
Fuzzy Event Correlation Algorithm in Wide

Telecommunication Networks

Jacques-H. Bellec and M-Tahar Kechadi

School of Computer Science & Informatics,

University College Dublin, Belfield, Dublin 4, Ireland.

Jacques.Bellec@ucd.ie, Tahar.Kechadi@ucd.ie

Abstract

This paper presents an efficient clustering algorithm for faults identification in large

telecommunication networks. The alarms and faults in telecommunication networks present

some interesting characteristics like storm and cascade of events. For instance, a single fault

may result in a large number of alarms, and it is often very difficult to isolate the true cause

of a fault. Our algorithm is especially designed for the event correlation problem taking into

account comprehensive information about the system behaviour. Our technique is tested and

compared with some available clustering algorithms on some samples from both simulated

and real data from Ericsson’s network.

1 Introduction

Telecommunication networks are growing in size and complexity at a very rapid rate, and therefore
their management is becoming more and more complicated. Each network element can produce a
large amount of alarms when a fault occurs. More precisely, when a fault occurs, network devices or
components can send messages (alarms) to describe the problem that has been detected. But
they only have a local view of the fault, and therefore cannot describe the fault, but just its
visible consequences. Moreover, these alarms are very different due to various types of network
components involved (such as new equipments, software updates, etc.). The telecommunication
network management system is responsible for recording the alarms generated by the network nodes
or components and presents them to the operator. However, in large systems, due to the large volume
and the fragmented nature of the information contained within these alarms, it is not always possible
to locate and solve the faults within a reasonable time. In addition, due to the complex nature of
these networks, a single fault may produce a cascade of alarms from the affected network elements
and also, a fault can trigger other faults, for instance in the case of overloading. Even though
failures in large communication networks are unavoidable, quick detection, identification of causes
and resolution can make systems more robust, more reliable, and can ultimately increase the level
of confidence in the services that they provide [1].

Alarm correlation is a key issue in a network management system as it is used to determine
the faults’ origin, and to filter out redundant and spurious events. The alarm correlation systems
generally combine causal and temporal correlation models with the network topology. The efficiency
and robustness of the models used and the algorithms developed vary from system to system but none
of them have yet succeeded to provide a good solution to this problem [2]. In general, data mining
techniques are well adapted for analysing collections of data and extracting hidden information.
However, the complex nature of the data generated by a wide telecommunication network and the
lack of real information contained in an alarm, make unsuitable most of the existing techniques [3].

1

In [4], we introduced the Behavioural Proximity Technique (BP), which is a hierarchical 3-stage
process. The first stage is the pre-processing phase, which includes cleaning and filtering. This is
followed by the event recognition process where alarms are gathered according to their behaviour
to form events. Finally, these events are correlated to form clusters using an efficient algorithm. As
a result, only the important seeds of global events are presented to the network operator, to help
identifying and solving the faults in the network.

Here, we propose a new clustering algorithm to deal with the events generated by telecommuni-
cation networks and mainly to deal with some issues in the alarm datasets. It is called Fuzzy Event
Correlation or FECk. The algorithm is characterised by a parameter k; the number of clusters
calculated according to the most relevant alarms. In the pre-processing phase, alarms are gathered
into events, which are then evaluated according to a value-function V (ei), where ei is an event. The
idea is to use the events that have higher value-function V (.) as root of the event correlation. It
incorporates a fuzzy core, which provides more flexibility to the algorithm.

The paper is organised as follows. In the next section, we describe the fault recognition problem
with its constraints and requirements. In section 3, briefly we present our alarm correlation frame-
work, called Behavioural Proximity. Then, we describe our new clustering algorithm, highlighting
its key features. In section 4, we present some experimental results and study the performance of
our algorithm compared with very popular and widely used algorithm. Our results are obtained on
both simulated and real-world datasets. We conclude in section 5.

2 The Fault Recognition Problem

In the past, the network fault management task was performed by human experts. The size and
complexity of today’s networks, however, have heightened the required level of human intervention
so much, that it makes it prohibitive. Therefore many systems have been proposed that integrate
event correlation engines to address this issue [5, 6]. The problem of an automatic identification of
correlated events has been tackled from various perspectives with different techniques, but none of
them has succeeded to achieve a good level of satisfaction for both the network operator and the
users [7]. This problem has been proven to be NP-complete and different heuristics methods that
have been used have not performed reasonably well.

