
International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014), pp.141-152 

http://dx.doi.org/10.14257/ijmue.2014.9.6.14 

 

 

ISSN: 1975-0080 IJMUE 

Copyright ⓒ 2014 SERSC 

SRSH: A Social Recommender System based on Hadoop 

 

 

Chaobo He
1, 2

, Yong Tang
2*

, Zhenxiong Yang
2
, Kai Zheng

2
 and Guohua Chen

2 

1 
School of Information Science and Technology, ZhongKai University of Agriculture 

and Engineering, Guangzhou 510225, China 
2 

School of Computer, South China Normal University, Guangzhou 510631, China 

hechaobo@foxmail.com, ytang@m.scnu.edu.cn, toyangzx@163.com, 

david@scnu.edu.cn, chguohua@gmail.com 

Abstract 

Online Social Networks (OSNs) accumulate a large amount of user-generated data and 

Social Recommender Systems (SRSs) can help users discover information they are interested. 

However, most of the existing SRSs do not have good scalabilities to process huge volumes of 

data. Aiming to this problem we design a social recommender system named SRSH, which is 

based on Hadoop parallel computing platform. SRSH provides second-degree friends, similar 

users, user community and content recommendation modules, which can meet user needs of 

finding potential friends and attractive content. Especially, every core methods existing in 

these modules above can be implemented using MapReduce parallel programming framework 

and run in Hadoop cluster. We have conducted extensive related experiments on the realistic 

dataset and the experimental results show that SRSH scales well and has the ability of dealing 

with the problem of recommendation in the large-scale OSN.  

 

Keywords: Social recommender system, Hadoop, MapReduce 

 

1. Introduction 

Online Social Networks (OSNs), such as Facebook, Tweeter and LinkedIn, have become 

tremendously popular in recent years. Millions of users are active daily in these sites and 

create a large amount of data online that has not been available before, including user links 

data and other user-generated content, such as blogs, photos, videos, etc. However, the 

abundance and popularity of OSNs flood users with huge volumes of information and hence 

bring users the problem of information overload. For example, the specific user is difficult to 

find potential friends he wants to know and is hard to discover content he wants to consume. 

Aiming to alleviate information overload over OSNs users, Social Recommender System 

(SRS) is proposed. This kind of system is different from traditional recommender systems 

using content-based methods or collaborative filtering methods separately and it can 

incorporate new techniques that take advantage of explicit links information between users in 

OSNs to make more effective recommendation. Recently, many researchers have paid close 

attention to SRS and tried to improve the performance of SRS from different perspectives. J. 

M. He et al. [1] presented a recommender system which can utilize influence information 

from social friends. This system used a probabilistic model to make personalized 

recommendations and performed well on the realistic OSNs dataset. E. Davoodi et al. [2] 

developed an expert recommendation system that integrated the characteristics of 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

142   Copyright ⓒ 2014 SERSC 
 

content-based recommendation algorithms into a social network-based collaborative filtering 

system. Experimental results showed that this system had a good recommendation precision. 

M. S. Pera et al. [3] presented a personalized book recommendation system named PBRecS, 

which utilized social interactions and personal interests to suggest books appealing to users. 

PBRecS relied on the friendships established on a social networking site and can generate 

more personalized suggestions. J. Golbeck et al. [4] used a social network approach to 

develop FilmTrust system which effectively recommended movies to the target user based on 

ratings of his friends and his trust weights to friends. Although these existing SRSs above 

have been proved that they have better recommendation precision than traditional 

recommender systems which do not consider social information between users, they all face 

the problem of poor scalability. Realistic OSNs often possess a large amount of data, 

including the large-scale complex social graph data and user-generated content. All of these 

need more effective computing method than before. If SRS does not scale well enough to 

process large datasets existing in OSNs, the performance of SRS will be poor. Aiming at this 

problem, we propose to design a social recommender system named SRSH, which is based on 

Hadoop, to provide a perfect scalable solution to SRS. Our main works include three aspects 

shown as follows:  

(1) We design a social recommender system named SRSH, which comprises four core 

modules, i.e., second-degree friends recommendation module, similar users recommendation 

module, user community recommendation module and content recommendation module. In 

particular, we also integrate content-based and collaborative filtering techniques into our 

system to further improve the performance of recommendation.  

