
International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

Cooperating Peers for Content-Oriented XML-Retrieval

Judith Winter
Institute of Computer Science / Telematics

J.W.Goethe-University Frankfurt, Germany
winter@tm.informatik.uni-frankfurt.de

Oswald Drobnik
Institute of Computer Science / Telematics

J.W.Goethe-University Frankfurt, Germany
drobnik@tm.informatik.uni-frankfurt.de

Abstract
Semi-structured documents formatted with the extensible markup language (XML) are

gaining wide use by a whole range of applications including E-Commerce, E-Business, E-
Science, Digital Libraries (DL), File Sharing, and in the last years especially by applications
for Peer-to-Peer (P2P) systems. P2P architectures have been identified as an efficient means
of ad-hoc collaboration and information sharing among large, diverse, and dynamic sets of
user. However, current P2P search engines for XML-documents lack the use of information
retrieval methods to efficiently search XML collections for relevant information.

This article proposes a search engine for P2P systems that applies an extension of the
vector space model and exploits structural information to compute relevance of XML-
documents, and thus may significantly improve retrieval performance. We concentrate on the
cooperation of peers that perform a distributed query execution through cooperated retrieval
and ranking of dynamic XML documents. The interaction between the participating peers is
based on a structured P2P-network and uses an adaption of the DHT-algorithm Kademlia.

1. Introduction

Peer-to-Peer (P2P) systems are a form of distributed computing that involves a possibly
large set of autonomous computing nodes – the peers. These cooperate to share resources such
as computing power or storage. Unlike traditional client/server systems, peers can decide
autonomously which services and resources to contribute to the system and which ones to make
use of, hence acting as both a client and a server. P2P systems are not centrally controlled, but
self-organizing. Therefore, they bear the potential to realize robust and fault-tolerant systems
that may scale theoretically to unlimited numbers of participating nodes [12]. A P2P-network
can be organized as a structured overlay network, in which the set of cooperating peers act on a
distributed data structure with well-defined operations, e.g. a Distributed hash table (DHT)
supporting joining, leaving, and routing between the peers [4].

Schema-based P2P-networks [12] provide techniques for the lookup of semi-structured
documents such as those modelled with the extensible markup language (XML) [15]. These
networks allow for exact or partial matches and take into account hints about the desired
document structure. So far, however, they do not provide means to compute the relevance of
documents and thus should adapt methods from information retrieval (IR) such as the vector
space model [5].

IR in P2P-networks concerning unstructured documents is an emerging field of research and
deals with locating distributed relevant documents. A P2P architecture for information retrieval

91

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

is proposed in [1]. A survey about looking up data in P2P systems presents search techniques
using DHTs in [3]. Algorithms for IR in P2P benefit from database systems performing
distributed execution of exact queries; classic IR systems ranking retrieved results by relevance;
and distributed systems where DHTs support efficient lookup of objects [10]. An example for a
decentralized non-flooding P2P IR system is described in [13]. Additionally to dealing with
unstructured documents, there are approaches for multimedia retrieval in P2P systems.
However, no solutions for XML IR in P2P exist so far.

Content-based XML-Retrieval (or XML Information Retrieval), i.e. applying information
retrieval methods to the retrieval of XML-documents, takes advantage of the self-describing
structure of XML and can substantially improve the retrieval performance. For example, content
and structure (CAS) queries can enable users to specify what structure the requested relevant
content can have and retrieval units can consist of entire documents or only the most relevant
parts of a relevant document. The aim is to find the smallest retrieval unit that is highly relevant
in terms of specificity, i.e. the extent to which a retrieval unit focuses on the intended topic [6].
The challenges introduced by XML IR include extracting and indexing structural data; ranking
can incorporate both content relevance and structural similarity, which is the resemblance
between the structure given in the query and the structure of the document. The INitiative for
the Evaluation of XML-Retrieval (INEX) provides a platform for evaluating algorithms for
content-oriented XML-Retrieval [6]. However, these algorithms are currently all based on the
classic client/server architecture. An overview of existing approaches can be found in [2].

Our proposal for a P2P search engine for XML-documents is based on an architecture
developed for content-oriented XML-Retrieval in P2P [14]. To the best of our knowledge, no
other approaches yet exist.

2. Peer-based XML-Retrieval

In this section, we propose a search engine that is based on cooperating peers using infor-
mation retrieval techniques to rank XML-documents. We therefore outline the aims of the
search engine, the peer architecture and the interaction between its distributed components.

