition analysis of individual methods of class. The set of given

constraints are reduced using the mathematical Disjunctive Normal Forms. The work

presented in [15], propose an automated random testing method as a practical tool to assure

the correctness of interface specifications. In [16], the authors presented a method based on

automated test generation from B models using Constraint Logic Programming. They

compute boundary goals and states using a specific solver to build test cases by traversing

the constrained reachability graph of the specification. They have applied their technique

and tool on the GSM 11.11 specification.

In this context, we propose to specify the Java Bytecode program at the Bytecode level

using the Static Bytecode Instrumentation. We explore the notion of constrained memory

variable [10, 11] to generate constraint system from the method wrapped with pre/post

specifications. Indeed, contrary to [10] where the authors exploit the constraint memory

model to early detect infeasible paths in the Bytecode program, our approach aims to

detect non-conformance between a given Bytecode program and its specification in the

context of unit testing, such inconsistency is detected by checking the satisfiability of the

path constraints augmented with its pre-state and the negation of its post-state.

3. Constraint Memory Model

This section gives a brief description of the Java Virtual Machine (JVM) representation

and the existing memory constraint model. The memory model [10,11] uses Constrained

Memory Variables (CMV) to represent JVM states.

The JVM states represent runtime data storage locations such as registers, the operand

stack and the heap data. The registers are used to store the parameters and the local

variables of a method. When the method is dynamic the first register contains the

reference to the object (this) that calls the method. The operand stack is used to perform

the calculations of the method whereas the heap is the area of memory used by the JVM

for dynamic memory allocation. The Figure 1 shows an example of Java Bytecode

method execution.

The modelling by constraints of Java Bytecode has required the definition of memory

model [10] where a memory state is defined as the state of registers, the state of the stack,

and the state of the heap. This Memory Model is based on the notion of constrained

memory variables (CMV) which are used to represent JVM states. A CMV contains data

storage locations where data can be represented by variable along the domain. As it is

represented formally in [10] the CMV M is a tuple (F, S, H) where F denotes the set of

registers, S the operand stack and H denotes the heap.

https://en.wikipedia.org/wiki/Dynamic_memory_allocation

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

4 Copyright ⓒ 2018 SERSC

Figure 1. Example of Java Bytecode Method Execution in the JVM

Each java Bytecode instruction of the program is seen as a relation between two

memory states: before and after the execution of this instruction. Indeed, each java

Bytecode is seen as a relation among two CMVs: the CMV Mj before the activation of

Bytecode and the CMV Mk after its activation and before the activation of the following

Bytecode in the considered sequence of instructions. The tuple (F, S, H) contains

variables and domains. Integers and references are modelled by Finite domain variables

(VTPR designing Variable of Primitive or Reference Type). Their default variation

domain depends on the size of their type. The default domain of a reference can point to

every object of the heap; the null value can also be part of the domain.

In other hand, objects of the heap are modelled by a pair element; the first one is the

type variable that represents the class of the object and the second element is a mapping

associating an integer or reference variable to each attribute, which correspond to the

value of the attribute.

In a CMV, the registers are modelled by function that associates a VTPR (the value

contained in the register) to an index i, the operand stack is modelled by a sequence of

VTPR in which its first element is considered as its top. As to the heap, it corresponds to a

mapping from a set of addresses to a set of objects.

int Add(int, int);

 Code:

 0: iload_1

 1: iload_2

 2: iadd

 3: istore_3

 4: iload_3

 5: ireturn

}

F0 = {0 → Thisr, 1 → a, 2→ b, 3 → result

}

CMVinit = (F0, Ɛ ,H0),

CMV0 = (F0, a r,H0),

CMV1 = (F0, b.ar,H0),

CMV2 = (F0,ADDi,H0), ADDi = a + b

CMV3 = (F1, Ɛ,H0), result = ADDi

CMV4 = (F1 , resultr,H0),

CMV5 = (F1, Ɛ,H0),

Figure 2. Java Bytecode Example and its Memory Constraint Model

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 5

Figure 2 shows an example of the java Byte code of the method Add of class

Operation, and gives its correspondent Constraint Memory Model.

