
International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014), pp.367-376

http://dx.doi.org/10.14257/ijmue.2014.9.6.35

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

New Class Cohesion Metric: An Empirical View

Sandip Mal
1
 and Kumar Rajnish

2

1
Research Scholar, Department of Computer Science & Engineering

2
Assistant Professor, Department of Computer Science & Engineering

Sandip.mal1987@gmail.com, krajnish@bitmesra.ac.in

Abstract

Cohesion is an Object-Oriented (OO) software design property that helps for the

measuring of degree of interdependency or connectivity within subsystems of a system.

Numerous class cohesion metrics can be found in the literature. Which metric is best suited

for a given situation is always a critical question. Few metrics are validated empirically

against open source software projects. The purpose of this paper is to validate empirically of

the proposed new class cohesion metric (CC) using some open source software projects and

find the effected quality factors. Results of this paper conclude that CC continuously gives

better correlation with Number Line of Code (NLOC) compare to other existing cohesion

metrics. The average value of CC (CohS) of a system also predicts the natures

(understandability, modifiability, and maintainability) of a system.

Keywords: Cohesion Metrics, Reusability, Software quality, Complexity, Modifiability

1. Introduction

Cohesion measure is the degree of interaction and relationship among classes, methods,

and attributes in OO software system. High cohesion is the main goal for designing a good

OO system. Since the last decade, OO programming languages, such as C++ and Java, have

become widely used in both the software industry and research fields. In an OO paradigm,

classes are the basic modules. Therefore, class cohesion refers to the relatedness of class

members. A class with high cohesion cannot be easily split into separate classes (Dallal and

Briand, 2009). Highly cohesive classes are more understandable, modifiable, and

maintainable (Chen et al., 2002; Gui and Scott, 2006).

Cohesion is a measure of the extent to which the various functions performed by an entity

are related to one another. Most metrics assess this by considering whether the methods of a

class access similar sets of instance variables. Dallal (2012) incorporates a transitive relation

between classes to measure cohesion. In cohesion metrics, it should be noted that three of

them (LCOM, LCOM3 and LCOM5) are in fact measures of lack of cohesion and proposed

by Chidamber and Kemerer (1994). TCC (Badri and Badri, 2004) in contrast to the other

three metrics, measures cohesion rather than its absence. In other respects it is similar to

LCOM5, being the number of similar method pairs divided by the total number of method

pairs. Other cohesion metrics based on software design has given by Chae et al. (2000), Hitz

and Montazeri (1995), Briand et al. (1998), Fernandez and Pena (2006), Bansiya et al. (1999).

Bieman and Kang (1995) measured reusability of a software system using cohesion metrics.

Bonja and Kidanmariam (2006) proposed new cohesion metrics from the similar methods of a

class. Counsell et al. (2006) provided utility and interpretation of some metrics. Related work

in the area of measuring software quality can be found in Counsell et al. (2006), Rine and

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

mailto:Sandip.mal1987@gmail.com
mailto:krajnish@bitmesra.ac.in

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

368 Copyright ⓒ 2014 SERSC

Nada (2000). Neamtiu et al. gave empirical study on some open source software systems.

Wieczerzycki (1996) and Li (1997) worked on software reusability measurement. The

intuitive notion of cohesion is the extent to which the modules that make up a system are

cohesive. The obvious way to assess this is to consider whether the methods of a class access

similar sets of instance variables. Table 1 summarizes the characteristics of the cohesion

metrics used in the comparative study. We have chosen TCC, LCC, DCD, DCI, Coh as a

valid cohesion metrics because these metrics are validated by all the properties given by

Briand et al in 1998. Other cohesion metrics does not satisfy all the properties given by

Briand.

Table 1. Existing Cohesion Metrics

Name Definition

Tight Class Cohesion

(TCC), Loose Class

Cohesion (LCC) (Bieman

and Kang, 1995)

TCC considers two methods to be connected if they share the use of at least

one attribute directly. A method uses an attribute if the attribute appears in

the method’s body or the method invokes another method, directly, which

has the attribute in its body. LCC considers two methods to be connected if

they share the use of at least one attribute directly or transitively.

