
International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014), pp.283-300

http://dx.doi.org/10.14257/ijmue.2014.9.6.28

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Diffusion-based Time Synchronization in Large-Scale Distributed

Sensor Networks

Bongkyo Moon

Department of Computer Science and Engineering, Dongguk Univ-Seoul, Korea

bkmoon@dongguk.edu

Abstract

In this paper, the works on time synchronization in wireless sensor networks are

investigated step by step. In particular, the diffusion-based algorithms for global

synchronization in large-scale distributed sensor network are intensively focused. We thus

propose a fast-converged asynchronous diffusion synchronization scheme in order to improve

the performance of the asynchronous averaging diffusion method, and then prove its

convergence mathematically. The evaluation results and discussions for the proposed scheme

are also presented with simulation study. We eventually show that the proposed scheme

converges a little faster than the asynchronous averaging diffusion method.

Keywords: large-scale, distributed, sensor network, time synchronization, diffusion

1. Introduction

Recently, small smart devices start to be embedded into the various environments in

order to monitor the events occurred in the areas such as homes, plantations, oceans,

rivers, streets, and highways. These tiny and low power devices which enable sensing

and communication tasks have made sensor networks emerged. Typically, wireless

sensor networks (WSNs) are a special type of ad-hoc networks, where wireless sensor

nodes get together and spontaneously form a network without any infrastructure. Due to

the absence of infrastructure such as router in traditional network, nodes in a sensor

network have to cooperate for communication by forwarding each other's packets from

a source to its destination. Thus, this yields a multi-hop communication environment.

Since a sensor system with local clock is not capable of coordinated operation and data

synthesis for future predictions, moreover, it is required to globally synchronize the

clocks of all the nodes in the whole network. That is, all the clocks need to have

approximately the same reading at a global time point, irrespective of their relative

distance.

In general, a distributed system consists of a collection of distinct processes running

concurrently in multiple nodes where each node uses a local clock for handling the time

without global clock. Hence, each process in different nodes should use their local clock, and

the frequency of these clocks may differ from each other and thus this finally causes drift in

time over a period of time [1, 9, 11]. Therefore, these clocks may not remain synchronized all

the time. Typically, time synchronization is a critical middleware service for many

applications and operating systems in large-scale distributed systems [6, 9]. There are actually

certain applications which need the time synchronization in distributed systems such as

banking applications, database queries and real time applications. Hence, time

synchronization in distributed system is so important because time-based events can be

handled only if all the nodes in distributed system share a common notion of time. Since the

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

284 Copyright ⓒ 2014 SERSC

clocks in distributed system do not remain well synchronized without periodic

synchronization, the clocks on the nodes must resynchronized periodically by using the clock

synchronization algorithm in order to maintain the global time.

Depending on the certain applications in distributed system, we need to know the time and

the date at which an event happened on a particular node, and the relative ordering among

events and the time interval between two events that occurs on different nodes [10].

Specifically, the knowledge of time between the sensor nodes in WSNs is essential that detect

the events such as target tracking, speed estimating, and ocean current monitoring. Hence, the

sensed data often loses valuable context without accurate time information. With time

synchronization, voice and video data from the different sensor nodes can be fused and

displayed in a meaningful way at the sink. Particularly, the common services in WSNs, such

as coordination, communication, security, power management and distributed logging depend

on the global time scale [41].

Consequently, global time synchronization is very important in large-scale distributed

system environments like WSNs. Time synchronization in a WSN aims at providing a

common time-scale (frequency and phase) for local clocks of nodes in the network.

Conventional distributed algorithms for time synchronization mainly depends on the

achievement and maintenance of a common time-scale for all the nodes in the network. These

algorithms exchange the local time information through packets carrying a time-stamp.

Specifically, distributed time synchronization is to provide correction factors to each node in

the network, and thus enable the node to convert its own clock value to that of a unique

common global clock [30]. However, traditional distributed algorithms cannot be considered

for problems due to their unique characteristics, especially the severe resource constraints.

Furthermore, most of existing synchronization methods are not scalable for very large

networks since they use global time information sent to all the nodes. The initializing node

may encounter failure and, thus, the approach is not fault-tolerant. All the nodes to be

synchronized together must execute the clock update approximately at the same time, which

may be too difficult in a large-scale distributed system [29].

Until now, meanwhile, diffusion-based algorithms have been some of the most popular

methods for dynamic load balancing in traditional distributed systems [12, 14-16]. In

diffusion-based load balancing methods, each computer can give its load to other computers

or take load from them if it is under-loaded. Cybenko [7] and Boillat [8] analyzed the

diffusion method in load balancing. They identified the sufficient and necessary conditions

for convergence. The time complexity of the diffusion method was also analyzed in [29]. It is

known, however, that this type of algorithm can suffer from slow convergence.

In this paper, therefore, we investigate the asynchronous diffusion methods and then

propose a fast-converged asynchronous diffusion scheme for improving the performance of

this kind of methods. This paper is organized as follows: In Section 2, the backgrounds and

related works on time synchronization are introduced. In Section 3, we also investigate the

diffusion-based algorithms and introduce rate-based asynchronous diffusion method. Fast-

converged asynchronous synchronization scheme is proposed in Section 4. We also give

evaluation results and discussions in Section 5. Finally, the conclusion is given in Section 6.

2. Backgrounds and Related Works

2.1. Clocks and Synchronization

For the general system model of clock synchronization algorithms, in this subsection, we

consider a set of distributed sensor nodes interconnected by a wireless sensor network that

can have different characteristics. The clock is essentially a timer that counts the oscillations

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 285

of a quartz crystal with a particular frequency. Every sensor node should maintain its own

clock which is the only notion of time. Each sensor node is mostly equipped with a hardware

oscillator in order to assist its clock, which is a collaboration of hardware and software parts.

Then, we can represent the clock for node A at real-time t by an approximation)(tCA
. The

clock difference between two sensor nodes is normally referred as the offset error. There are

actually three reasons for the node clocks to represent different times: First, the node clocks

might be started at different times, second, due to the slightly different frequencies among the

quartz crystals operating on the sensor nodes, the clock values might be gradually diverge

from each other (termed as the skew error), or third, due to the aging or ambient conditions

such as temperature, the clock frequency of the nodes can change differently over time

(termed as the drift error) [34].