The constraint memory model contributes to automate the test data generation. Indeed,

the main purpose of the proposed approach [10] is to deal with the reachability problem,

i.e., the early detection of infeasible (non-executable) path. However, they do not pay

attention to the method called from an invalid state. We believe that without taking into

account the information contained in the user specification, nothing can help to detect the

inconsistencies between a given method and its specification, if there are any. In this

sense, we propose to exploit also the user specifications to verify the expected behavior of

the target application.

4. Verification Approach

Combining specification-based techniques and white box methods make it possible to

verify the behavior of the application and also the internal working of the SUT. However,

the source code is not always available even more for commercial software. In this sense,

we propose to exploit firstly, the information contained in the Bytecode of the application

to which we have always access and to exploit secondly, the information contained in the

user specification. In one hand, the user specification allows us to detect if there are any

inconsistencies between the Bytecode program and its specification. In the other hand,

having the Bytecode program structure will help us to know the paths that may contain

these inconsistencies.

In order to verify the application program from its Java Bytecode and its user

specification, both the testing program and its specification must be expressed in the same

level of abstraction. Our proposal is first to specify the application at the Bytecode level,

and then to perform the verification of the application. In this context, we propose to inject

the specification in the class file using Static Bytecode Instrumentation. The idea is to wrap

the Method Under Test with user specification in order to specify the behavior of java

classes (java methods) by adding assertions in the form of precondition, post-condition and

invariant.

In the second step, the instructions of the execution paths of the wrapped method are

translated to their correspondent constraint model. Finally, we check from this model if

there is a non-conformance presented in the execution paths relatively to the pre/post

specifications. The negation of the post-condition is used to detect the non-conformance.

4.1. Injection of the Specification

Specification languages such JML has being used for documenting and assuring the

correctness of the program [17]. The assertions of these specification languages are written

as Boolean expressions of the underlying programming language, and can be executed and

thus checked at runtime.

However, such specification languages are often restricted to the code source of the

application. We believe that it is necessary to have a way to describe the functional

behavior of a given application at the Bytecode level for several reasons:

 Most of the time, the class file is delivered to the client or the tester without the

specified source.

 Some applications are developed directly at the Bytecode Level

 The code receiver checks the executable code than its source code.

 The Byte code proofs aim to guaranty that some security requirement achieve

correctly the protection from malicious code

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

6 Copyright ⓒ 2018 SERSC

In this context, we propose to formally express the specification as Pre/Post conditions

and class invariant at the Bytecode Level using Static Bytecode Instrumentation. In our

approach, the specification is concerning one target Java application (method) at the

Bytecode level. Every method of the class file contains a sequence of Bytecode

instructions. As illustrated in Figure 3, our idea is to wrap the method that we want to

verify with its specification:

 Precondition and invariant (in form of Bytecodes) are injected, statically, before

the instructions performing the operation of the original method.

 Post-condition and post-invariant constraints are inserted at the end of the method

just before the execution of return instruction of the original method.

Figure 3. Injection of the User Specification

As it is shown in Figure 3, we have implemented the AddSpecification Module that

reads and modifies the class file. The calling of the AddMethodSpecification searches for

the method of interest, and then inserts Bytecode instructions corresponding to the

pre/post conditions in form of opcodes. In our case, the Bytecode instrumentation does

not need the program source code. In order to implement our approach we deploy ASM

library [18] to manipulate the Java application class files using Static Bytecode

Instrumentation, and in particular, the methods visitCode() and visitMaxs() are used to

detect the beginning and the end of method’s Bytecode. The method visitCode() of the

super-class MethodVisitor is overridden so that we can add the pre-state conditions; i.e.,

the precondition and the invariant, in the beginning of the method. Whereas the method

visitInsn() is overridden in order to add the Bytecode instructions (opcodes)

corresponding to the post-state conditions, i.e., the post-condition and the invariant. Note

that the post-condition and invariant are added at the end just before the return instruction.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 7

4.2. Verification Process

We believe that if we want to perform the verification in the specification level, it is

more objective to focus on how the input testing data can be used to explore all the states

of the target application. In this sense, the CFG (Control Flow Graph) can be considered

as fundamental of our verification approach. It brings a global overview of the execution

paths that the input data can take during the execution process.