2.1. Retrieval goals

Our focus is on efficient retrieval at querying time, and therefore we accept the indexing to
be possibly quite exhaustive. The proposed search engine aims for document providers who stay
online for quite a while whereas free-riders who do not contribute documents might participate
by offering resources such as space for the distributed indexes.

The search engine to be built will enable CAS queries, i.e. users will be able to give
structural hints about the desired content. Structural information is therefore regarded in the
ranking model and thus included into the indexing strategy as well. Retrieval results do not
always match a given query exactly, but information retrieval techniques are applied to compute
relevance of retrieval units. These can be entire documents or dynamic documents, i.e. any
relevant sub-tree of a relevant document. The majority of queries are expected to consist of
more than one single query term; this is considered in the indexing and retrieval process.
Common P2P-properties such as scalability, robustness, and load balancing are achieved by
self-organisation mechanisms. Special care is taken to minimize bandwidth consumption and to
enable parallel computing. The index is self-reorganizing, too.

92

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

A major challenge is to distribute all information in an efficient way such that participating
peers can easily access it while cooperating to perform a distributed execution of a given query.

2.2. Peer architecture

The proposed architecture of each peer is shown in figure 1. It is founded on a general
concept for XML search engines in P2P-networks and has been derived from a component-
based architecture for such search engines [14]. The numbered arrows in figure 1 denote the
interaction and data flow between different components of cooperating peers managed by the
P2P-layer. Details about interaction and data flow are explained in section 2.3-2.4 and shown in
figure 2.

INFORMATION
RETRIEVAL

PEER-TO-PEER

1

APPLICATION

Retrieval
component

Ranking
component

Index storage component

P2P component

Document
index

Retrieval unit
index

documents di

query q
results for q

tuple weights for
retrieval units(d)d

Replication

variant of DHT-algorithm
Join Leave Lookup Store

Index Reorg
component

P2P-network

Reorg
index

Graphical User InterfaceResult visualizing Indexing

di � posting list(k)

9 10 4

Indexing
component

XML-Parser

reorg-events

2 3

5

Frequent tuple
index

Key
index

6 7 8

keys ki
containing tuple t

Querying

requests to
reorganize

…

Figure 1. Architecture of a peer

A user accesses the application via a graphical user interface (GUI) which is part of the
APPLICATION-LAYER and manages all interaction between user and INFORMATION RETRIEVAL
LAYER. Interaction includes indexing of XML-documents, querying, and visualizing of results.
All components of a peer cooperate with components of other peers to fulfil these tasks. Lookup
and storage of necessary information as well as the exchange of requests between cooperating
peers are handled by the PEER-TO-PEER LAYER.

2.3. Information Retrieval layer

The Information Retrieval layer is composed of components for indexing, retrieval, ranking,
index storage handling, and reorganisation. These components interact as follows.

The INDEXING COMPONENT performs the indexing process. The XML-documents to be
indexed are parsed such that all contents (in respect of terms) together with their structure are
extracted. We denote a term’s structure as the path from the document root element to the term

93

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

element in the XML-document tree, and express it with XPath [16]. Depending on their
frequency in the global collection, extracted term-structure tuples are merged into sets of tuples.
Each set represents an index key: a key can either consist of a single rare tuple, in which case
the tuple’s frequency in the document collection does not exceed a frequency threshold. Or, the
key consists of a set of frequent tuples if each tuple is frequent but the combination of tuples is
rare. Key frequencies used in the indexing process are requested via the P2P-layer and received
from the global key index. While extracting the keys, term statistics are collected for the
ranking process. These statistics are not limited to static document statistics but include
information about dynamic sub-documents, too; for each document, term statistics for several of
its potential retrieval units are computed. The following information is then distributed via P2P-
layer to corresponding peers for insertion into different indexes:

♦ keys together with their posting lists that contain documents in which the keys appear (
key index),

♦ updated key frequencies (key index),

♦ document IDs with links to the documents’ retrieval units (document index),

♦ term statistics for the retrieval units of each document (retrieval unit index),

♦ frequent terms and their structure with links to keys that contain these tuples
(frequent tuple index).

The indexed documents can be distributed over the P2P-network as well. However, we
propose the option of having full control over the accessibility of provided documents to
guarantee the autonomy of the document provider. This means to store documents locally at the
provider’s peer and to avoid replicas that could be found in the network long after the provider
has chosen to explicitly delete those documents. Each provider then has both full control and
responsibility for the availability of documents.