The synchronization on a wireless sensor network is basically to equalize the clocks of the

n sensor nodes on it. The synchronization can be either global or local according to the range

it covers. That is, it depends on trying to equalize)(tCi
 for all i = 1::n or for some set of the

nodes within the same spatial locality. However, equalizing just the offsets is not enough for

effective clock synchronization since the clocks will drift away afterwards. Therefore, the

clock rates as well as offsets should be equalized together, otherwise the offsets should be

repeatedly corrected in order to keep the clocks synchronized over a time period [25].

This kind of strict definition of synchronization actually can be relaxed to rather loose

degrees according to the characteristic of an application. In general, the synchronization

mechanism can be classified into three basic types [21]. First mechanism is just to compare

the local clocks for order of events or messages in order to tell whether a particular event has

occurred before or after another event. This algorithm is just ordering rather than

synchronization and an example to this type of synchronization is given in [23]. Second

mechanism is for all nodes to maintain a clock that is synchronized to a reference clock in the

network. Thus, it is able to preserve a global timescale throughout the network. The

synchronization scheme in [21] conforms to this model. Third mechanism is for all nodes to

maintain information about the relative drift and offset of their clock to other clocks in the

network in addition to running their local clocks independently. Thus, at any instant, the local

time of the node can be calculated from this kind of information. Most of the synchronization

schemes for sensor networks use this model [20, 24].

2.2. Related Works

Until now, a lot of mechanisms to synchronize the local clocks of the nodes in WSN have

been proposed [2-4, 13, 27, 31-33, 37-38, 42-45, 47-48]. In this subsection, we extensively

investigate the major approaches among those mechanisms for time clock synchronization in

WSNs. The algorithm of Lamport timestamps [1, 5], which is a landmark study in computer

clock synchronization, is a simple algorithm used to determine the order of events in a

distributed computer system. As different nodes or processes might typically not be perfectly

synchronized, this algorithm is used to provide a partial ordering of events with minimal

overhead, and conceptually provide a starting point for virtual clocks. Lamport’s work has an

important influence on the clock synchronization in sensor networks since many sensor

applications require only relative time, and thus absolute time may not be needed.

The Network Time Protocol (NTP) devised by Mill [17-18] is the most widely used time

synchronization scheme in the internet domain. NTP has a lot of advantages such as

scalability, self-configuration in large networks, robustness to failures, and ubiquitous

deployment. Since NTP is originally designed for synchronizing the computers on the

Internet, however, it doesn‘t work well for sensor nodes due to the energy and computation

limitations. Global positioning system (GPS) could also be used to synchronize a large group

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

286 Copyright ⓒ 2014 SERSC

of nodes in the Internet. However, a GPS module may be too expensive to attach on small

sensor devices, and its service may not be available in environments such as indoor or under

water. Consequently, traditional schemes such as NTP or GPS are not suitable for

synchronization method in wireless sensor networks due to the problems such as complexity,

energy issues, cost and size factors.

Elson and Estrin [19] have introduced Post-facto synchronization scheme in which unlike

NTP, each node’s clock is normally kept unsynchronized with the rest of the network. That is,

a beacon node periodically broadcasts beacon messages to the sensor nodes in its wireless

range, and then each sensor node records the time of the event (timestamp) with its own local

clock. Upon receiving the reference beacon message, nodes eventually adjust their event

timestamps. The local clocks only synchronize when there is difference among the clocks of

various nodes. This kind of synchronization is not applicable in all situations, it is limited in

scope to the transmission range of the beacon.

The Reference-Broadcast Synchronization (RBS) scheme proposed by Elson et al. [20]

eliminates the uncertainty of the sender by removing the sender from the critical path. That is,

the only uncertainty becomes the propagation and receive time. Unlike the sender-to-receiver

synchronization method where the sender transmits the timestamp and the receiver

synchronizes, RBS uses receiver-to-receiver synchronization where a third party broadcasts a

beacon to all the receivers. The receivers record the time that the packet was received

according to their local clocks since the beacon does not contain any timing information. The

simplest form of RBS is one broadcast beacon and two receivers. The timing packet is

broadcasted to the two receivers. Then, they exchange their timing information and are able to

calculate the offset. This scheme can also be extended to a multi-hop scenario. Although this

scheme do not consider global synchronization over the entire network, the concept of

gateway node is used to extend adjacent nodes synchronization to the synchronization

between two nodes that cannot directly communicate with each other.

The Time-Sync Protocol for Sensor Networks (TPSN) [21] is a sender-to-receiver based

synchronization scheme that uses a tree to organize the network topology, where the sensor

nodes are synchronized to the root node of the hierarchy. Since this scheme is designed as a

multi-hop protocol, transmission range is not an issue. The concept is divided into two phases.

First, the level discovery phase creates the hierarchical topology of the network in which each

node is assigned a level. Only one root node resides on level zero. Second, in the

synchronization phase, all i level nodes synchronize with i-1 level nodes. This makes all

nodes synchronized with the root node. Unlike RBS, TPSN has uncertainty in the sender.

They attempt to reduce this non-determinism by time stamping packets in the MAC layer.

However, both RBS and TPSN protocols still suffer from the uncertainty of MAC layer time-

stamping: the jitter in interrupt handling and decoding time.

Flooding Time Synchronization Protocol (FTSP) [26] improves on the disadvantages to

TPSN. This scheme effectively reduces all sources of time stamping errors except for the

propagation time. The sender contains its time-stamp of the global time in the message at

transmission, and then the receiver records its local time when the message is received. Thus,

the receiver can estimate the clock offset by using both the sender's transmission time and the

reception time. FTSP uses linear regression in order to keep high precision compensation for

clock drift. The network structure is mesh topology instead of a tree topology as in TPSN,

where the root is elected dynamically and re-elected periodically. FTSP provides multi-hop

synchronization where the receiver nodes synchronize their clocks to the root node. That is,

the nodes form an ad-hoc structure to transfer the global time from the root to all the nodes, as

opposed to a fixed spanning-tree based approach. Thus, FTSP actually saves the initial cost

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 287

for establishing the tree and is also more robust against node or link failures and dynamic

topology changes in WSN.

Su and Akyildiz [28] proposed the time-diffusion synchronization protocol (TDP) for

network-wide time synchronization. It actually achieves global synchronization by multi-hop

flooding or directed diffusion [22]. The scheme is comprises of several algorithms where

there are multiple cycles in the active phase and each cycle has multiple round. Initially, a set

of master nodes is elected. That is, the base station starts sending a special timing message to

the entire network. Some of the nodes on message receiving side become masters by a leader

election procedure. Then, master nodes broadcast a request message containing their current

time, and all receivers send back a reply message. Using these round-trip measurements, a

master node calculates and broadcasts the average message delay and standard deviation.