(2) Using Hadoop, we implement core algorithms of SRSH, such as the algorithm of potential 

friends discovery in social graph, the algorithm of pairwise user similarity computation and 

the algorithm of content recommendation using collaborative filtering. 

(3) We conduct extensive experiments on a realistic OSN dataset. Experimental results show 

that SRSH has a good recommendation precision and especially scales well to have the ability 

of solving the problem of personalize recommendation in the large-scale OSN.   

The rest of this paper is organized as follows. Section 2 reviews related work, including the 

introduction of Hadoop platform and the MapReduce distributed programming model. In 

section 3 we present the system architecture of SRSH. Details about core algorithms 

implemented within MapReduce are presented in section 4. Section 5 shows the experimental 

results and evaluations. In Section 6 we draw the final conclusions and outline the future 

work. 

 

2. Related Work 

Hadoop is an open-source platform that allows for the distributed processing of large 

datasets across clusters of computers using simple programming model. It is designed to scale 

up from single servers to thousands of machines, each offering local computation and storage. 

Hadoop comprises two important modules: HDFS and MapReduce. HDFS is a distributed file 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

Copyright ⓒ 2014 SERSC   143 
 

system that provides high-throughput access to application data and MapReduce is a 

programming model for parallel processing of large datasets. It is notable that applications 

based on Hadoop should be implemented using MapReduce [5-6]. MapReduce builds on the 

observation that many tasks have the same structure: a computation is applied over a large 

number of records (e.g., documents) to generate partial results, which are then aggregated in 

some fashion. Taking inspiration from higher-order functions in functional programming, 

MapReduce provides an abstraction that involves the programmer defining a “mapper” and a 

“reducer”, with the following signatures: 

1

Map:( _ , _ ) {( , ) | 1... }
Reduce:( ,[ ,..., ]) ( , _ )

i i

i m i

in key in value key value i k
key v v key out value

 


 

Key/value pairs form the basic data structure in MapReduce. The “mapper” is applied to 

every input key/value pair to generate an arbitrary number of intermediate key/value pairs. 

The “reducer” is applied to all values associated with the same intermediate key to generate 

output key/value pairs. 

Recently, there have been a lot of studies on processing large-scale datasets using Hadoop 

and MapReduce, especially in the aspect of OSN analysis and mining. K. Shuang et al. [7] 

proposed X-RIME: a Hadoop-based analysis tool for large-scale social network. It was 

developed by MapReduce programming model and run on Hadoop. Its performance is 

evaluated with experiments, which demonstrates its good scalability. G. J. Liu et al. [8] used 

Hadoop and MapReduce to conduct a series of analyses on large-scale social networks 

including several distributions, clustering coefficient and diameter. Extensive experimental 

results shown that Hadoop can solve large-scale social networks analysis problem by making 

use of the power of multi-machines. P. Sharma et al. [9] presented strategies for speeding up 

calculation of social network graph metrics and layout by exploiting the parallel architecture 

of Hadoop platform. They also designed a social network analysis tool that was faster and 

more scalable than before. J. Tang et al. [10] proposed the topic-level social influence 

algorithm which was designed with efficient distributed learning algorithms that was 

implemented and tested under the MapReduce framework. Related experiments on real large 

datasets demonstrated its effectiveness and efficiency. From these studies above we can learn 

that if core algorithms in SRS can be implemented using MapReduce, it is feasible to solve 

the problem of scalability existing in SRS based on Hadoop. Accordingly, in this paper we 

dedicate to implement every core algorithm existing in SRSH using MapReduce and 

demonstrate the implementation details. 