The instrumentation process of the given testing JAVA method with its specifications,

puts the invoked method into valid state using the method precondition and the class

invariant, and makes it possible to check if the method ends in the state expected by the

post-state.

Firstly, we represent the wrapped Java method of any testing class with its CFG; and

the basis path testing technique [19] based of Depth First Search algorithm in the Control

Flow Graph (CFG) allows us to extract the execution paths of the specified testing

method.

Secondly, a constraint system is generated from the Bytecodes semantic of the

extracted paths of the MUT augmented with the method Pre-state (i.e., the precondition

and the invariant), and the negation of the method post-state (i.e., the non(postcondition)):

(precondition invariant) original method path constraint (postcondition)

Indeed, as seen in section III, each java Bytecode instruction is expressed as a relation

between two constraint memory variables (CMVs).

Finally, we check the satisfiability of the given generated constraint system. If it does

not include contradictory constraints, this means that: (1) The pre-state constraints are

respected, (2) The negation of the post-state is satisfied and then the path verification

results in post-state violation error. Consequently, we can deduce that the execution path

of the original method is not conform to its specification. Indeed, an invalid path is an

execution path that begins in valid state and ends in state where it does not respect the

post-condition. We can confirm that, if an invalid path is detected, the invoking method

does not conform to its specification. The main advantage of this approach is that it shows

exactly which execution path of the method under test does not respect the user

specification, at the Bytecode level. We mention that the constraints consistency is

checked on the fly in the same way as in [10].

5. Verification Example

Consider the Java program of Figure 4 that implements the class Account. The

Bytecode program shown in the Figure 5 correspond to the method withdraw(int). This

example is selected to illustrate how we wrap the Method Under Test (MUT),

withdraw(int), with pre/post specification using the Static Bytecode Instrumentation, as

well as how the Wrapped Method is translated to the Constraint Memory Model. Our test

objective is the detection of non-conformance between the MUT and its specification.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

8 Copyright ⓒ 2018 SERSC

public class Account {

 private int balance;

public Account(int balance){

 this.balance = balance;

}

public void withdraw(int amount){

 if(amount >= 100)

 balance = balance - amount;

 else

 balance = balance - amount * 25/100;

 }}

 //.....
}

Figure 4. Example in Java Source Code

We suppose that the pre-state conditions require that the amount must be positive and the

amount withdrawn shall not exceed the balance. As post-state, we suppose that the

remaining balance is the result of the amount withdrawn from the balance that existed

before the transaction. The balance attribute must always be positive.

public void withdraw(int);

 Code:

 0: iload_1

 1: bipush 100

 3: if_icmple 19

 6: aload_0

 7: dup

 8: getfield #13 // Field balance:I

 11: iload_1

 12: isub

 13: putfield #13 // Field balance:I

 16: goto 35

 19: aload_0

 20: dup

 21: getfield #13 // Field balance:I

 24: iload_1

 25: bipush 25

 27: imul

 28: bipush 100

 30: idiv

 31: isub

 32: putfield #13 // Field balance:I

 35: return

Figure 5. Example in Bytecode (of the withdraw original method)

The Figure 6 shows the new form of wrapped withdraw(int) method. The class

invariant which assumes that the balance is always positive, and the precondition that

requires that the amount should be positive and the withdrawn amount must not exceed

the existent balance are inserted before the withdraw(int) method body.