The RETRIEVAL COMPONENT manages query distribution and result retrieval. A given query q
is split into existing keys, about which information is requested from the global key index, and
the frequent tuple index. For each identified key, the retrieval component sends a request to
retrieval components of other peers. These peers will use their local keys’ posting lists to
redirect the requests to ranking peers holding term statistics for retrieval units of documents
containing those keys. All retrieval units computed as relevant are collected by the querying
retrieval component and evaluated. The ranked results are sent to the GUI for visualization.

The RANKING COMPONENT performs the relevance computing. For a given query q, relevance
is computed in parallel on all peers holding documents potentially relevant for the query. A peer
p’s ranking component can locally access the term statistics of all retrieval units of the
documents assigned to p. Hence, for a query redirected to peer p, the ranking component can
compute the relevance of these retrieval units. The computation is based on the vector space
model, extended by applying structural information of XML elements. It is performed only for
documents that contain at least one key of the query.

INDEX STORAGE COMPONENT: This component allocates information stored in the different
local indexes of a peer and passes it on to requesting local or distributed components.

94

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

INDEX REORG COMPONENT: In addition to implementing self-reorganization mechanisms for
the P2P-network, we propose similar mechanisms for index reorganization. This task is
managed by the index reorg component with information from the reorg index. Reorg-events to
be dealt with include, for example, missing or deleted documents that must be eliminated from
key index, document index and retrieval unit index; keys that have become frequent must be
recombined to rare sets of term-structure tuples and updated in the key index. These events are
notified to the different index reorg components of peers assigned to keys, documents, peers etc.
causing the events. Reorganization of specific local indexes will be performed periodically or
when thresholds are exceeded.

2.4. Peer-to-Peer layer

The Peer-to-Peer layer handles all tasks necessary for the cooperative execution of a query as
follows.

Information such as keys, posting lists, document IDs, retrieval units, term statistics and
frequencies are distributed over the P2P-network and stored on their assigned peers. For the
assignment of keys to peers, the hash values of a key’s terms are used without hashing their
structure. This guarantees that similar keys with identical terms but different structures are
stored on the same peer. As a consequence, redundant redirected requests can be reduced or
avoided by reducing the number of peers sending requests for identical documents; additionally,
the retrieval component can locate similar keys easily on the same peer.

Due to an efficient organization of the P2P-network with a DHT algorithm, e.g. derived from
the Kademlia-protocol [7], lookup of the stored information can be performed in O(log(N)),
with N being the number of participating nodes.

If a peer joins the network, the existing indexes will be redistributed to include the new peer
so as to achieve load balancing. If a peer leaves the network, all its data will be redistributed
among the remaining peers.

If a peer leaves unintentionally, e.g. due to network problems, its data will be recovered and
redistributed using replicas stored on other peers. Different replication strategies can be applied
for the different indexes. For instance, losing posting list information of keys is critical as this
implies the loss of connections between terms and documents. In contrast, losing weights of
retrieval units only reduces the specificity of the results (they may become too big or too small)
as long as some retrieval units of each document still are accessible. Thus, the key index should
be secured by a higher replication factor than the retrieval unit index.

2.5. Interaction and data flow

The interaction between IR components of cooperating peers managed and transferred by the
P2P layer as explained in the previous sections is shown in figure 2. The numbers refer to the
arrows in figure 1.

95

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

1. in: receive frequency(k) or frequency (t) for all k, t � d
2. out: frequency(tuple t)
3. out: frequency(key k)
4. out: send keys, document IDs, term statistics,

 retrieval units, frequencies etc. to store in index
5. in: store document IDs, keys, term statistics etc. in index
6. out: check, if tuple t � q is key

in: frequency(t)
7. out: request results for keys (ki � q) and (kx similar to ki)

in: results for q
8. in: request results for key k

out: request results for documents di � posting lists(k)
9. in: request results for d

out: results for retrieval units(di)
10. in: messages about reorg-events such as data loss, key frequency changes etc

out: requests to reorganize index

(q = query, k = key, d = document, t = tuple)

Figure 2. Interaction and data flow details

3. Cooperative retrieval process

In this section, the distributed retrieval by cooperating peers is illustrated. We outline the
indexing and ranking model on which the retrieval is based.

Large communication overhead and high bandwidth consumption are main problems for
information retrieval in a distributed environment. Expensive joins of long posting lists can
consume much computation time and bandwidth. We thus aim at reducing the number and size
of messages sent between peers as well as the number of calculations performed at querying
time. In particular, we consider that at least 85% of all queries are multi term queries [7], and
therefore use pre-joint term-combinations for indexing and retrieval.