 

3. System Overview 

SRSH provides users with necessary services which are composed of potential friends 

recommendation and content recommendation. Potential friends recommendation can help the 

target user to find users he is interested in and extend his social network graph by making 

friends. For improving the acceptance rate of friends recommendation, we adopt three kinds 

of friends recommendation strategies, including second-degree friends recommendation, 

similar users recommendation and user community recommendation. Second-degree friends 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

144   Copyright ⓒ 2014 SERSC 
 

mean friends of friends and are those whom the target user probably knows. They can be 

computed using user social network graph. Similar users are those who are very similar to the 

target user. They need to be computed the pairwise similarities with the target user. In SRSH, 

we use the similarities of user profiles to represent the similarities between users. User 

community recommendation is different from above and it can recommend users cluster, in 

which users connect with each other densely, to the target user. It needs to conduct users 

cluster task on user social network graph. User-generated content in OSN is abundant, such as 

blogs, photos, videos, etc. These kinds of content are hard to directly analyze their internal 

features to make recommendation and we have to consider their external information, such as 

ratings from users. Therefore, we can use collaborative filtering method to make content 

recommendation to the target user. SRSH comprises core modules corresponding to 

recommendation services above and every module can store data in HDFS and process data 

using MapReduce. HDFS and MapReduce services are both provided by Hadoop platform.   

 

4. Core algorithms implemented using MapReduce 

4.1 Second-degree Friends Recommendation (SDFR) 

Second-degree friends recommendation is based on the famous theory of six degrees of 

separation [11], which means everyone is six or fewer steps away, by way of introduction, 

from any other person in the world. In realistic OSN, second-degree friends are those users 

whom the target user can reach to using two steps through his social network graph and the 

target user knows them with high possibility. For example, in Figure 1 second-degree friends 

of user 3u  include 4u , 6u  and 7u . Furthermore, 4u  directly connects two friends 2u  

and 5u  of 3u , but 6u  and 7u  respectively connect only one friend of 3u . Therefore, 

4u  can rank first in the second-degree friends recommendation list for 3u . In summary, in 

order to make second-degree friends recommendation to the target user we can first produce 

candidates from friends of his friends and then remove the first-degree friends from 

candidates. Finally, we can rank the rest of candidates using support metric which means the 

more first-degree friends connect one candidate, the better rank for this candidate. Let the 

whole social network graph data store in the format of ,uida uidb   records which 

represent friendship links between users. Then, the second-degree friends recommendation 

algorithm can be implemented using two separate MapReduce jobs illustrated in Algorithm 1. 

      

u1u1

u2u2

u4u4

u3u3 u5u5

u7u7

u6u6

 

Figure 1. Social Network Subgraph 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

Copyright ⓒ 2014 SERSC   145 
 

 

Algorithm 1: Second-degree friends recommendation using MapReduce 

.

/ / MapReduce job for producing candidate second-degree friends
Map(Key ,  Value )
if compareTo( ) 0 Then
  Emit( , );
else
  Emit( , );
Reduce(Key , ValueIterator )
f

i j

i j

i j

j i

i

uid uid
uid uid

uid uid

uid uid
uid friendslist





.

oreach  do
  Emit(( , ), '1stdegree');
foreach  do
   foreach  do
    if compareTo( ) 0 Then
      Emit(( , ), ' 2stdegree');
/ / MapReduce job

j

i j

m

n

m n

m n

uid friendslist
uid uid
uid friendslist

uid friendslist
uid uid

uid uid




 for ident ifying second-degree friends
Map(Key ( , ),  Value )
Emit(( , ), );
Reduce(Key ( , ), ValueIterator )

0;
foreach  do
  if .equals('1std

i j

i j

i j

i

i

uid uid flag
uid uid flag

uid uid flagslist
support

flag flagslist
flag

 
egree') Then return;

  else 1;
Emit(( , ), );i j

support support
uid uid support

 

 

4.2. Similar Users Recommendation (SUR) 

In OSN user profile document often includes user demographic information, personal 

interests, education backgrounds, work experiences, etc. and has the stamp of the truth. If two 

user profile documents are very similar, then they also have the high similarity and can be 

recommended to each other to become friends. Accordingly, to effectively make similar 

friends recommendation, we need to compute pairwise similarities of user profile documents. 

If two users have high similarity of corresponding user profile documents, then they can be 

recommended to each other.  We adopt a simple metric to compute document similarity, 

where the similarity score can be expressed as an inner product of term weights. Under “a bag 

of words” model, document id  of user i  is represented as a vector of term weights itdw , 

which can be denoted as the frequency of term t . The similarity score between two 

documents id  and jd  is computed as: ( , ) i ji j td td
t V

sim d d w w


 , where V  is the 

vocabulary. Since a term will contribute to the similarity score only if it has non-zero weights 

in both documents, t V  can be replaced with i jt d d  above. We propose an efficient 

solution to the massive pairwise document similarities problem, expressed as two separate 

MapReduce jobs: 

  (1) Indexing: This job is to build a standard inverted index [12], where each term associates 

with a list of postings which contain the docids  and the corresponding term weights. 