Many challenges have to be taken into consideration when solving this problem. In the following
we present three key issues in modern networks. Firstly, wide networks are rapidly evolving with
heterogeneous hardware and configuration policies, making it very hard to get a global view of
the network topology of interest. So topological information is partially known. Secondly, the
information contained in the alarms is often incomplete or misleading. The alarms are generated by
the components in error-state affected by the presence of a fault nearby, but that error-state usually
can have several causes or a fault can generate a chain reaction of faults and therefore masking
the original cause. The message embedded in an alarm is not always explicit about the fault; it
just records some local information about the parent device or component. Moreover, the fault
can be categorised as unknown by the components as only few error messages are possible. In this
case it does not provide any information about the nature of the fault. Sometimes the network
can become overloaded due to some unsolved faults or/and a peak of activity. Some alarms can
be destroyed or lost in the network and therefore they are not recorded in the log files. Thirdly,
the presence of heterogeneous network components (hardware or software) creates the problem of
how the alarms should be interpreted, as different devices have different configuration policies and
different ways of issuing alarms for the same abnormal events. For instance, some sub-networks
are configured with some particular policies, so they can produce different alarm messages for the
same fault. All these issues introduce more difficulties in analysing and mining historical data
of these networks. They aggravate the problem of noisy and incomplete datasets. Therefore, a
good fault recognition technique should have a very efficient pre-processing and cleaning phase
and robust mining/analysis phase. In this case, a more appropriate output of a fault recognition
technique would be a set of clusters representing highly correlated events of alarms and giving

some information about some hypothetical faults. A good clustering technique should find clusters
that provide enough information about the origin of the faults to the network operator. The main
objective is to build some well-defined clusters within a reasonable short-time period and to provide
more accurate results if required.

Temporal data mining techniques have different constraints and objectives [8, 9, 10]. They are
usually dealing with mining large sequential datasets, which means that the data is ordered with
respect to some attribute or dimension. The ordering among the events and data values is so
important and crucial in data modelling. For example, fault datasets consist of a recorded series of
time stamped events. However, the time is not the only dimension that can be used for indexing the
data in alarm network data as the notion of time is not global (which means the time is not exactly
the same in each network node). Other dimensions are required to extract a global ordering, which
is usually based on some complex relationships between alarms’ behaviour and network faults and
topology.

Existing Model-based approaches aim to represent the interrelations between the components of
the network [11], or the causal relations between the events in the network [12], or a combination of
the two [13]. Unfortunately, as the network topology is not known, these models are not suitable for
the requirements of the problem at hand. Rule-based [14] and code-based [15] systems also model
the relations between the events specifying the correlations according to a rule-set or codebook.
Rules can be generated automatically and must be validated by experts. Other techniques, such as
neural networks [16] or decision trees, have also been applied to this problem. These approaches vary
in the level of expert knowledge required to train the system. Some neural networks, for example,
do not require any expert supervision but need to be previously well trained.

In [17] they used association rules and frequent episodes to discover alarm patterns, which were
subsequently used in the development of alarm correlation systems. However, their methods do
neither capture the notion of alarm similarity nor the uncertainty of the network. Furthermore,
association rules and frequent episodes have the drawback of generating many non-interesting and
redundant alarm patterns [7].

Alarm clustering approaches aim to discover the hidden patterns in partitioning the data into
several non-predefined groups [6, 18]. Many clustering algorithms have been defined to deal with
general data. They can be hierarchical, partitional or mixed. Some of them like CURE [19] and
BIRCH [20] have a complexity in time and space of O(n). The number of clusters can be static
(given as input) or dynamic (calculated automatically). The quality of the clustering varies from an
algorithm to another when dealing with non-spherical shapes as shown in [21]. To represent a cluster
in the partition process, one or several points can be chosen. The policy about the representation
can deeply influence the quality of the results. For some algorithms like k-mean and k-medoids, k
scattered points must be initially chosen among the data for the partition. Unfortunately, whereas
the initial selection of medoids is a key step of the whole procedure, it is randomly done in most of
applications, and often produces poor results. Multiple runs can address this problem in selecting
more accurately the best centroids, but it increases dramatically the complexity of the algorithm.
Some algorithm can be quite hard to tuned up as they require many input parameters. Their
optimisation can only be achieved after many runs which is a major drawback when in presence
of a time constraint. Some of the algorithms like CURE and DBSCAN [22] handle outliers well,
identifying them from other data points. But the outliers can be interesting as they do not always
represent noise. In partial clustering, outliers can be irremediably lost, even if they are interesting
for the application. The requirements of our problem is not fulfilled with the available techniques.
So we need to imagine a new hybrid technique which takes the best of each of them and combines
the skills to achieve good performance. In the next sections, we will present our framework called
Behavioural Proximity and explain the effectiveness of our new event-clustering algorithm.