3.1. Indexing and ranking model

Instead of single term indexing, we apply a key-based indexing strategy that has been derived
from [9] and extended by structural information [14]. For each index term, a tuple (term,
structure) is stored in the index for each of the term’s structures. If the tuple is rare, it can be
used as a key and will be stored in the key index together with its posting list. If the tuple is
frequent, we regard it as too unspecific and require it only be used in multi term queries, i.e.
specified by further query terms. Frequent tuples are recursively combined with other frequent
tuples until the new tuple combination is rare, hence specific, and can be stored as a key. The
combination of tuples is limited to those occurring close to each other in one document in order
to achieve coherence between the tuples of the same key. For each frequent tuple, a link to each
key that contains this tuple is created in the frequent tuple index; correspondingly, it is easy to
find a key covering a given tuple. The frequency of a key is limited by a threshold PLmax;
posting lists will hence be limited to this threshold, too. We obtain a key index that is much
longer than a single term index but has much shorter entries with a maximum size of PLmax.

96

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

<document1>
 <fruit>
 apple
 </fruit>
 <goodFruit>
 <fruit>
 apple
 </fruit>
 </goodFruit>
 <month>
 July
 </month>
</document1>

Tuple frequency posting list
July, /month 1 doc1(1)
July, /name 1 doc2(1)
apple, /goodFruit/fruit 1 doc1(1)
apple, - 2 doc1(2)
apple, /fruit 2 doc1(2)
July, - 2 doc1(1),doc2(1)
Peter, - 2 doc2(2)

Highly Discriminative Keys posting list
{(July,/name)} document2(1)
{(July,/month)} document1(1)
{(apple, /goodFruit/fruit)} document1(1)
{(July,-), (apple,-)} document1(1)
{(July,-), (apple,/fruit)} document1(1)
{(July,-), (Peter,-)} document2(1)
{(apple,-), (apple,/fruit)} document1(1)

 <document2>

<name>
 July
</name>
Peter, Peter!

</document2>

Example 1. Extracting keys from documents
Example 1 shows the construction of the key index for two documents. Terms are indexed

with all their structures including indexing without tags (-). The latter case is important, as a
user is not always able or willing to give structural hints in a query. However, terms indexed
without structure have an advanced probability of being frequent. In example 1, threshold PLmax
was set to 1 (which is of course unrealistically low), so that no posting list will be greater than 1
and all tuples appearing more than once will be regarded as frequent. This is true for (July,-),
(Peter,-), (apple, /fruit), and (apple,-). Those frequent tuples that appear close to each other in
the same document are combined such that they become rare (frequency of 1).

We apply a ranking model that is an extension of the vector space model [14]. The relevance
computing takes into account structure similarity between the structure expressed in a given
query and the structure of a relevant document. Retrieval units are dynamic documents, i.e. they
can be a relevant document or any relevant sub-tree of a document. For the calculations, we use
statistics such as the term-structure weights of retrieval units for all documents.

3.2. Distributed retrieval

Indexing and ranking as outlined above use distributed data but could also be performed on a
client/server architecture. We now describe, how retrieval components in a P2P-network can
cooperate to perform retrieval and ranking in parallel by sharing storage and computation
power.

The retrieval component of a querying peer pq manages the distribution of relevance ranking
to cooperating peers, collects and evaluates their results, and prepares the results for
presentation in the GUI.

97

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

For a given query q with query tuples (term, structure), peer pq first checks with the key
index, if the query tuples in total form an existing key. This would be the optimal case, as the
posting lists for the query would have already been computed. The query therefore would be
routed to the peer pk assigned to this key and located by hashing the key’s terms. Peer pk has
one posting list for each structure of the key terms. The posting lists of all structures with
similarity to the given query structures would be merged, using structure similarity functions
and mechanisms as proposed in [14]. The query would then be redirected to each peer pd
responsible for at least one document of the merged posting list, together with parts of the
posting list (at least one document entry per peer). As each document is assigned to exactly one
peer pd, messages are sent to at most PLmax peers for each key ki and each key kix similar to ki.
The number of these messages can be significantly reduced by summarizing requests regarding
identical documents and target peers. Peers pd will be located in the P2P network by the hash
value of the document ID, which is the unique document location, e.g.
\\host\path\documentname). Each peer pd will locally compute the relevance of all retrieval
units that belong to the received part of the posting list, using statistics stored in the local
retrieval unit index. IDs of all retrieval units with high relevance will then be sent back to the
retrieval component of the querying peer pq together with additional information such as
information about the containing document, first words of the retrieval units, relevance value
etc. Peer pq will collect the results of all ranking peers pd and merge them. A list of the topmost
results, ordered by relevance, will appear in the GUI.