Mapping all of user profile documents, for each term in the document the mapper emits the 

term as the key and the docid  that contains it as the value. The shuffle operation can 

automatically group these records above and provide its results to the reducer, which finally 

outputs inverted index postings to disks after computing term weights.  

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

146   Copyright ⓒ 2014 SERSC 
 

(2) Pairwise Similarity: Mapping all of postings in the inverted index, for each posting the 

mapper emits the docid  pair as the key and their product of the corresponding term weights 

as the value. Especially the total number of docid  pairs is ( 1) / 2m m  , where m  is 

the length of the posting. The shuffle operation sorts the output of mapper and then the 

reducer sums all the individual score contributions for a pair to generate the final similarity 

score. The detail of similar users recommendation using MapReduce is shown in Algorithm 2. 

 

Algorithm 2: Similar users recommendation using MapReduce 

/ / MapReduce job for indexing
Map(Key ,  Value )
foreach  do
  Emit( , );
Reduce(Key , ValueIterator )

 (); ;
foreach  do
 

i

i

i

i

docid termslist
t termslist

t docid
t docidslist

ht new HashT able posting null
docid docidslist



 


. .

 ( ). ( ). 1;  
Emit( , );
/ / MapReduce job for comput ing pairwise similarity
Map(Key ,  Value )
foreach  do
   foreach  do
    if co

i i

i

i

m

n

m

ht docid value ht docid value
t ht

t postinglist
p postinglist

p postinglist
p docid

 




.

. . . * .

mpareTo( ) 0 Then
      Emit(( , ), );
Reduce(Key ( , ), ValueIterator )

0;
foreach  do
  ;
Emit(( ,

n

m n m n

i j

i

i

i

p docid
p docid p docid p wt p wt

docid docid productlist
similarity

p productlist
similarity similarity p

docid





 

), );jdocid similarity

 

 

4.3. User Community Recommendation (UCR) 

In OSN users who have the similar interests often connect to each other closely and hence 

OSN will form many different user groups, which are also called user communities. Finding a 

community in OSN is to identify a set of users such that they interact with each other more 

frequently than with those users outside the group. If we can discover communities existing in 

OSN, then we can recommend the most interesting community to the target user, to which he 

belongs to. Recently many community mining approaches have been proposed. These 

approaches can be divided into four categories: node-centric, group-centric, network-centric 

and hierarchy-centric [13]. For practical use with the large-scale OSN, these approaches must 

have good scalabilities. In this paper we use classical K-means clustering algorithm 

implemented using MapReduce to mine community in the large-scale OSN. Let ( , )G V E  

denotes the OSN, where the set of nodes V  corresponds to users and the set of edges E  

corresponds to links between users in OSN, respectively. The number of nodes in the OSN is 

n  and the matrix {0,1}n nA   represents the adjacency matrix of the OSN. An entry 

{0,1}ijA  denotes if there is a link between nodes iv  and jv . The similarity of node iv  

and jv  can be computed using cosine similarity of their corresponding row vectors in A , 

namely, 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

Copyright ⓒ 2014 SERSC   147 
 

   ( , ) cos( )
i j

i j

i j

A A
sim v v

A A
   (1) 

where iA  and jA  respectively denote the row vectors of node iv  and jv . Clustering 

nodes using K-means is an iterative procedure. It first randomly selects K  nodes as the 

initial centroids, and then iteratively forms K  clusters by assigning all nodes to the closest 

centroid and computes the new centroid of each cluster until these centroids do not change. 

Every iteration in clustering executes one round of MapReduce job, the detail of which is 

illustrated in Algorithm 3. 

 

Algorithm 3: User community mining using MapReduce 





.