3 The Behavioural Proximity Approach

The Behavioural Proximity Approach is developed for fault management in telecommunication
networks. It takes as input any datasets describing the alarms generated by the network components
in error-state over time, and it returns a set of critical alarms that should correspond to critical
faults. As shown in Figure 1, this technique is composed of four important steps. In the next
sub-section, we describe the first two steps as they are part of part of the data pre-processing. The
following sub-section is dedicated to the next last two steps, which are the heart of this technique.

3.1 The Pre-processing Phase

The raw datasets contain all the log alarms produced by the network management system. They
may contain many duplicates, alarms of wrong format, delayed alarms, etc. The first step consists
of eliminating all wrong formats and duplicates. This will only improve the data quality as their is
often large. The remaining alarms are then grouped into sets. Each set contains alarms that share
the same content. The content of an alarm is the message and the source id.

Some sets contain alarms that occur periodically. So, we introduced the concept of periodic and
aperiodic alarms. This is very important for measuring the homogeneity of a set, as well correlated
alarms (homogeneous set) can give valuable information about a fault. We consider that each set
represents the abnormal behaviour of a device or component during a certain period t. A set of
periodic alarms is aggregated into what we call an event. For the set containing aperiodic alarms,
another treatment is required before grouping them into events. We use the Score-Matching (SM)
algorithm to extract periodic alarms from each aperiodic set [4]. This process consists of either
inserting some missing alarms to form periodic set or divide the set into sub-sets of periodic alarms.

At this stage all the alarms are grouped into events. Each event has a representative alarm and
some other parameters such as the period, attributes inherited from the alarms, etc. So, we consider
that each event ei has a set of m attributes {t1, t2, · · · , tm} and we introduce an evaluation function
V (ei) to assign to an event ei a value based on its set of attributes. This function can be formalised
as follows:

V (ei) =

m
∑

j=1

αjωj (1)

where ωj is a score (value) of the attributes tj , usually defined by the network operator and αj

is a scaling factor defining the weight of a given attribute within the whole set of attributes. There
are attributes with their relative scores which are common to all the telecommunication networks
as shown in [3], but they can be updated to include some particular requirements. The next goal
is to determine whether an event is critical or not. So, we use the notion of fuzzy sets to determine
this. More precisely, we use a fuzzy membership function φ() to get the corresponding confidence
value of an event. φ() is based on the S-function [23] where a, b, and c correspond to the minimum
score, the average score and the maximum score respectively.

φ(ei) =























0 V (ei) ≤ a

2
(

V (ei)−a

c−a

)2

V (ei) > a and V (ei) ≤ b

1 − 2
(

V (ei)−c

c−a

)2

V (ei) > b and V (ei) ≤ c

1 V (ei) > c

(2)

3.2 FECk Algorithm

The goal of this phase is to cluster correlated events. Many clustering algorithms are available in
the literature and each of them has some advantages and disadvantages depending on the domain
and the constraints applied. We present here some of the requirements for a clustering algorithm

Data Preparation

Event Recognition

Event Correlation

Cluster of Events

Rules Discovery Process

Update

Network Operator

Visualization

Evaluated Clusters

Raw Alarms

Figure 1. The Behavioural Proximity Technique

that can be used in our system. These requirements are fast response time and high quality of
the results. We need a fast algorithm to allow the operator to make quick decision on the location
and maintenance of the faulty components. The quality of clustering affects directly the decision
of correctly identifying the type of the fault and therefore the network component to be repaired
or replaced. So, the operator needs a few high quality clusters. In other words, a cluster has to
present enough information by its content to be relevant and useful for the network operator.