International Journal of Software Engineering and Its Applications

Vol.12, No.2 (2018)

Copyright ⓒ 2018 SERSC 9

 0: aload_0

 1: getfield #13 // Field balance:I

 4: istore_2

 5: aload_0

 6: getfield #13 // Field balance:I

 9: ifgt 21

 12: getstatic #20 // Field java/lang/System.out:Ljava/io/PrintStream;

 15: ldc #26 // String Pre-Invariant Error: by the method Account.withdraw

 17: invokevirtual #28 // Method java/io/PrintStream.println:(Ljava/lang/String;)V

 20: return

 21: iload_1

 22: iflt 33

 25: iload_1

 26: aload_0

 27: getfield #13 // Field balance:I

 30: if_icmple 42

 33: getstatic #20 // Field java/lang/System.out:Ljava/io/PrintStream;

 36: ldc #34 // String Precondition Error: by the method Account.withdraw

 38: invokevirtual #28 // Method java/io/PrintStream.println:(Ljava/lang/String;)V

 41: return

 42: iload_1

 43: bipush 100

 45: if_icmplt 61

 48: aload_0

 49: dup

 50: getfield #13 // Field balance:I

 53: iload_1

 54: isub

 55: putfield #13 // Field balance:I

 58: goto 77

 61: aload_0

 62: dup

 63: getfield #13 // Field balance:I

 66: iload_1

 67: bipush 25

 69: imul

 70: bipush 100

 72: idiv

 73: isub

 74: putfield #13 // Field balance:I

 77: aload_0

 78: getfield #13 // Field balance:I

 81: iload_2

 82: iload_1

 83: isub

 84: if_icmpeq 96

 87: getstatic #20 // Field java/lang/System.out:Ljava/io/PrintStream;

 90: ldc #36 // String Postcondition Error: by the method Account.withdraw

 92: invokevirtual #28 // Method java/io/PrintStream.println:(Ljava/lang/String;)V

 95: return

 96: aload_0

 97: getfield #13 // Field balance:I

 100: ifgt 112

 103: getstatic #20 // Field java/lang/System.out:Ljava/io/PrintStream;

 106: ldc #38 // String Post-Invariant Error: by the method Account.withdraw

 108: invokevirtual #28 // Method java/io/PrintStream.println:(Ljava/lang/String;)V

 111: return

 112: return

Figure 6. Method Withdraw Instrumented with Pre/Post Specifications

Old value of balance

attribute

Verification of the Class Invariant

Verification of the Precondition

The instructions of the original

method withdraw(int)

Verification of the Postcondition

Verification of the class Invariant

return instruction of the original method withdraw

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

10 Copyright ⓒ 2018 SERSC

Whereas the post-condition and the invariant constraints are inserted at the end, before

the return instruction of the method under test. We mention that the attribute balance old

value is injected in the beginning of the method to save the pre-state value of the attribute

balance. The old value is usually used in the post-condition of the method.

We note that the paths that raise an invariant assertion error or a precondition assertion

error, as seen in the Figure 7, are not taken into consideration, and therefore are discarded.

In the following, we give the example of constraint memory system of the execution

paths of the wrapped method. If any of them contains an inconsistency with its

specification, a non-conformance of the method withdraw is then detected.

The withdraw method initial state is: Minit = (F0, Ɛ, H0), F0= {Thisr, amounti,

old$balancei}; As said before, old$balancei refers to the value of balance in its pre-state.

Consider the second path [0 – 1 – 4 – 5 – 6 – 9 – 21 – 22 – 25 – 26 – 27 – 30 – 42 – 43 –

45 – 48 – 49 – 50 – 53 – 54 – 55 – 58 – 77 – 78 – 81 – 82 – 83 – 84 – 87 – 90 – 92 – 95]

of the wrapped method withdraw(int).