/ / MapReduce job for clustering users
Map(Key ,  Value )

();
foreach  do
   ( . , ( , ));

( );
Emit( , );

i i

j

j i j

i

uid vector
clist Getclusterinfo

c clist
simlist.add c cid sim vector c centroid

cid Getclosestcluster simlist
cid uid


Reduce(Key , ValueIterator )

( );
Emit( , );

i

i

i i

cid uidslist
centroid newcentroid uidslist

cid centroid

 

 

4.4. Content Recommendation (CR) 

In OSN user-generated content often follows lots of user evaluations, such as user ratings. 

Therefore, collaborative filtering technique, which is widely used in recommender system, 

can be utilized to recommend user-generated content to users. Collaborative filtering 

technique has two main categories: user-based methods [14-15] and item-based methods 

[16-17]. User-generated content can also be regarded as the item and in this paper we select 

the latter to make content recommendation. We first create the item co-occurrence matrix C  

and user ratings matrix U , then for the target user i  we can multiple C  by his rating 

vector iU  to get the candidate recommendation setR  for him. The formalized description 

of our method is shown as below. Let the 3-tuple , ,uid cid rating   denotes the user 

rating record, where uid , cid  and rating denote the user, item and rating, respectively. 

The number of items is m  and the number of users is n . Then { }m m
ijC c  , where ijc  

denotes the co-occurrence times of item i  and j  among the user ratings records. 

Especially, when i j , we set 0ijc  . { }m n
pqU u  , where pqu  denotes the rating 

submitted from user q  to item p . For user q , his rating vector 1 , ..., T
q q mqU u u   and 

the candidate recommendation set for him is 
1

1{ }m
q sR C U r    , where 

1
1

m
s sk kq

k
r c u


 . Let 1' arg max s

s

s r , if the target user does not have given rating to item 

's , then we can preferentially recommend item 's  to him. The theory hidden in our method 

is that if items, to which the target user gives high ratings, have too many co-occurrence times 

with item 's , then the value of ' 1sr  will become bigger and moreover it means item 's  is 

similar to those items which the target user prefers. Therefore, recommending item 's  to the 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

148   Copyright ⓒ 2014 SERSC 
 

target user is reasonable. For a given target user q , the method for making content 

recommendation for him includes three main steps: creating matrix C ,U  and producing 

candidate recommendation set. Creating matrix U  can be implemented simply using 

MapReduce and in the following Algorithm 4 we illustrate the other MapReduce jobs for 

creating matrix C  and producing candidate recommendation set for the target user.   

 

Algorithm 4: Content recommendation using MapReduce 




.

/ / MapReduce job for creat ing Mat rix 
Map(Key ,  Value < > )
Emit( , );
Reduce(Key , ValueIterator )
foreach  do
   foreach  do
    if compareTo(

m

n

m

C
rid uid,cid,rating

uid cid
uid cidslist

cid cidslist
cid cidslist

cid c ) 0 Then
      Emit(( , ),1);
Map(Key ( , ),  Value )
Emit(( , ), );
Reduce(Key ( , ), ValueIterator )
Emit(( , ), . );
/ / MapReduce job for pro

n

m n

m n

m n

m n

m n

id
cid cid
cid cid times

cid cid times
cid cid timeslist

cid cid timeslist length

 

ducing candidate recommendat ion set  for user 
Map(Key ( , ),  Value )
Emit(( , ), );
Reduce(Key ( , ), Value )

;
Emit ( );
Map(Key ,  Value )
Em

m n

m n

m n

nq

q
cid cid times

cid cid times
cid cid times

product u times
m, product

m product




 


it ( );
Reduce(Key , ValueIterator )

0;
foreach  do
 ;
if !  Then
Emit ( );

i

i

mq

m, product
m productslist

score
p productslist

score score p
u null

m,score

 

 

5. Experimental Results and Analysis 

In order to test the scalability of every core module in SRSH we select the flixster dataset 

[18] as our experimental dataset. Flixster [19] is a social networking site for movie fans. 

Users can create their own profiles, invite friends, rate movies and actors, and post movie 

reviews as well. Flixster dataset contains user profiles, friendship links and ratings data and 

its detailed description of characteristics is shown in Table 1. 