Receiving nodes record these data for all leaders and then, they turn themselves into so-called

diffused leaders and repeat the procedure. Specifically, the master nodes start the time-

diffusion procedure involving elected diffused leaders, multi-hop flooding, and iterative

weighted averaging of timings from different master nodes. Eventually the average delays

and standard deviations are summed up along the path from the masters. The diffusion

procedure stops at a given number of hops from the masters. TDP provides synchronization

even without external servers. Hence, it handles well node mobility and failures by using a

peer evaluation procedure, but it leads to high complexity and its convergence time is also

very high.

Asynchronous Diffusion (AD) protocol [29] differs from time-diffusion synchronization

[22, 28]. This scheme is optimal and global time synchronization in that it is fully localized

and fault-tolerant. In the asynchronous diffusion-based approach, a node can synchronize

with neighbors at any time in any order. The algorithm is very simple: each node periodically

sends a broadcast message to its neighbors, which reply with a message containing their

current time. The receiver averages the received time stamps and broadcasts the average to

the neighbors, which adopt this value as their new time. It is assumed that this sequence of

operations is atomic, that is, the averaging operations of the nodes must be properly

sequenced. This algorithm can also adapt to limited node failure, adverse communication

channel, and node mobility. The fault-tolerant diffusion-based protocol goes one step further

in assuming the presence of malicious nodes that exhibit Byzantine faults.

Recently, pairwise broadcast synchronization (PBS) was proposed in [36]. This

scheme allows sensor to synchronize itself without sending out any packet by

overhearing timing messages from two-way message exchange between the neighbors.

In a one-hop wireless sensor network where every node becomes an adjacent neighbor

to each other, a single PBS message exchange between two nodes would help all nodes

to synchronize, thus significantly reducing the communication overhead for clock

synchronization. This scheme is also extended to multi-hop wireless sensor network

scenarios in [39].

3. Diffusion-based Algorithms

3.1. Generalized Diffusion Algorithm

Traditionally, diffusion-based algorithms mainly have been used for dynamic load

balancing in heterogeneous systems [7-8, 12, 14-16]. A dynamic load balancing algorithm

normally uses local communication and can rapidly compute new fair data distribution. This

leads an unbalanced system to a global “equilibrium” state by exchanging

information/workload only between processors owning neighboring subdomains. A

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

288 Copyright ⓒ 2014 SERSC

generalization of the algorithm proposed by Cybenko [7] was investigated and then the

generalized diffusion algorithm was given with direct explicit expression in [15].

 In this scheme, it is assumed that the processors may have various relative speeds and

each speed is expressed by a positive real number. A processor’s workload is considered to be

infinitely divisible, and so it can also be represented through a positive real number. Various

communication speeds are considered, and during the computations, the communication

topology may change between successive load redistribution phases. G = (V, E) is a

connected graph whose vertices correspond to the processors and whose edges reflect

dependencies between data residing on different processors. Let V = {1,..., p} and E = {e1,

e2,..., eq}. l is the vector of the processors’ workloads. c is the vector of the processors’ speeds.

The following generalized diffusion algorithm (GDA) is a generalization of the classical

diffusion algorithm (Algorithm 1).

Algorithm 1 Generalized Diffusion Algorithm (GDA) [15]

1: k=0;
2: while not converged do
3: for all node

in do

4: for all neighbors
jn of

in do

5: send)(k

il to
jn ;

6: receive)(k

jl from
jn ;

7:)()()(k

jij

k

iji

k

ij lmlm ;

8:

)(},{

)()()1(

GEji

k

ij

k

i

k

i ll ;

9: k=k+1;
10: end
11: end
12: end

In the above algorithm,)0(l is the initial workload vector,)(nl is the workload vector after

the nth iteration, and
ijm is diffusion parameter, which represents the fact that only a fraction

of the difference of load between processor i and its neighbors is sent or received. The

algorithm can be expressed in a matrix form as an iterative process of type
)()1(nn lMl where diffusion matrix M is a p x p nonnegative matrix such that 0ijm iff {i,

j} E or i = j,

Vi ijm 1 for all Vj ,
ijijij cmcm for all Vji , . The diffusion algorithm,

as described in Algorithm 1, operates on the load itself. At each iteration of the algorithm, the

new load)1(k

il of a vertex i is given by the combination of its original load)(k

il and the load

of its neighboring vertices, namely ,
)(},{

)()()1(

GEji

k

ij

k

i

k

i ll Vji , , k = 0, 1, 2, This

load-balance algorithm fits into the robust interconnection network well. However, further

investigation is needed to understand its application to wireless sensor networks, where the

communication channel is not perfect, nodes are prone to failure, and the system may be

mobile.

The dynamic load balancing algorithms by diffusion [7-8, 12, 14-16] have actually an

influence on the time-diffusion synchronization methods in large-scale distributed WSNs [28-

29, 40, 46]. In more detail, time-diffusion synchronization protocol (TDP) proposed by Su

and Akyildiz [28] is to start from a master node, adjust the clocks of its neighbors, and diffuse

this clock adjustment to other nodes. This scheme assumes no specific master nodes and

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 289

diffusion nodes: Every node is a master node or a diffusion node in a broad sense. This

property enhances the robustness of the algorithm. Afterward, Li and Rus [29] also proposed

a diffusion-based method for global synchronization in WSNs. This method, which is

localized and fully distributed, achieves global synchronization by spreading the local

synchronization information to the entire system. They have defined a rate-based diffusion

protocol where the synchronization is achieved in the nodes by flooding the information

about each node’s local clock value. When each node has learned the clock values of all its

neighbors, the node can use a mutually agreed consensus value to adjust its clock.

When the above generalized diffusion algorithm is deployed for the diffusion-based

synchronization in WSNs, generally, the diffusion synchronization method can be viewed as a

high level framework for global synchronization. The low level implementations depend on

the way to compute the clock difference among all sensor neighbours. Typically, the diffusion

algorithm can choose various global values to synchronize the network according to the

consensus that each node in the network agrees to change its clock reading. A simple

algorithm for synchronization is to choose the highest or lowest reading value over the

network. However, this synchronization is likely to be ruined if there might exist the faulty or

malicious nodes with an abnormally high or low clock reading.