CMV0 = (F0, Thisr , H0)

CMV1 = (F0, balancei , H0)

CMV4 = (F1 , Ɛ ,H0), old$balancei = balancei ;

Memory Constraints of the instructions representing the constraint imposed by the

Invariant

CMV5 = (F1, Thisr , H0)

CMV6 = (F1, balancei , H0)

CMV9 = (F1, Ɛ, H0), balancei > 0

Memory Constraints of the instructions representing the constraint imposed by the Pre-

condition

CMV21 = (F1, amounti , H0)

CMV22 = (F1, Ɛ, H0), amounti ≥ 0

CMV25 = (F1, amounti , H0)

CMV26 = (F1, Thisr.amounti , H0)

CMV27 = (F1, balancei.amounti , H0)

CMV30 = (F1, Ɛ, H0), amounti ≤ balancei

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 11

Figure 7. The Control Flow Graph of Method Withdraw Wrapped with its Pre, Post-
States

Memory Constraints of the instructions representing the second path of the original

method ‘withdraw’

CMV42 = (F1 , amounti , H0)

CMV43 = (F1, 100.amounti, H0),

CMV45 = (F1, Ɛ, H0), amounti ≥ 100

CMV48= (F1, Thisr , H0),

CMV49= (F1, Thisr.Thisr , H0),

Invalid Invariant Error

Invalid Precondition

Valid Pre-state

Invalid Postcondition

Invalid Invariant Error

Normal

Termination of

the MUT

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

12 Copyright ⓒ 2018 SERSC

CMV50= (F1, balancei.Thisr , H0), Thisr ≠ null, (Thisr , balancei) ϵ H0,

CMV53= (F1, amounti.balancei.Thisr , H0)

CMV54= (F1, SUBi.Thisr , H0), SUBi=balancei-amounti

CMV55 = (F1, Ɛ, H1), Thisr ≠ null, Putfield(H0,H1,13, Thisr, SUBi)

CMV58 = (F1, Ɛ, H1),

Memory Constraints of the instructions representing the constraint of the non Post-

condition

CMV77 = (F1, Thisr , H1),

CMV78= (F1, balancei , H1), Thisr ≠ null, (Thisr , balancei) ϵ H1,

CMV81 = (F1, old$balancei.balancei, H1),

CMV82 = (F1, amounti.old$balancei.balancei, H1),

CMV83 = (F1, SUBi.balancei, H1), SUBi = old$balancei - amounti

CMV84 = (F1, Ɛ , H1), balance != SUBi

CMV87 = (F1, java/lang/System.out,H1)

CMV90 = (F1,“Postcondition Error..”. java/lang/System.out,H1)

CMV92 = (F1, Ɛ , H1),

CMV95 = (F1, Ɛ , H1),

Note that the constraint Putfield(H0,H1,13, Thisr, SUBi) indicates that the attribute

balancei of the current object Account receives the value of the variable SUBi, which

changes the state H0 of the heap to a state H1. This means that balancei = SUBi, or more

specifically balancei = balancei – amounti.

The constraint system generated from this execution path is the following:

old$balancei = balancei balancei > 0 amounti ≥ 0 amounti ≤ balancei amounti ≥

100 balancei=balancei-amounti balancei != old$balancei - amounti

As this constraint system is unsatisfiabe, the corresponding execution path does not

contain any inconsistency. In fact, the domain of valid input data that traverse this

execution path is restricted to the values that respect both the constraints of the method

pre-state and the constraints of the given path, i.e. amounti < balancei amounti ≥ 100

balancei > 0; and for these values, the latter terminates in final state that is conflicting

with the negation of the postcondition. Indeed,

old$balancei = balancei balancei > 0 amounti ≥ 0 amounti ≤ balancei amounti ≥

100 balancei=balancei-amounti balancei != old$balancei - amounti.

So, we pass to check the following path.

Consider the second path [0 – 1 – 4 – 5 – 6 – 9 – 21 – 22 – 25 – 26 – 27 – 30 – 42 – 43 –

45 –61 – 62 – 63 – 66 – 67 – 69 – 70 – 72 – 73 – 74 – 77 – 78 – 81 – 82 – 83 – 84 – 87 –

90 – 92 – 95] of the wrapped method withdraw(int).