Table 1. Characteristics of Flixster Dataset 

#Users #links Average links #Items #Ratings Average ratings Profiles size 

786936 7058819 17.9 48794 8196077 168 2.5 GB 

 

Our Hadoop computer cluster is composed of 6 machines, including 6 PCs. We configure 

one of them as the master and the others as slavers. Each PC has one processor running at 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

Copyright ⓒ 2014 SERSC   149 
 

2.93GHz, 4GB memory, and 1 TB disk. We conduct two types of experiment, one is 

comparing the running-time on full dataset between different number of Hadoop cluster 

machines and the other is comparing the running-time between different ratios of dataset 

when the number of Hadoop cluster machines is set to 6. We introduce the speedup ratio (sr) 

as the evaluation criterion which is defined as: /c ssr T T ，where cT  is the running-time 

of Hadoop cluster with assigned number of machines and sT  is the running-time of Hadoop 

platform under standalone model, namely only incudes the server. In the first experiment we 

increase the number of PCs in Hadoop cluster from 3 to 6 and the corresponding speedup 

variable curves of every core module are shown in Figure 2. In the second experiment we 

sample the dataset into subsets of 30, 60, 80 and 100 percent of the dataset and the 

running-time variable curves of every core module are shown in Figure 3. 

 

 

Figure 2. Speedup variable curves on 
different size of cluster 

Figure 3. Running-time variable 
curves on different ratio of dataset 

From Figure 2 we can see that all the speedup variable curves increase linearly with the 

increase in the size of Hadoop cluster. But when the size of cluster continues to increase to a 

threshold, the speedup will not grow any more, and stabilize at a certain value. The reason is 

that the size of dataset limits the number of MapReduce tasks. When the size of Hadoop 

cluster is greater than the number of tasks, the tasks cannot be fully parallelized to all nodes in 

the cluster, so the speedup will no longer increase. For example SDFR, UCR and CR speedup 

variable curves become stable after the number of Hadoop cluster increase to 4. This 

phenomenon can also be discovered in Figure 3. With the increase of ratio of dataset the 

running-time of every core module does not increase linearly. On the contrary, some modules 

take less time on high ratio of dataset than that on low ratio of dataset. For example SDFR 

module takes less time on 60% dataset than that on 30% dataset. In summary, related 

experiments above have proved that SRSH has good scalability to process the large-scale 

OSN dataset.  

 

6. Conclusions and Future work 

In this paper we discuss the scalability problem existing in recommender systems of OSNs 

and design a social recommender system named SRSH which is based on Hadoop. SRSH 

provides necessary recommendation services for users and can help the target user discover 

favorite information. Especially, we use the MapReduce programming model to parallelize 

core algorithms of SRSH to solve the scalability problem. Related experiments on Hadoop 

cluster platform show that SRSH has good scalability and is qualified to be the recommender 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

150   Copyright ⓒ 2014 SERSC 
 

system in the realistic large-scale OSN. There still exist some drawbacks in SRSH. Therefore, 

in the future we are planning to continually improve every core recommendation modules of 

SRSH and let SRSH run on Hadoop platform more effectively. 

  

Acknowledgements 

This work was supported by the following projects: National High-Technology Research and 

Development Program (“863” Program) of China (Grant No. 2013AA01A212); National Natural 

Science Foundation of China (Grant No. 60970044, 61272067, 61370178); National Science and 

Technology Support Program of China (Grant No. 2012BAH27F05); Natural Science Foundation of 

Guangdong Province of China (Grant No. S2012030006242); Science and Technology Support 

Program of Guangdong Province of China (Grant No. 2012A080104019, 2011B080100031); 

Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. 

2012LYM_0077). 

 

References 
 
[1] J. M. He and W. W. Chu, “A social network-based Recommender System (SNRS)”, Data Mining for Social 

Network Data Annals of Information Systems, vol. 12, (2010), pp. 47-74.  

[2] E. Davoodi, M. Afsharchi and K. Kianmehr, “A social network-based approach to expert recommendation 

System”, Lecture Notes in Computer Science, vol. 7208, (2012), pp. 91-102.  

[3] M. S. Pera, N. Condie and Y. K. Ng, “Personalized book recommendations created by using social media 

data”, In Proceedings of the 2010 international conference on Web information systems engineering, Hong 

Kong, China, (2010) December, pp. 390-403. 

[4] J. Golbeck and J. Hendler, “FilmTrust: Movie recommendations using trust in web-based social networks”, In 

Proceedings of 3rd IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 

(2006) January, pp. 282-286. 