Degree of Cohesion Direct

(DCD) and degree of

Cohesion Indirect (DCI)

These are similar to TCC and LCC, respectively, but differ by considering

two methods connected also when both of them directly or transitively

invoke the same method.

Coh (Briand et al, 1998) Briand et al. propose a cohesion metric (called Coh) that computes

cohesion as the ratio of the number of distinct attributes accessed in

methods of a class

The rest of the paper is organized as follows. Section 2 presents proposed cohesion metric.

Necessary cohesion properties and theoretical validation of proposed cohesion metrics has

been described in Section 3. Section 4 provides case study on five open source software

system. Finally, Section 5 deals with conclusion and future scope respectively.

2. Proposed Cohesion Metrics

A class C may consists of the set of global variables V = {v1, v2, v3… vn} and the set of

methods M = {m1, m2, m3 ….mn}. The metric CC proposed for measuring cohesion of a class

that satisfies the following two requirements, viz., first, it gives values that can be uniquely

interpreted in terms of cohesion, and, second, the values would be within a range of 0 to 1.

The value 0 would signify minimum cohesion and 1 the maximum cohesion [22]. To evaluate

CC, first calculate Cohesion Value of a global variable i
th
 of a class (CVi). CVi value is

defined when V and/or M are/is non-empty set, otherwise value of CVi is zero.

CVi thus gives the ratio of the number of functions share by i
th
 global variable of a class to

the total number of function of a class.

Next define the mean CVi, Cohesion Count of a class of n global variable (CC) for a class C

that is calculated as,

∑

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2013 SERSC 369

Where, n represents the number of global variables of a class.

It is obvious that in a class containing all methods access all global variables, the CC value

would be 1. This is the case of perfect (or, maximum) cohesion. On the other extreme

 Consider a class with empty set V and/or set M in which case, CC value would be 0.

 Consider a class with no relation between methods and global variables, and then CC

value would be 0.

In the above two cases, Cohesion value is minimum. Now cohesion of a system (CohS) of

r classes is defined as

CohS=
∑

Certain criteria have been provided for measuring the quality factors of OO design

systems. A system with low CohS then the classes of the system are low cohesive in nature

and if CohS is high then the classes of the system are tightly cohesive in nature. As discussed

in [2, 4] the low cohesive system is less reusable, understandable, modifiable, and

maintainable.

Figure 1. Example of Cohesion Measure of a Class

Figure 1 shows a class with four variables and three methods. P1 access the variable and c.

p2 access the variable b. p3 access the variable a, c and d.

So, CVa= 2/3, CVb= 1/3, CVd = 1/3, CVc = 2/3

CC = (2/3 + 1/3 + 2/3 + 1/3) / 4 = 0.5

2.1 Algorithm for Measuring CC and CohS

Step1: Count the number of function and global variable of a class and assign values M and C

respectively.

Step2: if M or C is zero then CC is zero.

Step3: For each global variable

1. Count the number of method (Mi) invoked global variable i.

2. Find ratio of (Mi/ M) and store it in Ri

Step4: Add all Ri to find CC.

To find CohS

Step1: First store number of classes in a variable (P).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

370 Copyright ⓒ 2014 SERSC

Step2: Add all CC of a system.

Step3: Added value of all CC is divided by P.