3.2. Asynchronous Diffusion Method

Li and Rus actually defined both rate-based synchronous diffusion and asynchronous

averaging diffusion protocols for time synchronization in WSNs [29]. The synchronous

method assumes all the nodes perform their local operations in a set order, while the

asynchronous method relaxes the constraint by allowing each node to perform its operation at

random. In these methods, synchronization is done locally without a global synchronization

initiator, and can also be done at arbitrary points in time as opposed to the strict timing

requirements of the previous synchronization methods.

There are two typical basic operations in diffusion-based synchronization scheme: 1) the

neighboring nodes compare their clock readings at a certain time point and 2) the nodes

change their clock accordingly. Since the clock comparison and clock update may usually

take several steps, however, they both cannot be done simultaneously. This means that the

clock updates by using the clock readings at the comparison time will be incorrect. One of the

solutions is to use the elapsed time in the clock update. That is, each node keeps a record of

how much time elapses after the clock comparison on each node. The complexity of this

protocol is also very high as it requires more synchronization rounds to reach reasonable

convergence when compared to the previous methods. The convergence speed of the

diffusion method is slow compared to that of traditional synchronization algorithms, but it is

useful when only a coarse synchronization is required. The diffusion method is actually

independent of and thus can be built upon any local synchronization scheme (e.g., averaging

clock readings from neighboring nodes). The error in this diffusion method depends on the

error inherent to the local synchronization scheme [29].

Actually, the rate-based diffusion algorithm by Li and Rus only considers the time

difference between two sensor nodes instead of the absolute clock time value. Hence, it is not

required that all the sensors must do this local synchronization at the same time. That is, the

exchanged value between sensor
in and its neighbor

jn is proportional to the time difference

between them. In order to remove the constraint that the rate-based synchronous diffusion

algorithm requires a set order for all the node operations, we here introduce the asynchronous

diffusion algorithm in Algorithm 2, which heavily relies on the previous works [15, 29]. In

the asynchronous clock synchronization diffusion algorithm (Algorithm 2), a node can

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

290 Copyright ⓒ 2014 SERSC

synchronize with its neighbors at any time in any order as long as each node always has the

chance to be involved in the execution with nonzero probability. This algorithm gives a very

simple clock update operation for a node and its neighbors. Each node runs the asynchronous

operations on the fly without knowing what other nodes are doing. That is, each node

executes the update operation once for clock diffusion although the order of the operations of

all the nodes is randomized.

Algorithm 2 Rate-based Asynchronous Diffusion Algorithm

1: for each sensor
in with uniform probability do

2: read clock value
ic from

in ;

3: while each neighbor
jn with uniform probability do

4: read clock value
jc from

jn ;

5: write back the new value)(jiiji ccrc to each neighbor
jn ;

6: end
7: write back)(jiiji ccrc to

in ;

8: end

We here need to give basic definitions and notations for more formal description on

Algorithm 2. We first assume that the system consists of n sensors, and the sensor devices are

connected via wireless communication. Then, the sensor network is simply represented as a

deduced graph G(V, E) in which the vertex is the sensor and the edge is the sensor

connectivity. If two sensor neighbors are within transmission range, the corresponding

vertices ni and nj have an edge to connect them. That is, the set of vertices, V represents the

sensor nodes (e.g.,

ni V and Vn j) and the edge relationship Enn ji),(presents the sensor

connectivity if and only if ni and nj are involved in the same round. Then, the clock readings

of the n sensors in the network at time t, can be denoted as Tt

n

tt cccC),,,(21 where t

ic is the

clock reading for sensor ni at time t, and T presents vector transposition. For simplicity, we

can use ci instead of t

ic . Whenever the Algorithm 2 is then performed, we can know the

following matrix R is applied to the clock reading vector C. More specifically, we can get the

clock value diffusion formula tt CRC 1 , where the matrix R applied on the clock reading

vector can be described by:

.

21

22221

11211

nnnn

n

n

rrr

rrr

rrr

R

The elements in the matrix R are the diffusion rates, called diffusion factor, where

normally rij = rji and rij = 0 if ni and nj are not adjacent, and hence

ij ij

Ejij

ijii rrr 11
),,(

.

If ni and nj are within their transmission range, ci and cj need to be adjusted under the

conservation law in order to search for the convergence value for all the sensors in the system.

If ci and cj are not equal each other, the diffusion value for convergence is proportional to the

difference between ci and cj. Thus, the diffusion rate rij > 0 can be chosen randomly provided

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 291

ij ijr 1 . Hence, the sensor ni loses or gains rij(ci - cj) to its adjacent sensor nj and

eventually loses or gains a total of

ij jiij ccr)(to its all neighbors.

We assume that the graph G deduced from the WSNs is strongly connected, so the matrix

R is irreducible. Moreover, the matrix R is also symmetric and positive because rij = rji > 0.

Thus, the Algorithm 2 has the flavor of convergence of a Markov chain. We can now have
011 CRC tt by applying the above diffusion formula iteratively, where

T

ncccC),,,(00

2

0

1

0 is the initial clock reading distribution at time 0. We can also expect that

this time reading vector becomes TS cccC),,,(000 after running the algorithm, where

n

k k ncc
1

00 . Hence, all the sensors eventually achieve the stable synchronized clock

values SC . We can also know that SC is an eigenvector of matrix R with respect to

eigenvalue 1. As a consequence, Algorithm 2 might achieve global synchronization in the

entire WSN since the time vector 011 CRC tt converges to the synchronized clock vector
SC . By using an approach similar to the theorem that Li and Rus have applied in [29],

therefore, it can be easily proved that Algorithm 2 converges to the global clock value.

4. Fast-Converged Asynchronous Diffusion Method

4.1. Asynchronous Averaging Diffusion Algorithm

In the asynchronous averaging algorithm (by Li and Rus) [29], all the nodes can perform

operations in any order as long as each node is involved in the operations with nonzero

probability. The main idea of this algorithm is to average all the clock time readings and set

each clock to the average time. It gives a very simple average operation of a node over its

neighbors. Each node tries to compute the local average value directly by asking all its

neighbors about their values; it then sends out the computed average value to all its neighbors

so they can update their values.

In this algorithm, the global average value is used as the ultimate synchronization clock

reading in order to make the algorithm more robust and reasonable. That is, a node with high

clock reading diffuses that time value to its neighbours and levels down its clock. A node

with low clock reading absorbs some of the values from its neighbours and increases its

values. After a certain number of rounds of diffusion, some error threshold can be achieved,

and thus the clock in each sensor eventually converges to a global average value. Specifically,

a round is defined to be the time for each node to finish the average operation in the given

algorithm exactly once, so the number of rounds required for the entire network to achieve

some error threshold signifies the convergence speed.