CMV0 = (F0, Thisr , H0)

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 13

CMV1 = (F0, balancei , H0)

CMV4 = (F1 , Ɛ ,H0), old$balancei = balancei ;

Memory Constraints of the instructions representing the constraint imposed by the

Invariant

CMV5 = (F1, Thisr , H0)

CMV6 = (F1, balancei , H0)

CMV9 = (F1, Ɛ, H0), balancei > 0

Memory Constraints of the instructions representing the constraint imposed by the Pre-

condition

CMV21 = (F1, amounti , H0)

CMV22 = (F1, Ɛ, H0), amounti ≥ 0

CMV25 = (F1, amounti , H0)

CMV26 = (F1, Thisr.amounti , H0)

CMV27 = (F1, balancei.amounti , H0)

CMV30 = (F1, Ɛ, H0), amounti ≤ balancei

Memory Constraints of the instructions representing the second path of the original

method ‘withdraw’

CMV42 = (F1 , amounti , H0)

CMV43 = (F1, 100.amounti, H0),

CMV45 = (F1, Ɛ, H0), amounti 100

CMV61 = (F1, Thisr , H0),

CMV62 = (F1, Thisr.Thisr , H0),

CMV63 = (F1, balancei.Thisr , H0), Thisr ≠ null, (Thisr , balancei) ϵ H0,

CMV66= (F1, amounti.balancei.Thisr , H0)

CMV67= (F1, 25.amounti.balancei.Thisr , H0)

CMV69= (F1, MULi.balancei.Thisr , H0), MULi = 25 * amounti

CMV70= (F1, 100.MULi.balancei.Thisr , H0)

CMV72= (F1, DIVi.balancei.Thisr , H0), DIVi = MULi / 100

CMV73 = (F1, SUBi.Thisr , H0), SUBi = balancei - DIVi

CMV74 = (F1, Ɛ, H1), Thisr ≠ null, Putfield(H0,H1,13, Thisr, SUBi)

Memory Constraints of the instructions representing the constraint of the non Post-

condition

CMV77 = (F1, Thisr , H1),

CMV78= (F1, balancei , H1), Thisr ≠ null, (Thisr , balancei) ϵ H1,

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

14 Copyright ⓒ 2018 SERSC

CMV81 = (F1, old$balancei.balancei, H1),

CMV82 = (F1, amounti.old$balancei.balancei, H1),

CMV83 = (F1, SUBi.balancei, H1), SUBi = old$balancei - amounti

CMV84 = (F1, Ɛ , H1), balance != SUBi

CMV87 = (F1, java/lang/System.out,H1)

CMV90 = (F1,“Postcondition Error..”. java/lang/System.out,H1)

CMV92 = (F1, Ɛ , H1),

CMV95 = (F1, Ɛ , H1),

The constraint system generated from the current execution path is as follow:

old$balancei = balancei balancei 0 amounti ≥ 0 amounti ≤ balancei amounti

100 balancei=balancei – amounti * 25/100 balancei != old$balancei - amounti .

We observe that the constraints of this path are not conflicting. Indeed, the pre-state

restricts the valid input values of this path to amounti ≥ 0 and amounti 100; and the

constraint balancei=balancei – amout * 25/100 is matching with the non-postcondition

balancei != old$balancei - amounti. In fact, all the valid input values of the parameter

amount included in the domain [0, 100[end in an invalid post-state. Therefore, we deduce

that this execution path is not conform to its specification; as it begins in a state that is

conform to the pre-state and does not satisfy the post-condition constraints. As

consequence, the testing method is also not conform to the user specification.

6. Conclusion

This paper proposes a constraint-based verification approach for Java Bytecode

programs augmented with its user specifications. We have showed firstly how we specify

a java application at the Bytecode level using Static Bytecode Instrumentation. The main

idea of the proposed work is to wrap the testing method with its specification expressed in

pre/post conditions. We have illustrated secondly, how we can explore the memory

constraint model deduced from java Bytecode method wrapped with Pre/Post conditions

to detect a non-conformance between a given Java method and its specification. The main

advantage of this approach is not only to detect the program inconsistencies relatively to

their specifications, but also it shows exactly which execution path contains this

inconsistency. Our work, is now oriented to detect path anomalies for secure testing.

References

[1] A. Bertolino, “Software testing research: Achievements, challenges, dreams”, In 2007 Future of

Software Engineering, IEEE Computer Society, (2007), pp. 85-103.