3. Theoretical Validation of Proposed Cohesion Metrics

Briand et al. [11] defined four properties for cohesion metrics. The first property, Property

1, called non-negativity and normalization, is that the cohesion measure belongs to a specific

interval [0, Max]. Normalization allows for easy comparison between the cohesion of

different classes. The second property, Property 2, called null value and maximum value,

holds that the cohesion of a class equals 0 if the class has no cohesive interactions; the

cohesion is equal to Max if all possible interactions within the class are present. The third

property, Property 3, called monotonicity, holds that adding cohesive interactions to the

module cannot decrease its cohesion. The fourth property, Property 4, called cohesive

modules, holds that merging two unrelated modules into one module does not increase the

individual modules cohesion. As an example, given two classes, c1 and c2, the cohesion of

the merged class c' must satisfy the following condition:

cohesion (c') ≤ max { cohesion (c1), cohesion (c2)}

CC metric satisfy necessary properties for class cohesion and comparison with other

existing metrics given in Table II also described by [22]. The results show that CC metric

satisfies all the properties given by Briand et al. [11]. The analysis of results shows that 35%

of the considered metrics are valid from the theoretical perspective. All other metrics have to

be revised to comply with the class cohesion properties. Otherwise, use of these metrics as

cohesion indicators is questionable.

Table 2. Theoretical Validation Results of Existing and Proposed Cohesion
Metrics

Metrics P1 P2 P3 P4

LCOM1 NO Yes Yes Yes

LCOM2 NO Yes Yes Yes

LCOM3 NO NO Yes Yes

LCOM4 NO NO Yes Yes

Connectivity NA Yes Yes Yes

LCOM4 + Connectivity NO Yes Yes Yes

LCOM5 NO Yes Yes NO

TCC Yes Yes Yes Yes

LCC Yes Yes Yes Yes

DCD Yes Yes Yes Yes

DCI Yes Yes Yes Yes

Coh Yes Yes Yes Yes

SCOM Yes Yes NO Yes

Class Cohesion Yes Yes NO Yes

CAMC NO NA Yes Yes

NCAMC Yes NA Yes Yes

NHD NO NA NO NO

CBMC Yes Yes NO Yes

ICBMC Yes Yes Yes Yes

CC Yes Yes Yes Yes

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2013 SERSC 371

4. Case Study on Open Source Software Systems

Five open source software projects have been chosen from

(http://www.sourceforge.net/projects/) for case-study. The basic information about these five

projects is given in Table 3. System1 has16 classes, System2 has 57 classes, System3 has 23

classes, System4 has 85 classes, and System5 has 19 classes. Total 200 classes have been

taken from five systems.

Table 3. Information about Project Taken for Case Study

Software Project No of Classes

System1 16

System2 57

System3 23

System4 85

System5 19

4.1 Effort Required for Modification

In this section we calculate the number of changes made to the original code and the time

required carrying them out. Both of these were recorded. Time would appear to be a better

measure of the overall effort entailed. The number of changes was defined to be the number

of lines of code (Extended NLOC) that were added, deleted or modified; the time required

was simply the time in minutes taken to determine and carry out the requisite changes. Total

200 classes of five systems have been modified with a total 3491 lines in 774 hours by a

group of five experienced Java programmers. The results obtained on the 200 classes reveals

an almost perfect linear relationship between NLOC and time (Pearson correlation = 0.987).

In this paper, we focus on the correlations of NLOC with cohesion metrics. The time and

NLOC required by the programmer to extend the systems given in Table 4.

Table 4. Extended Number Line of Code (NLOC) and Time Required Modifying
Systems

System Extended NLOC TIME

Total Mean Max Min Total Mean Max Min

System 1 197 8.95 20 5 47 2.1 4 1

System 2 485 8.6 18 4 142 2.51 5 1

System 3 280 14 30 5 61 3.05 5 1

System 4 2432 28.62 45 3 497 5.85 9 1

System 5 197 8.95 20 5 47 2.1 4 1

4.2 Results

The CC metric has been applied to each class of five software projects. Although CC

metric was defined for classes rather than complete systems, the average value (CohS) of CC

for all the classes in a system was used in the experiment for whole system. CC is used here

to predict reusability of a class in a system. Table V shows the CohS value of each system.

Mean, Maximum (max), Minimum (min), and Standard deviation (stdv.) value of CC, TCC,

DCD and Coh of five systems is given in Table 6. CohS value of System3 and System4 is

greater than 0.5, it indicates that maximum number of classes in those system are tightly

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://www.sourceforge.net/projects/

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

372 Copyright ⓒ 2014 SERSC

cohesive in nature. So, these systems are more reusable, and easy to understand, modify, and

maintain than the other systems (System1, System2 and System3).