In this method, a node may have several neighbors for average operation since the entire

network is assumed to be connected. If a node is involved in two or more average operations,

therefore, these operations must be sequenced due to the assumption that the average

operation is atomic. This algorithm, which has been mathematically proved by Li and Rus

[29], can typically adapt to the changing network topology, limited node failure, adverse

communication conditions, and node mobility. Fig. 1 shows the example of the randomly

selected sensor nodes exactly once in each operation group and the sensor nodes adjusted

with most recently received value by atomic operation sequence when they belong to several

operation groups.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

292 Copyright ⓒ 2014 SERSC

G1

G2

G3

selected exactly once

with random

adjusted with the most

recently received value

Figure 1. Example of Several Operation Groups

4.2. Fast-Convergence of Diffusion Rounds

In asynchronous averaging diffusion algorithm, each node might have a series of adjusted

clock values sent from several neighbors through average operations since all sensor nodes

are assumed to be connected. According to the Algorithm of Li and Rus [29] and its

assumptions, therefore, a node ni
in each round consequently adjusts its local clock with the

most recently received value among a series of average clock values (see Figure 1). Thus, this

adjusted clock value is eventually diffused over the whole network. In equation (1), Ci-adjust

presents an average clock value sent back to the ni’s neighbors for adjusting clock in the

Algorithm of Li and Rus, where N is the number of the neighbors of ni
and Cj is a clock value

among neighbor sensor nodes.

1

1

_

1 N

j

jiadjusti CC
N

C (1)

We now propose a fast-converged asynchronous diffusion (FAD) scheme (Algorithm 3)

for improving the convergence speed of asynchronous averaging diffusion method

(Algorithm of Li and Rus) [29]. In Algorithm 3, each node takes the mean of a series of

average clock values. More specifically, a node ni adjusts its clock value at the end of each

round with the mean of average clock values sent back from all the neighbors. Since the

average operation in this algorithm is not atomic, moreover, the average operations do not

have to be sequenced even though a node is involved in two or more operation groups. Hence,

the eventual adjusted clock value in a round can be expressed with equation (2), where M is

the number of the nodes for average operation within each neighbor group including ni.

1

1

1

1

11 N

k

M

j

jkiadjusti CC
M

C
N

C (2)

In this algorithm, each node has to keep in the buffer the average clock values sent back

from all the neighbors in a round. Then, at the end of a round, every node locally computes

the mean with the accumulated average clock values which are already compensated with the

offsets according to the time elapsed in the buffer. Algorithm 3 rather seems to increase space

complexity and time complexity since it may require more operations and storages than the

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 293

Algorithm of Li and Rus in getting average value in each round. However, the number of

rounds required for convergence achievement in this scheme is less than that in the

asynchronous diffusion method. That is, the overall time for synchronizing all the nodes with

this scheme becomes a little shorter since this scheme converges faster than the asynchronous

diffusion method. When each sensor node executes the diffusion operation exactly once in

each round, it takes O(n) rounds for any clock reading value to propagate to the whole

network. Thus, the convergence time is O(n), where n is the number of nodes. In the

following sections, the evaluation results of the proposed scheme are presented with NS-2

simulation analysis.

Algorithm 3 Fast-Converged Asynchronous Diffusion Algorithm

1: for each node
in with uniform probability do

2: read clock values from
in and its neighbors

3: average the clock readings
4: send back to the neighbors the new value (the values are buffered into

in and its neighbors, and accumulated instead of writing over)

5: end
6: each node

in locally performs average operation again with all adjusted

buffered values (write the value back to itself
in)

Theorem 1. The fast-converged asynchronous diffusion algorithm converges to the stable

time clock value (T).

Proof. We prove this result using an approach similar to the theorem proof mechanism of

Li and Rus [29]. Let
tL and

tS be the longest value and the shortest value in actually elapsed

time clock, respectively, of all sensors in a WSN at time t. That is,
tL is non-increasing over

time t since there is no clock value longer than
tL at time t. Similarly,

tS is non-decreasing

over time t since
tL cannot decrease from that time by symmetry. From the assumption that

tL is non-increasing, we know
tL is greater than or equal to T. Hence, let I be the infimum of

the series
tL , and then we have TILtt lim . Now, we suppose TI in order to derive

a contradiction.

We consider such that
)(

1

11

nI
n

n
IT

n

 , where the function

k

i

ink
1

)(

and n is the number of sensors in a WSN (e.g.,)(k is the sum of the first k terms of a

geometric series with the common ratio n > 1). For any k (k = n, n-1, ...,1), let
kA be the set

of sensors whose clock values are greater than)(kI and let
kB be the set of the rest of the

sensor nodes in a WSN. We know that there must exist a time t such that ILt
 for some

 and some sensor nodes whose clock values are less than)(nIT in a WSN at that time

t.

We now consider the inductive proof for kth step (k = n, n-1, ...,1) for deriving the

contradiction. If the only nodes from
kA (or

kB) are involved in an operation of the proposed

algorithm, those nodes must be still in
kA (or

kB) after the operation is completed. However,

there must exist an operation that involves the nodes from both sets since WSN is a connected

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://en.wikipedia.org/wiki/Geometric_progression#Geometric_series
http://en.wikipedia.org/wiki/Geometric_progression#Geometric_series

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

294 Copyright ⓒ 2014 SERSC

network. Even if at least one node is from
kA and all other nodes have the possible longest

elapsed time clock value I , the operation result value is at most

)1(
)()1)((

kI
m

kImI

 , where m is the number of nodes related in this

operation. Then, at least
kB +1 nodes will be in

1kB after that operation is completed. If the

nodes from both
kA and

kB are involved in an operation, therefore, these nodes have clock

values less than)1(kI after the operation is performed.

We know 1nB in operation on the nodes from the sets
nA and

nB at time t since there

must be some node whose clock value is less than)(nIT . After the first operation on

the nodes in
nA and

nB is completed, we similarly know 21 nB . After the first operation

on nodes in
1nA and

1nB , we also know 32 nB . Hence, we eventually know nB 1
 since

1B is the set of nodes whose clock values are less than nII)1(. This fact contradicts

the initial assumption that the infimum of
tL is I. Consequently, we have TLtt lim . In

the similar approach, TStt lim can also be easily proved. Therefore, we know that all the

clock values on the sensor nodes converge to the stable value T.