What if the given query tuples do not form an existing key? In this case, the query would be
split recursively into tuple sets that are existing keys, starting with sets of size |query terms|-1
as key candidates. For each located key, the procedure described above would be executed. For
the worst case of key size=1, we expect 3.5 requests for keys per query, as this is the average
query size [7].

Figure 3 illustrates the distributed execution of a query. Dashed arrows denote data flow
between components; solid arrows denote the locating of peers that are assigned to the item
(key or document) attached to the arrow. Posting lists are denoted by pl. Query q can be split
into keys k1, k2, and k3. For each key ki, a request is sent to the retrieval components assigned to
ki, which in turn sends requests for each document of the posting list of each received key plus
each key that is similar to a received key. In figure 3, k31and k32 are assumed to be similar to
k3. The ranking component of peer pd4 receives a request for document d4 from k32’s posting
list and returns relevant retrieval units for d4 to the querying peer pq.

GUI

peer pq

retrieval
component

pq

retrieval
component

pk3

ranking
component

pd4

results for retrieval units(d4)results for q

… …

k3�q

k1�q

k2�q

…

…d1�pl (k3) d2�pl(k3) …

d3�pl(k31
)

(pq,q,k3) (pq,q,d4)

d4�pl (k32
)

q

Figure 3. Distributed query execution

98

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

If set size = 1 is reached in the process of splitting q into keys, and a query tuple t still
cannot be assigned to a key, a list of all keys that cover this tuple will be retrieved from the
frequent tuple index and sent to the GUI. The user can then choose which one of the keys
specifies tuple t best, or decide to drop it due to its non-specificity. There is the option of
retrieving all documents containing t, as a common search engine based on single term indexing
would do. For this, the posting lists of all keys containing this term are merged to form a list of
these documents. The result set, however, might become uncomfortably large.

In example 1, a user looking for information about the month of July would directly receive
retrieval units from document1, if he were to execute a query
q = {(July, /month)} or a query with a similar structure such as {(July, /calendar/month)}. He
would receive document2 only if similarity between the indexed structure /name and the query
structure /month is detected. This could be the case when using an ontology that indicates a
connection between words like “name” and “month-name”. If the user executes q = {July,
Sasha}, and (Sasha,-) was an additional key with posting list = {document4}, the retrieval
component would not find a direct key for q. The query would therefore be split into sets of
query tuples, and those be checked. For (Sasha,-), retrieval units from document4 would be
returned if they are sufficiently relevant to the entire query q. For (July, -), which is not a key
since its frequency at indexing time exceeded threshold PLmax, the user would be requested to
choose a more specific expression by adding a more specific structure to the term or amending
it with more terms. The user could choose from the following list: {structure of July: /name,
/month; amending terms: apple, Peter}. Depending on the user’s choice, retrieval units from
either document1 or document2 would be returned. If the user does not make a choice, either
“July” will be deleted from q, or retrieval units from both document1 and document2 will be
returned. If the set of specifying structures or amending terms recommended to the user is too
large, it can be reduced by using clustering, filtering or caching strategies.

4. Future work

We are currently in the process of implementing SPIRIX, a search engine for P2P
information retrieval of XML-documents that uses the proposed techniques and algorithms.
Experiments will concentrate on evaluating several computation alternatives for the ranking
process. We will compare different ranking formulas by evaluating with the INEX test
collection. Moreover, we are going to analyze theoretically estimated and experimentally
confirmed performance measurements such as communication overhead, storage and bandwidth
consumptions as well as response and indexing times.

For the underlying P2P-layer, an adapted Kademlia-variant is applied that we currently
develop in order to optimize it for XML Information Retrieval. Furthermore, the developed P2P
protocol will collect peer statistics such as response time and latency so that a peer score can be
computed and influence the decisions, which peers will participate in answering a given query.

Executing queries involves splitting the query in existing keys that cover all query tuples,
and requesting key and tuple frequencies from the P2P-network. Consequently, this task needs
to be optimized in terms of amount and size of messages sent between peers. Appropriate
filtering methods and a well chosen caching strategy can be developed to this end.

Future work will also include further parallelization of the ranking algorithm. In addition, we
plan to parallelize the indexing that has previously used distributed information but is
performed sequentially.