Table 5. CohS Values of Five Systems

System CohS Number of Classes

System1 0.21 16

System2 0.46 57

System3 0.69 23

System4 0.64 85

System5 0.49 19

Table 6. Mean, max, min, and stdv. Values of CC of Five Systems

Metric Mean Max Min Stdv.

CC 0.65 1 0 0.28

TCC 0.47 12 0 1.05

DCD 0.35 1 0 0.27

Coh 15.8 838 0 77.26

4.3 Empirical Validation

Two approaches were used to evaluate the performance of the various measures in

predicting reusability of a class: Pearson correlation and linear regression. Since the objective

is to find a metric that will rank components according to the amount of effort likely to be

required for modification, we therefore computed the Pearson Correlation coefficients

between the NLOC and those produced by the various cohesion measures and set the

minimum coefficient value for each system (System1= 0.121, Syatem2= 0.340, System3=

0.501, System4= 0.338, System5= 0.360). Table 7 shows the Pearson Correlation value of

each system. This minimum value of each system is taken to validate CC metric in table 8.

Table 8 shows the Pearson correlation values of cohesion measures against extended NLOC.

The metrics with Pearson correlation values of cohesion measures against extended NLOC is

greater than the Pearson correlation values of cohesion measures against original NLOC is

taken as valid metrics for reusability. Table 8 shows large Pearson correlation of CC in all

system than minimum correlation value. So CC metric is a good predictor of reusability

comparatives to other metrics.

Table 7. Pearson Correlations of Cohesion Measures against NLOC. ** Denotes
Significant at 1% Level; * Denotes Significant at 5% Level

Measure TCC DCD Coh CC

System1 0.121 -0.341 0.068 -0.486

System2 -0.079 0.048 0.340 -0.358

System3 0.008 -0.004 0.501 0.264

System4 0.316 0.100 0.109 0.338

System5 -0.209 -0.243 0.178 0.360

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2013 SERSC 373

Table 8. Pearson Correlations of Cohesion Measures against extend NLOC. **
Denotes Significant At 1% Level; * Denotes Significant at 5% Level

Measure TCC DCD Coh CC

System1 0.423 -0.198 0.541* 0.75**

System2 0.135 0.305* 0.181 0.415**

System3 0.6** 0.12 0.091 0.528*

System4 0.630** 0.634** -0.122 0.746**

System5 0.328 0.712** -0.069 0.856**

It also be noticed that TCC, and CC measures are direct proportion to the effort required to

modify a class of a system. Thus the Pearson Correlations of these measurements against

extend NLOC are positive values while the Pearson Correlations of other measures (DCD,

Coh) are negative values. The proposed new cohesion measures for a class, CC perform better

than all the other metrics for all five systems.

It could be the case that they achieve such high rank correlations only because they are

better at correctly ordering items that in fact differ very little in the amount of effort they

require for modification. If this were the case, then the other metrics could be just as effective

in allowing users to choose components that can be readily modified. In order to address this

possibility, it is necessary to consider how effective the various metrics are in predicting the

amount of modification effort required. Table 8 shows the values of the coefficient of

determination (R
2
) obtained when NLOC is regressed against each of the four cohesion

metrics. R
2
 expresses the proportion of the variance in NLOC that is explained by the metric.

The results are similar to those obtained in rank correlation. The new metrics, CC is the best

predictors of the amount of modification effort required. Most of the R
2
 values are highly

significant, indicating that the corresponding measure is good linear predictors of

modification effort.

Table 9. R2 Correlations of Cohesion Measures against NLOC. ** Denotes
Significant At 1% Level; * Denotes Significant At 5% Level

Measure TCC DCD Coh CC

System1 0.197 0.039 0.292* 0.562**

System2 0.018 0.093 0.033 0.164

System3 0.466* 0.024 0.008 0.562**

System4 0.397 0.402* 0.015 0.557**

System5 0.107 0.507** 0.005 0.732**

These results clearly demonstrate that the proposed cohesion metric is a very good

predictor of the effort required to make simple modifications of classes of software projects.