5. Evaluation Results and Discussions

We implemented the fast-converged asynchronous diffusion (FAD) scheme

(Algorithm 3) and asynchronous averaging diffusion scheme (Algorithm of Li and Rus)

in simulation with NS-2 simulator (version 2.30) based on IEEE 802.15.4 module. We

ran a series of scenarios with different network parameters. In this simulation, the round

is defined to be the time for each node to finish the operation in the given algorithm

exactly once, so the number of rounds for the entire network to achieve some error

threshold signifies the convergence speed. For each experimental set of parameters, the

simulation was executed several times using a randomly generated network topology. In

each experiment, a stimulus was generated at a randomly chosen node and propagated

to the whole network until the relative error (0.01) was achieved. The detail simulation

parameters are summarized in Table 1.

Table 1. Simulation Parameters

Parameter Values

Number of Nodes
75, 90, 100, 125, 150, 200,

300, 400, 500

Sensor Field 100m 100m

Transmission Range 15m

Physical Layer & MAC Layer 802.15.4

Routing Protocol AODV

Relative Error 0.01

Uniform Probability (Mean) 0.5

Threshold (Percentage of Drift) 100%, 80%, 60%, 40%

The number of operation is the number of average operation performed from all nodes in a

round. The threshold is the drift rate between the received clock value and local clock value

in a tick. In Figure 2 and Figure 3, each data point (*) represents a running on a randomly

generated network. That is, the markers are the number of rounds and the number of total

operations when relative error becomes 0.01 which is a convergence condition in each

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 295

experiment. The error rate for convergence decreases exponentially with the increase of the

number of rounds [4]. The plotted curve is the average number of rounds and the average

number of total operations for one suite of network parameters. A sparse network with fewer

nodes undergoes large variation in terms of convergence speed. The simulation results are

presented as follows:

Figure 2 evaluates the convergence speed with the number of nodes. The two figures

represent the comparison between asynchronous diffusion method (left) and FAD scheme

(right) in the number of rounds with threshold value 40%. In this figure, the number of rounds

decreases with the increase of the number of nodes. The reason is that the increase of the

number of neighbors in each node makes the network more connected and eventually makes

the diffusion better expedited. Figure 2 shows that the number of rounds has exponential

shape as the number of sensor nodes increases. It means that, when the number of nodes is

especially over the specific value, the number of rounds required for achieving global time

synchronization are not related with the number of nodes. In this simulation, when the

number of sensor nodes is over 150, we can see that the convergence speed of FAD scheme is

faster than that of asynchronous diffusion method. More specifically, when the number of

nodes increases from 150 to 500, the number of rounds required for achieving global time

synchronization in the FAD scheme decreases from 40 to 31.7 while asynchronous diffusion

method achieves it in about 38 rounds.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

number of nodes

n
u
m

b
e
r

o
f

ro
u
n
d

average value

data point

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

number of nodes

n
u
m

b
e
r

o
f

ro
u
n
d

average value

data point

Figure 2. Comparison between asynchronous diffusion (left) and FAD (right) in

the number of rounds with threshold value 40%

Figure 3 shows the total number of average operations conducted by all the nodes in each

network. The two figures show the comparison between asynchronous diffusion method (left)

and FAD scheme (right) in the number of operations with threshold value 40%. These figures

represent that the number of total operations increases when the number of nodes increases

under the fixed sensor field. The reason is because the number of neighbors increase linearly

with the number of nodes with other network parameters fixed. In this simulation, when the

number of sensor nodes is 500, we can see that the number of total operations required for

achieving global time synchronization in the FAD scheme less than that of the asynchronous

diffusion method.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

296 Copyright ⓒ 2014 SERSC

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

number of nodes

n
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n

average value

data point

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

number of nodes

n
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n

average value

data point

Figure 3. Comparison between Asynchronous Diffusion (left) and FAD (right)
with Threshold Value 40% in the Number of Operations

Figure 4 represents the comparison between asynchronous diffusion and FAD in the

number of operations and the number of rounds with threshold value (log scale). Figure 4

(left) depicts the number of average operation and Figure 4 (right) shows the number of

rounds in this simulation. When the number of nodes is over 175, we can see that FAD

requires less operations and fewer rounds than asynchronous diffusion. When the number of

nodes is under 175, it might not be possible to compare FAD with asynchronous diffusion

from this simulation. When the number of nodes is over 175, however, we can also see that

FAD has better performance than asynchronous diffusion.

50 100 150 200 250 300 350 400 450 500
7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

number of nodes

n
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s
(i
n
 l
o
g
 s

c
a
le

)

average diffusion

FAD(100%)

FAD(80%)

FAD(60%)

FAD(40%)

50 100 150 200 250 300 350 400 450 500
3

3.5

4

4.5

5

5.5

6

number of nodes

nu
m

be
r

of
 r

ou
nd

s(
in

 lo
g

sc
al

e)

average diffusion

FAD(100%)

FAD(80%)

FAD(60%)

FAD(40%)

Figure 4. Comparison between Asynchronous Diffusion and FAD in the
Number of Operations (left) and the Number of Rounds (right) with

Threshold Value (log scale)

6. Conclusion

We consider the diffusion-based algorithms for global clock synchronization in

large-scale distributed sensor network. We introduce the rate-based asynchronous

diffusion method in which each node can perform its operation at randomly, but still

achieve the global clock value over the whole network. We propose a fast-converged

asynchronous diffusion synchronization scheme in order to improve the performance of

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 297

the asynchronous averaging diffusion method, and then prove its convergence

mathematically. The evaluation results and discussions for the proposed scheme are

also presented with simulation study. We eventually show that the proposed scheme

converges a little faster than the asynchronous diffusion method, although it rather

seems to require more operations and storages in getting average value in each round.

Acknowledgements

This work was supported by the research program of Dongguk University. Many special thanks are

also given to Jiyul Bae for his help on this research work.

References

[1] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System”, Communications of the

ACM, vol. 21, no. 7, (1978), pp. 558–565.

[2] D. Dolev, J. Halpern and H. R. Strong, “On the Possibility and Impossibility of Achieving Clock

Synchronization”, Proc. ACM Symp. Theory of Computing (STOC), (1984) May.

[3] J. Halpern, B. Simons and R. Strong, “Fault-Tolerant Clock Synchronization”, Proc. ACM Symp. Principles

of Distributed Computing (PODC), (1984) August.

[4] J. Lundelius and N. Lynch, “A New Fault-Tolerant Algorithm for Clock Synchronization”, Proc. ACM

Symp. Principles of Distributed Computing (PODC), (1984) August, pp. 75-88.