[5] J. Lin. “Brute force and indexed approaches to pairwise document similarity comparisons with MapReduce”, 

In Proceedings of the 32nd international ACM SIGIR conference on Research and development in 

information retrieval, Boston, USA, (2009) July, pp. 155-162.   

[6] T. Elsayed, J. Lin and D. W. Oard, “Pairwise document similarity in large collections with MapReduce”, In 

Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human 

Language Technologies, Columbus, Ohio, USA, (2008) June, pp. 265-268. 

[7] K. Shuang, Y. Yang, B. Cai and Z Xiang, “X-RIME: Hadoop-based large-scale social network analysis”, In 

proceedings of 3rd IEEE International Conference on Broadband Network and Multimedia Technology, 

Beijing, China, (2010) October, pp. 901-906. 

[8] G. J. Liu, M. Zhang and F. Yan, “Large-Scale social network analysis based on MapReduce”, In Proceedings 

of  2010 International Conference on Computational Aspects of Social Networks, Taiyuan, China, (2010) 
September, pp. 487-490. 

[9] P. Sharma, U. Khurana, B. Shneiderman, M. Scharrenbroich and J. Locke, “Speeding up network layout and 

centrality measures for social computing goals”, Lecture Notes in Computer Science, vol. 6589, (2011), pp. 

244-251. 

[10] J. Tang, J. M. Sun, C. Wang and Z. Yang, “Social influence analysis in large-scale networks”, In Proceedings 

of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, (2009), pp. 

807-816. 

[11] J. Travers and S. Milgram, “An Experimental Study of the Small World Problem”, Sociometry, vol. 32, no. 4, 

(1969), pp. 425-443. 

[12] W. Frakes and R Baeza-Yates, “Information Retrieval: Data structures and Algorithms”, Prentice-Hall, New 

Jersey, (1992).  

[13] L. Tang and H. Liu, “Graph mining applications to social network analysis”, Managing and Mining Graph 

Data Advances in Database Systems, vol. 40, (2010), pp. 487-513. 

[14] J. Liu, W. Q. Wang, Z. Y. Chen, X. Z. Du and Q. Qi, “A novel user-based collaborative filtering method by 

inferring tag ratings”, ACM SIGAPP Applied Computing Review, vol. 12, no.14, (2012), pp. 48-57. 

[15] A. Bellogin and J. Parapar, “Using graph partitioning techniques for neighbor selection in user-based 

collaborative filtering”, In Proceedings of the 6th ACM conference on Recommender systems, Dublin, Irland, 

(2012) September, pp. 213-216.     

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

Copyright ⓒ 2014 SERSC   151 
 

[16] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item-based collaborative filtering recommendation 

algorithms”, In Proceedings of the 10th international conference on World Wide Web, Hong Kong, China, 

(2001) May, pp. 285-295. 

[17] B. Rostami, P. Cremonesi and F. Malucelli, “A graph optimization approach to Item-Based collaborative 

filtering”, Recent Advances in Computational Optimization Studies in Computational Intelligence, vol. 470, 

(2010), pp.15-30. 

[18] Flixster dataset, http://www.cs.sfu.ca/~sja25/personal/datasets/. 

[19] Flixster, http://www.flixster.com/. 

 

Authors 

   
Chaobo He, he is an associate professor in ZhongKai University of 

Agriculture and Engineering. He is also a Ph.D. student at School of 

Computer, South China Normal University. His main research areas are 

data mining and social computing. 

 
 
 

 

 
Yong Tang, he is a professor and Ph. D. supervisor in South China 

Normal University. His main research interests include big data, cloud 

computing, collaborative computing and academic information service.  

 
 
 

 

 

 
Zhenxiong Yang, he is a graduate student in South China Normal 

University. His main research interests are social network analysis and 

mining.  

 
 
 
 
 

 
Kai Zheng, he is a senior experimentalist in South China Normal 

University. His main research interests are data integration and 

E-Campus application. 

 
 

 

 

 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 
Vol.9, No.6 (2014) 

 

 

152   Copyright ⓒ 2014 SERSC 
 

 Guohua Chen, he is a post doctor in South China Normal 

University. His main research interests are social network analysis and 

mining.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.