[2] K. Benlhachmi and M. Benattou, “A Formal Model of Conformity and Security Testing of Inheritance

for Object Oriented Constraint Programming”, Journal of Information Security, vol. 4, no. 2, (2013), pp.

113-123.

[3] F. Dadeau and F. Peureux, “Grey-box testing and verification of Java/JML”, Proc. - 4th IEEE Int. Conf.

Softw. Testing, Verif. Valid. Work. ICSTW 2011, (2011), pp. 298-303.

[4] R. DeMillo and J. Offut, “Constraint-based automatic test data generation”, IEEE Transactions on

Software Engineering, vol. 17, no. 9, (1991), pp. 900-910.

[5] J. Offut, Z. Jin and P. J., “The dynamic domain reduction procedure for test data generation”, Software–

Practice and Experience, vol. 29, no. 2, (1999), pp. 167-193.

[6] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado and W. E. Wong, “Establishing structural testing

criteria for java bytecode”, Software Practice & Experience, vol. 36, no. 14, (2006), pp. 1513-1541.

[7] J. Zhao, “Dependence analysis of Java bytecode”, In Computer Software and Applications Conference,

COMPSAC 2000. The 24th Annual International, (2000), pp. 486-491.

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

Copyright ⓒ 2018 SERSC 15

[8] A. Achkar, M. Benattou and J. L. Lanet, “Generating control flow graph from Java card byte code”, In

Information Science and Technology (CIST), 2014 Third IEEE International Colloquium in, (2014), pp.

206-212.

[9] C. S. Pasareanu and N. Rungta, “Symbolic PathFinder: Symbolic execution of Java bytecode”,

Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering

(ASE’10), (2010), pp. 179-180.

[10] F. Charreteur and A. Gotlieb, “Constraint-based test input generation for Java bytecode”, Proc. - Int.

Symp. Softw. Reliab. Eng. ISSRE, (2010), pp. 131-140.

[11] F. Charreteur and A. Gotlieb, “Raisonnement contraintes pour le test de bytecode java”, In quatrièmes

Journées Francophones de Programmation par Contraintes (JFPC’08), Nantes, France, (2008), pp. 11-

20.

[12] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro and J. C. Maldonado, “JaBUTi: A Coverage Analysis

Tool for Java Programs”, In XVII SBES – Brazilian Symposium on Software Engineering (Tool

Section), Manaus, AM, Brazil, (2003), pp. 79-84.

[13] W. Xu, T. Ding and D. Xu, “Rule-Based Test Input Generation from Bytecode”, In Software Security

and Reliability, 2014 Eighth International Conference, (2014), pp. 108-117.

[14] M. Benattou, J. Bruel, and N. Hameurlain, “Generating Test Data from OCL Specification”,

Proceedings of the ECOOP’2002 Work-Shop on Integration and Transformation of UML Models,

(2002), pp. 1-6.

[15] Y. Cheon and C. E. Rubio-Medrano, “Random test data generation for Java classes annotated with JML

specifications”, SERP, vol. 11, (2007), pp. 385-392.

[16] E. Bernard, B. Legeard, X. Luck and F. Peureux. “Generation of test sequences from formal

specifications: GSM 11-11 standard case study”, International Journal of Software Practice and

Experience, vol. 34, (2004), pp. 915-948.

[17] Y. Cheon, “Automated random testing to detect specification-code inconsistencies”, Department of

Computer Science, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968,

Tech. Rep.07-07, (2007).

[18] E. Bruneton, “ASM 4.0 A Java bytecode engineering library,”

http://download.forge.objectweb.org/asm/asm4-guide.pdf.
[19] J. Poole, “A Method to Determine a Basis Set of Paths to Perform Program Testing”, Nat’l Inst. of

Standards and Technology, (1995).

http://download.forge.objectweb.org/asm/asm4-guide.pdf

International Journal of Software Engineering and Its Application

Vol.12, No.1 (2018)

16 Copyright ⓒ 2018 SERSC