It performs better than all of other established metrics used in the study.

5. Conclusion and Future Work

In this paper, an attempt has been made to propose a new cohesion metric which is based

on formal definitions, properties of classes. In addition to the proposal, this paper has also

presented empirical data on CC and CohS from five open source software projects. All

systems have developed in java. From Table 7 and Table 8, it is found that there is a strong

correlation between CC and reusability in cases, Pearson correlation and linear correlation.

So, this study clearly provided that CC is the valid indicator of external quality attributes of

the classes of projects such as reusability. The mean value of CC of a system (CohS) indicates

that system3 and system4 are more understandable, modifiable, and maintainable than the

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

374 Copyright ⓒ 2014 SERSC

system1, system2 and system5. This firmly believes us that this work will encourage other

researchers and developers to use the results obtained from this study to predict and measure

several other software quality attributes.

The future scope includes some fundamental issues

 To analyze the nature of proposed metric with performance indicators such as design,

maintenance, effort and system performance.

 Another interesting study would be together different OO cohesion metric at various

intermediate stages of the project. This would provide insight into how application

reusability, maintainability, testability evolves and how it can be managed and

controlled through the use of metrics.

References

[1] J. A. Dallal and L. Briand, "A precise method-method interaction-based cohesion metric for object-oriented

classes", TR, Simula Research Laboratory, ACM Transactions on Software Engineering and Methodology

(TOSEM), in press (2009).

[2] Z. Chen, Y. Zhou and B. Xu, "A novel approach to measuring class cohesion based on dependence analysis",

Proceedings of the International Conference on Software Maintenance, (2002), pp. 377-384.

[3] J. A. Dallal, "Mathematical Validation of Object-Oriented Class Cohesion Metrics", International Journal of

Computers, vol. 4, Issue 2, (2010), pp. 45-52.

[4] G Gui and P. D. Scott, “Coupling and Cohesion Measure for Evaluation of Component Reusability”,

MSR’06, May 22-23, Shanghai, China, (2006), pp. 18-21.

[5] J. A. Dallal, "Incorporating transitive relations in low-level design-based class cohesion measurement",

software – practice and experience, vol. 43, Issue 1, published online in Wiley Online Library

(wileyonlinelibrary.com), DOI: 10.1002/spe.2127.

[6] S. R. Chidamber and C. F. Kemerer, "A Metrics suite for object Oriented Design", IEEE Transactions on

Software Engineering, vol. 20, no. 6, (1994), pp. 476-493.

[7] H. S. Chae, Y. R. Kwon and D. H. Bae, "A cohesion measure for object-oriented classes", Software: Practice

and Experience, vol. 30, issue 12, (2000) October, pp. 1405–1431.

[8] M. Hitz and B. Montazeri, "Measuring coupling and cohesion in object oriented systems", Proceedings of the

International Symposium on Applied Corporate Computing, (1995), pp. 25-27.

[9] J. M. Bieman and B. Kang, "Cohesion and reuse in an object-oriented system", Proceedings of the 1995

Symposium on Software reusability, Seattle, Washington, United States, (1995), pp. 259-262.

[10] L. Badri and M. Badri, "A Proposal of a new class cohesion criterion: an empirical study", Journal of Object

Technology, vol. 3, no. 4, (2004).

[11] L. C. Briand, J. Daly and J. Wuest, "A unified framework for cohesion measurement in object-oriented

systems", Empirical Software Engineering - An International Journal, vol. 3, no. 1, (1998), pp. 65- 117.

[12] L. Fernandez, and R. Pena, "A sensitive metric of class cohesion", International Journal of Information

Theories and Applications, vol. 13, no. 1, (2006), pp. 82-91.