99

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

5. References

[1] Aberer, K.; Klemm, F.; Rajman, M.; Wu, J.: An Architecture for Peer-to-Peer Information Retrieval.

Workshop on Peer-to-Peer Information Retrieval, 2004.
[2] Amer-Yahia, S.; Lalmas, M.: XML Search: Languages, INEX and Scoring. SIGMOD RecVol. 35, No. 4,

2006.
[3] Balakrishnan, H; Kaashoek, F.; Karger, D.; Morris, R.; Stoica, I.: Looking Up Data in P2P Systems.

Communications of the ACM, Vol. 46, No. 2, 2003.
[4] El-Ansary, Sameh; Haridi, Seif: An Overview of Structured Overlay Networks. In: Theoretical and

Algorithmic Aspects of Sensor, Ad Hoc Wireless and Peer-to-Peer Networks, CRC Press, 2005.
[5] Frieder, O.; Grossmann, D.: Information Retrieval. Algorithms and Heuristics. 2nd Ed., Springer, 2004.
[6] Malik, S.; Trotman, A.; Lalmas, M.; Fuhr, N.: Overview of INEX 2006. In: Proc. of the Fifth Workshop of

INEX, Dagstuhl, Germany, 2007.
[7] Maymounkov, P.; Mazieres, D.: Kademlia: A peer-to-peer information system based on the xor metric. In

Proceedings of IPTPS02, Cambridge, USA, 2002.
[8] Pass, G.; Chowdhury, Abdur; Torgeson, Cayley:

A Picture of Search. First International Conference on Scalable Information Systems, Hong Kong, 2006.
[9] Podnar, I.; Luu, T.; Rajman, M.; Klemm, F.; Aberer, K.:

A Peer-to-Peer Architecture for Information Retrieval Across Digital Library Collections. ECDL'06,
Alicante, Spain, 2006.

[10] Risson, J.; Moors, T.: Survey of research towards robust peer-to-peer networks – search methods. Technical
Report UNSW-EE-P2P-1-1, Australia, 2004.

[11] Robertson, S.; Zaragoza, H.; Taylor, M.: Simple BM25 extension to multiple weighted fields. In: Proc. of
CIKM’04, ACM Press, New York, USA, 2004.

[12] Steinmetz, R.; Wehrle, K. (eds.): Peer-to-Peer Systems and Applications. LNCS No. 3485, Springer, 2005.
[13] Tang, C.; Xu, Z.; Dwarkadas, S.: Peer-to-Peer Information Retrieval Using Self-Organizing Semantic

Overlay Networks. In: Proc. of SIGCOMM’03, Karlsruhe, Germany, 2003.
[14] Winter, J.; Drobnik, O.: An Architecture for XML Information Retrieval in a Peer-to-Peer Environment.

ACM PIKM2007 at ACM 16th Conference on Information and Knowledge Management (CIKM 2007),
Lisbon, Portugal, 2007.

[15] World Wide Web Consortium: Extensible Markup Language (XML) 1.1 (Second Edition). W3C
Recommendation, 16. Aug. 2006, http://www.w3.org/TR /2006 /REC-xml11-20060816/.

[16] World Wide Web Consortium: XML Path Language (XPath) Version 1.0. W3C Recommendation, 16. Nov.
1999, http://www.w3.org/TR/xpath.

100

http://eprints.sics.se/237/
http://www.informatik.uni-trier.de/%7Eley/db/journals/lncs.html
http://www.w3.org/TR/xpath

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

Authors

Judith Winter is a research assistant in the Institute of
Computer Science, Group of Telematics, at the J.W.Goethe-
University, Frankfurt, Germany. Her main research interests
include Peer-to-Peer systems, distributed Information Retrieval,
and XML Information Retrieval. The focus of her PhD thesis is to
develop a P2P search engine for XML Information Retrieval. .
http://www.tm.informatik.uni-frankfurt.de/winter

Oswald Drobnik is a full professor in the Institute of Computer

Science and head of the Telematics Group at the J.W.Goethe-
University, Frankfurt, Germany, since 1988. From 1981-1988 he
was professor with Karlsruhe University, Germany. Current
research interests include distributed and parallel systems,
information retrieval, and mobile computing. .
http://www.tm.informatik.uni-frankfurt.de/Plone/Mitarbeiter/drobnik

101

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

102

	Cooperating Peers for Content-Oriented XML-Retrieval
	Abstract
	3.2. Distributed retrieval
	