The proposed algorithm is called Fuzzy Event Correlation (FECk). It takes into considera-
tion both the application and the system requirements; specific behaviour of the alarms, network
topology, etc. In the following, we present the core of the algorithm given below (1).

The algorithm has three main steps. The first step, line 4 to 8, identifies the most important
events. They are called primary events and they are considered to be independent and not related.
The primary events are determined using a certain confidence value α, which is fixed by the user. Let
A be the number of primary events and let pi be the ith primary event. Note that A corresponds to
the minimum number of clusters that can be returned by the algorithm. The second step constructs
the clusters around the primary events. The algorithm calculates the correlation between each non-
primary event and every primary event. A non-primary event is assigned to a cluster of a primary
event with which it has the highest correlation. The correlation function ψpi

() is a membership
function of an event being in a cluster of the primary event pi.

ψpi
(ej , ek) = S(Mh(ej , ek)) (3)

where Mh(ej , ek) is the Mahalanobis distance.
The second step is the clustering phase from line 14 to 20. Non-primary events are gathered with

their closest primary pi event according to the correlation function ψpi
(). If a non-primary event is

not in the neighbourhood of any primary event then it is put in a bin-cluster. The correlation
function ψpi

is the membership function of the primary event pi and defines its neighbourhood. In
other word any non-primary event which is located in the neighbourhood of a primary event pi will
be part of the cluster of pi. Note that an event cannot be in two different clusters. If an event is
equally correlated to two primary events, it will be assigned to only one of them.

The third step of the algorithm, line 22 to 27, deals with the weak correlation problem. For
instance if an event is correlated to a primary at best at 10%, either it is an outlier or it is a member
of a cluster with a different density. In the latter case, the algorithm is executed again with these
non-assigned events located in the bin-cluster. We consider only two passes to handle dense and
sparse data, but it can be extended to multiple passes if needed, namely if the size of bin-cluster
is still large. This way, it overcomes the problem of different overlapped densities which is a crucial
problem in DBSCAN. After the second round, the remaining events in bin-cluster are clustered
into smaller bin-clusters.

The number of clusters k produced by the algorithm is the sum of all the identified primary

Algorithm 1 FECk Algorithm ;

1: INPUT:
2: E = {e1, e2, ...en}: Event Set, GDoT α,
V (ei): Value-function V (ei) = si // scores each event
φ(si): Fuzzy value-function of the primary set ω,
ψck

(ei, ej): Fuzzy correlation function of two events ei, ej in ck,
3: OUTPUT: C: Cluster Sets
4: for all ei ∈ E do

5: if φ(V (ei)) > α then

6: ei ∈ ω, // assignment to the primary set
7: end if

8: end for

9: initializecluster(ω)// cluster initialisation
10: k ≥ |ω|, // k clusters will be created at least
11: for all ei /∈ ω do

12: maxCorr = 0
13: for all ej ∈ ω do

14: if ψ(ei, ej) > maxCorr then

15: l = j
16: maxCorr = ψ(ei, ej), //correlation phase
17: end if

18: end for

19: if ψ(ei, el) ≥ α then

20: ei ∈ Cl

21: else

22: ei ∈ TempSet //weak correlation
23: end if

24: end for

events plus the number of unclassified events. We have k =
∑p

n |ω| + |bin-clusters|.
As stated above, we assume that there is no correlation between primary events. This has

two important advantages: the first advantage is the complexity. In fact with n events the cost
to calculate all distances between each pair of events is of complexity O(n2) which is too high
when considering several hundreds thousands of events. The second advantage is that the relevant
representatives, which one of the biggest problems with some clustering algorithms are efficiently
determined. This is done once, at the beginning of the algorithm. In addition, if there is a correlation
between two primary events, then the two generated clusters will be very close and the user can
easily identify them. This will not affect the quality of the results. The detection of correlated
primary events will be dealt with in the future.