[13] C. Bonja and E. Kidanmariam, "Metrics for class cohesion and similarity between methods", Proceedings of

the 44th Annual ACM Southeast Regional Conference, Melbourne, Florida, (2006), pp. 91-95.

[14] J. Bansiya, L. Etzkorn, C. Davis and W. Li, "A class cohesion metric for object-oriented designs", Journal of

Object-Oriented Program, vol. 11, no. 8, (1999), pp. 47-52.

[15] S. Counsell, S. Swift and J. Crampton, "The interpretation and utility of three cohesion metrics for object-

oriented design", ACMTransactions on Software Engineering and Methodology (TOSEM), vol. 15, no. 2,

(2006), pp.123-149.

[16] H. S. Chae, Y. R. Kwon and D. Bae, "A cohesion measure for object oriented classes", Software—Practice &

Experience, vol. 30, no. 12, (2000), pp.1405-1431.

[17] D. C. Rine and N. Nada, "Three empirical studies of software reuse reference model", Software: Practice and

Experience, vol. 30, issue 6, (2000) May, pp. 685–722.

[18] I. Neamtiu, G. Xie and J. Chen, "Towards a better understanding of software evolution: an empirical study on

open-source software", Journal of Software: Evolution and Process, vol. 25, Issue 3, (2013) March, pp. 193–

218.

[19] W. Wieczerzycki, “Software Reusability through Versions, Software: Practice and Experience, vol. 26, Issue

8, (1996) August, pp. 911–927.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://onlinelibrary.wiley.com/doi/10.1002/spe.v43.1/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/1097-024X(200010)30:12%3C%3E1.0.CO;2-E/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-024X(200005)30:6%3C%3E1.0.CO;2-U/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-024X(199608)26:8%3C%3E1.0.CO;2-0/issuetoc
http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-024X(199608)26:8%3C%3E1.0.CO;2-0/issuetoc

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2013 SERSC 375

[20] W. Li, "An Empirical Study of Software Reuse in Reconstructive Maintenance", Journal of Software

Maintenance: Research and Practice, vol. 9, Issue 2, (1997) March, pp. 69–83.

[21] M. Kiewkanya and P. Muenchaisri, "Measuring maintainability in early phase using aesthetic metrics",

Proceedings of the 4th WSEAS International Conference on Software Engineering, Parallel & Distributed

Systems, (2005) February 13-15, Salzburg, Austria, pp. 1-6.

[22] S. Mal and K. Rajnish, “Theoretical validation of New Class Cohesion Metric against Briand Properties”,

Proceedings of the International Conference on Advanced Computing, Networking, and Informatics, India,

(ICACNI-2013), Advances in Intelligent and soft Computing, Springer, vol. 243, (2013) June, pp. 591-598.

[23] http://www.sourceforge.net/projects/ (Last accessed 20th November, 2013).

[24] S. Mal and K. Rajnish, "New Quality Inheritance Metrics for Object-Oriented Design" International Journal

of Software Engineering and Its Applications, vol. 7, no. 6, (2013), pp. 185-200.

http://dx.doi.org/10.14257/ijseia.2013.7.6.16.

Authors

Sandip Mal, he completed B.Tech from West Bengal University of

Technology, India in the year 2008. He has also completed ME (Software

Engineering) from Birla Institute of Technology, Mesra, Ranchi,

Jharkhand, India in the year 2012. Currently, he is pursuing Ph. D. on

Software Quality Metrics. His Research area is Object-Oriented Metrics,

Software Engineering, Database System, and Image Processing.

Kumar Rajnish, he is an Assistant Professor in the Department of

Information Technology at Birla Institute of Technology, Mesra, Ranchi,

Jharkahnd, India. He received his PhD in Engineering from BIT Mesra,

Ranchi, Jharkhand, India in the year of 2009. He has 24 International and

National Research Publications. His Research area is Object-Oriented

Metrics, Object-Oriented Software Engineering, Software Quality

Metrics, Programming Languages, and Database System.

Onli

ne
 V

ers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://www.sourceforge.net/projects/

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

376 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