[5] L. Lamport and P. M. Melliar-Smith, “Synchronizing Clocks in the Presence of Faults”, J. ACM, vol. 32, no.

1, (1985) January, pp. 52-78.

[6] H. Kopetz and W. Ochsenreiter, “Clock Synchronization in Distributed Real-Time Systems”, IEEE

Transactions on Computers, vol. C-36, no. 8, (1987) August, pp.933–939.

[7] G. Cybenko, “Load Balancing for Distributed Memory Multi-processors”, Journal of Parallel and Distributed

Computing, vol. 7, no. 2, (1989), pp. 279-301.

[8] J. B. Boillat, “Load Balancing and Poisson Equation in a Graph”, Concurrency: Practice and Experience, vol.

2, no. 4, (1990) December, pp. 289-313.

[9] B. Liskov, “Practical Uses of Synchronized Clocks in Distributed Systems”, Distributed Computing, vol. 6,

(1993), pp. 211-219, Springer-Verlag.

[10] D. Dolev, J. Y. Halpern, B. Simons and R. Strong, “Dynamic Fault-tolerant Clock Synchronization”, Journal

of the ACM (JACM), vol. 42, no. 1, (1995) January, pp.143 – 185.

[11] S. B. Moon, P. Skelly and D. Towsley, “Estimation and Removal of Clock Skew from Network Delay

Measurements”, Proceedings of IEEE INFOCOM’99, vol. 1, (1999) March, pp.227 – 234.

[12] J. Qiu, K. Miura, H. Inouye, S. Fujiwara, T. Mitsuyu, K. Hirao, Y. F. Hu, and R. J. Blake, “An Improved

Diffusion Algorithm for Dynamic Load Balancing”, Parallel Computing, vol. 25, no. 4, (1999) April, pp. 417-

444.

[13] J. Levine, “Time Synchronization over the Internet using an Adaptive Frequency-locked Loop”, IEEE Trans.

Ultrasonics, Ferroelectronics and Frequency Control, vol. 46, no. 4, (1999) July, pp. 888–896.

[14] G. Karagiorgos and N. M. Missirlis, “Accelerated Diffusion Algorithms for Dynamic Load Balancing”,

Information Processing Letters, vol. 84, no. 2, (2002) October, pp.61-67.

[15] T. Rotaru and H. -H. Nägeli, “Dynamic Load Balancing by Diffusion in Heterogeneous Systems”, Journal of

Parallel and Distributed Computing, vol. 64, no. 4, (2004), pp.481-497.

[16] P. Berenbrink, T. Friedetzky and Z. Hu, “A New Analytical Method for Parallel, Diffusion-type Load

Balancing”, Journal of Parallel and Distributed Computing, vol. 69, no. 1, (2009), pp.54-61.

[17] D. L. Mills, “Internet Time Synchronization: The Network Time Protocol”, IEEE Transactions on

Communications, COM 39, no. 10, (1991) October, pp.1482-1493.

[18] D. L. Mills, “Adaptive Hybrid Clock Discipline Algorithm for the Network Time Protocol”, IEEE/ACM

Transactions on Networking, vol. 6, no. 5, (1998) October, pp. 505–514.

[19] J. Elson and D. Estrin, “Time Synchronization for Wireless Sensor Networks”, Proceedings of the 2001

International Parallel and Distributed Processing Symposium (IPDPS),Workshop on Parallel and Distributed

Computing Issues in Wireless and Mobile Computing, (2001) April, San Francisco, USA.

[20] J. Elson, L. Girod and D. Estrin, “Fine-Grained Network Time Synchronization Using Reference Broadcasts”,

Proc. Fifth Symp. Operating System Design and Implementation (OSDI 2002), (2002) December.

[21] S. Ganeriwal, R. Kumar and M. Srivastava, “Time Sync Protocol for Sensor Network”, The First ACM

Conference on Embedded Networked Sensor System (SenSys), (2003) November, pp. 138–149, Los Angeles.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://dl.acm.org/author_page.cfm?id=81100537160&coll=DL&dl=ACM&trk=0&cfid=323795113&cftoken=48413918
http://dl.acm.org/author_page.cfm?id=81100600147&coll=DL&dl=ACM&trk=0&cfid=323795113&cftoken=48413918
http://dl.acm.org/author_page.cfm?id=81452614782&coll=DL&dl=ACM&trk=0&cfid=323795113&cftoken=48413918
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Moon,%20S.B..QT.&searchWithin=p_Author_Ids:37362488100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Skelly,%20P..QT.&searchWithin=p_Author_Ids:37372836600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6063

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

298 Copyright ⓒ 2014 SERSC

[22] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, “Directed Diffusion for Wireless

Sensor Networking”, IEEE Trans. Networking, vol. 11, no. 1, (2003) February, pp. 2–16.

[23] K. Romer, “Temporal Message Ordering in Wireless Sensor Networks”, IFIP MedHocNet, (2003) June,

Mahdia, Tunisia.

[24] M. L. Sichitiu and C. Veerarittiphan, “Simple, Accurate Time Synchronization for Wireless Sensor Networks”,

IEEE Wireless Communications and Networking Conference (WCNC) 2003, vol. 2, (2003) March, pp. 1266

– 1273, New Orleans, LA, USA

[25] F. Sivrikaya and B. Yener, “Time Synchronization in Sensor Networks: A Survey”, IEEE Network, vol. 18,

no. 4, July-August (2004), pp. 45-50.

[26] M. Maroti, B. Kusy, G. Simon and A. Ledeczi, “The Flooding Time Synchronization Protocol”, Proceedings

of the ACM Conference on Networked Sensor Systems (SenSys’04), ACM Press, (2004), pp. 39–49, New

York.

[27] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai and K. Frampton, “Sensor

Network-based Counter Sniper System”, Proceedings of the 2nd International Conference on Embedded

Networked Sensor Systems (Sen Sys), ACM Press, (2004), New York.

[28] W. Su and I. F. Akyildiz, “Time-Diffusion Synchronization Protocol for Wireless Sensor Networks”,

IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp.384–397, (2005) April.

[29] Q. Li, and D. Rus, “Global Clock Synchronization in Sensor Network”, IEEE Transactions on Computer, vol.

55, no. 2, (2006) February, pp. 214-226.

[30] A. Giridhar and P. R. Kumar, “Distributed Clock Synchronization over Wireless Networks: Algorithms and

Analysis”, Proceedings of the 45th IEEE Conference on Decision and Control, (2006) December, pp. 4915 –

4920.