To illustrate how the FECk algorith works we consider the example given in Figure 3.2. The first
step is to identify the main events by using a score function V () followed by a fuzzy function φ().
The events with scores that are above a minimum confidence value are chosen to be primary events
(presented in solid circles in the Figure). Secondly, the correlations are calculated between any pair
(primary - non-primary) events. Any non-primary event which is located within the neighbourhood
of a primary event will be part of that cluster; (as shown in the Figure). Note that some non-primary
events are not located in the neighbourhood of any primary event. These events are considered to
be noise or outliers and, therefore, they are are gathered in bin-cluster. The third step of the
algorithm will partition the bin-cluster into smaller sub-bin-clusters if needed.

We can notice that FECk shares some common features with PAM [24] and DBSCAN. Moreover,

Figure 2. Example with a small set of events

the pre-processing phase can directly affect the quality of the results generated by our algorithm.
The main features of the algorithm are as follows:

1. It uses fuzzy set theory to group the events and it produces a complete partition of the data.
The number of groups or clusters (k) is generated automatically. It outputs critical clusters.

2. It handles outliers by using a minimal correlation degree calculated from the distribution of
all available correlations.

3. It overcomes the sparse and high-density data problem. It has a complexity of O(kn) with k
very small compared to n, which is the number of events.

In the next section, we will present an evaluation of our algorithm using simulated and real data
sets.

4 Performance Evaluation

This section presents the performance evaluation of FECk with simulated and real-world data
collected from a wide-area telecommunication network. To use two traditional metrics to measure
the accuracy of the clusters obtained by this technique. These measures are as follows:

Recall =
Relevant Events clustered together

Total Events that should be clustered
(4)

Precision =
Relevant Event clustered together

Total Events clustered together
(5)

The FECk algorithm is compared with DBSCAN, which is widely used in many different domains
with a various types of data. Moreover, DBSCAN can handle noise and outliers construct clusters of
arbitrary shapes and sizes. It has better results than K-means or CLARANS [22]. Its performance
has also been improved in [25, 26] but it still has high complexity; O(n2). Moreover, some of
its parameters are not easy to set, such as eps; the maximum radius of the neighbourhood and
MinPoint; the minimum number of points in an Eps-neighbourhood of that point.

As mentioned above, we evaluated our technique on two types of data: simulated data and
real-world data. The main reasons of using a network simulator as well as real-world data are

twofold: 1) the ability to simulate any network behaviour as the simulator has been validated
through real-world data, and 2) the validation of the technique by stressing it with many different
scenarios of network failures. The first type of data is generated by simulating the behaviour of
a telecommunication network. The generated data represents the activity of 6 main areas of a
network, each of them containing up to 7 cells, during a time window of 2 hours. 4 types of alarms
are used with different levels of importance. The simulator takes into account different network
parameters, such as maintenance period, life cycle of a hardware component, some statistics about
the software failures and their consequences, alarm types and content, etc.

Network

Nodes

Time

Figure 3. Composition of clusters generated by DBSCAN with simulated data

Time

Network nodes

Figure 4. Composition of clusters generated with FECk with simulated data

Precision of the clustering algorithms

0

0.2

0.4

0.6

0.8

1

1
 2
 3
 4

clusters

p
re

ci
si

o
n

dbscan

FECk

Figure 5. Precision of FECk and DBSCAN on simulated data

Recall of the clustering algorithms

0

0.2

0.4

0.6

0.8

1

1
 2
 3
 4

Clusters

R
ec

al
l
 dbscan

FECk

Figure 6. Recall of FECk and DBSCAN on simulated data

Figure 3 shows the clusters composition generated by DBSCAN for one of the simulated telecom-
munication sub-networks that produced 4800 alarms in a time window of 120 minutes. DBSCAN
was setup with eps and minPoint equal to 1.7 and 2 respectively. From the same Figure, we can see
that 12 clusters were identified. We can notice that the clusters (1, 3, 5, 7) were generated with only
3 elements even thought there were some bigger clusters in their neighbourhood. If we look at the
composition of these clusters we can see that they are made of telecommunication error messages.
In other words they are not relevant for the network operator. They are considered as noise and
therefore they are ignored. However, the user intervention is required to check those clusters and
make a decision weather they are critical or not.