[31] O. Simeone and U. Spagnolini, “Distributed Time Synchronization in Wireless Sensor Networks with

Coupled Discrete-Time Oscillators”, EURASIP Journal on Wireless Communications and Networking, vol.

2007, Article ID 57054, 13 pages, doi:10.1155, (2007)

[32] S. Yoon, C. Veerarittiphan and M. L. Sichitiu, “Tiny-sync: Tight Time Synchronization for Wireless Sensor

Networks”, ACM Transactions on Sensor Networks (TOSN), no. 2, (2007) June.

[33] K.-L. Noh, Q. M. Chaudhari, E. Serpedin and B. W. Suter, “Novel Clock Phase Offset and Skew Estimation

Using Two-Way Timing Message Exchanges for Wireless Sensor Networks”, pp.766-777, IEEE Transactions

on Communications, vol. 55, no. 4, (2007) April.

[34] S. Ganeriwal and C. Pöpper, S. Čapkun and M. Srivastava, “Secure Time Synchronization in Sensor

Networks”, ACM Transactions on Information and System Security (TISSEC), vol. 11, no. 4, (2008) July.

[35] F. Ren, C. Lin and F. Liu, “Self-Correcting Time Synchronization Using Reference Broadcast in Wireless

Sensor Network”, IEEE Wireless Communications, (2008) August, pp.79-85.

[36] K. -L. Noh, E. Serpedin and K. Qaraqe, “A New Approach for Time Synchronization in Wireless Sensor

Networks: Pairwise Broadcast Synchronization”, IEEE Transactions on Wireless Communications, vol. 7, no.

9, (2008) September, pp. 3318-3322.

[37] Q. M. Chaudhari, E. Serpedin and K. Qaraqe, “On Maximum Likelihood Estimation of Clock Offset and

Skew in Networks with Exponential Delays”, IEEE Transactions on Signal Processing, vol. 56, no. 4, (2008)

April, pp.1685-1697.

[38] P. Sommer and R. Wattenhofer, “Gradient Clock Synchronization in Wireless Sensor Networks”, Proceedings

of the 2009 International Conference on Information Processing in Sensor Networks, (2009), pp. 37-48.

[39] K. -Y. Cheng, K. -S. Lui, Y. -C. Wu and V. Tam, “A Distributed Multihop Time Synchronization Protocol for

Wireless Sensor Networks using Pairwise Broadcast Synchronization”, IEEE Transactions on Wireless

Communications, vol. 8, no. 4, (2009) April, pp. 1764-1772.

[40] B. Wang, C. Fu and H. B. Lim, “Layered Diffusion-based Coverage Control in Wireless Sensor Networks”,

Computer Networks, vol. 53, no. 7, (2009) May, pp. 1114-1124.

[41] J. Bae and B. Moon, “Time Synchronization in Wireless Sensor Network,” Smart Wireless Sensor Networks,

Edited H. D. Chinh and Y. K. Tan, INTECH, (2010), pp. 253-280.

[42] B. -K. Kim, S. -H. Hong, K. Hur and D. -S. Eom, “Energy-Efficient and Rapid Time Synchronization for

Wireless Sensor Networks”, IEEE Transactions on Consumer Electronics, vol. 56, no. 4, (2010) November,

pp. 2258-2266.

[43] M. Leng and Y. -C. Wu, “On Clock Synchronization Algorithms for Wireless Sensor Networks under

Unknown Delay”, IEEE Transactions on Vehicular Technology, vol. 59, no.1, (2010) January, pp. 182-190.

[44] J. Chen, Q. Yu, Y. Zhang, H.-H. Chen, and Y. Sun, “Feedback-Based Clock Synchronization in Wireless

Sensor Networks: A Control Theoretic Approach”, IEEE Transactions on Vehicular Technology, vol. 59, no. 6,

(2010) July, pp. 2963-2973.

[45] S. M. Rahman and K. El-Khatib, “Secure Time Synchronization for Wireless Sensor Networks Based on

Bilinear Pairing Functions”, IEEE Transactions on Parallel and Distributed Systems, Digital Object

Indentifier 10.1109/TPDS.2010.94, (2010).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Giridhar,%20A..QT.&searchWithin=p_Author_Ids:37283176500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kumar,%20P.R..QT.&searchWithin=p_Author_Ids:37276263600&newsearch=true
http://www.sciencedirect.com/science/journal/13891286
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236234%232009%23999469992%23991090%23FLA%23&_cdi=6234&_pubType=J&view=c&_auth=y&_acct=C000031318&_version=1&_urlVersion=0&_userid=605641&md5=8ee0e14ff2a4d14361ef1651023278ae

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

Copyright ⓒ 2014 SERSC 299

[46] B. Moon and J. Bae, “A Global Time Synchronization Scheme for Wireless Sensor Networks,” The

Proceedings of International Conference - Grid and Distributed Computing (GDC2011), (2011) December, pp.

383-391.

[47] Y. -C. Wu, Q. Chaudhari and E. Serpedin, “Clock Synchronization of Wireless Sensor Networks,” IEEE

Signal Processing, (2011) January, pp. 124-138.

[48] L. Schenato and F. Fiorentin, “Average TimeSynch: A Consensus-based Protocol for Clock Synchronization

in Wireless Sensor Networks,” Automatica, vol. 47, no. 9, (2011) September, pp. 1878–1886.

Author

Bongkyo Moon, He received the B.S. degree in Computer

Science from Sogang University, Korea, in 1992, the M.S. degree in

information and communications from GIST (Gwangju Institute of

Science and Technology), Korea, in 1998, and the Ph.D. degree in

Telecommunications from KCL (King’ s College London), London,

UK. He worked as a researcher in software and telecommunication

areas at INEX Technologies, Inc., Santa Clara, CA, USA from 1992

to 1996 and at ETRI (Electronics and Telecommunications Research

Institute), Korea, from 1998 to 1999. He also worked a senior

researcher in the Telecommunication R and D Centre, Samsung

Electronics, Korea, from 2003 to 2005. Since 2005, he has been

working as faculty member (currently associate professor) in dept.

of Computer Science and Engineering, Dongguk University, Seoul,

Korea. His research interests are mobile computing, cloud

computing and network security.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

http://www.sciencedirect.com/science/journal/00051098
http://www.sciencedirect.com/science/journal/00051098/47/9

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.6 (2014)

300 Copyright ⓒ 2014 SERSC

 Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