Figure 4 presents the clusters composition for the same simulated data set using FECk. Our
algorithm was setup with a degree of confidence of 90%. The algorithm returned 4 clusters and we
can notice that some cluster’s compositions are quite similar to those of DBSCAN, (See DBSCAN’s
clusters number (4) and (2) and FECk’s clusters number (0) and (2) respectively). The DBSCAN’s
results seem to suffer from over-partitioning due to different densities of events. The FECk’s results
are better as they are insensitive to the density distribution of the events. It is clear that the FECk

algorithm is more focused on very important clusters which governed by the critical events. This is
not the case for the DBSCAN algorithm.

However, we need also to evaluate the compactness and the accuracy of the clusters. We use
two functions similar to recall and precision used in information retrieval. The results are shown in
Figures 6 and 5. The FECk’s recall is much better than DBSCAN’s one. This means that, in the
case of FECk, all events that should be clustered together are gathered together to form a cluster.
DBSCAN doesn’t perform very well compared with FECk with regard to the Recall function. While

the FECk’s Precision within the clusters is still very high, DBSCAN is doing better. The main
reason is that the FECk algorithm tends to assign non-relevant events to some other clusters. There
are two ways of eliminating of noise and outliers. The first way is to include them in some clusters.
This way is more suited for noise elimination, as far as they are ignored during the interpretation
phase. This is the case here, as the primary event is really the critical representative of its cluster.
The second way is to group them into independent clusters, called bib-clusters. This is more
suitable for the outliers. However, unlike DBSCAN, FECk can easily identify them as outliers,
because there is no primary events representing these bin-clusters.

Network

nodes

Time

Figure 7. Composition of clusters generated by DBSCAN with real data

Network nodes

Time

Figure 8. Composition of clusters generated with FECk with real data

Figure 7 shows the clusters’ composition generated by DBSCAN for real-world dataset. The
dataset size is 10080 alarms generated by one sub-network over one day. A circle represents a cluster
whose centre has been adjusted using the distance between each event of the cluster. DBSCAN
found 69 clusters and the biggest of them is composed by 146 events. Figure 8 shows the clusters
generated by FECk with the same data. FECk identified 95 clusters and the largest on is composed
by 60 events. As one can notice, in this case, the FECk algorithm produced more clusters than
DBSCAN, but they are more balanced. In addition, FECk clusters most of the noise and outliers
in bin-clusters. These are also returned by the algorithm.

More importantly our technique identifies relevant clusters of events occurring in the early stage
of the fault and gives less importance to the events that follows the fault. In other words it identifies
the symptoms of the fault and gives less importance to the noise (fault cascade or noisy alarms)
generated by the primary event. DBSCAN tends to cluster the events following a fault into large
clusters. While it returns small number of clusters compared with FECk, they are as relevant as
the FECk ones. Its’ precision and recall drop dramatically in this case and also one can notice that
the DBSCAN algorithm does not scale well compared to FECk.

5 Conclusion

In this paper we proposed a new efficient algorithm for the alarm correlation problem. The FECk

algorithm provides the main roots of faults which appeared in the network in the form of clusters
with very accuracy. It is fully flexible as it is based on the fuzzy set theory. The algorithm assumes
that the data has been pre-processed and consolidated. This is one of the main reason why we
have developed a framework for the alarm mining process. This algorithm is evaluated with both
simulated and real-world data sets. The results show that FECk performs very well and better than
DBSCAN. Our algorithm takes into account the data characteristics and the network features. We
believe that some faults occur within short time windows around the identified primary events. The
other correlated events describe the symptoms and the consequences of this abnormal behaviour.
The two-step fuzzy model proved to be very efficient to deal with event correlations and identifying
clusters’ representatives. For further improvement, we are currently integrating some training skills
to this technique in order to recognise and interpret the redundant cluster compositions and also
deal with delayed alarms. Because the current version assumes that all primary events are not
correlated. However, this can lead to two or more correlated clusters describing the same abnormal
behaviour of the network.

References

[1] Gardner, R., Harle, D.: Alarm correlation and network fault resolution using kohonen self-
organising map. In: IEEE Global Telecom. Conf. Volume 3., New York, NY, USA (1997)
1398–1402

[2] Bellec, J.H., Kechadi, M.T.: Towards a formal model for the network alarm correlation problem.
In: The 6th WSEAS Int’l Conference on Simulation, Modelling and Optimization (SMO’06),
Lisbon, Portugal (2006)

[3] Bellec, J.H., Kechadi, M.T., J.Carthy: Performance evaluation of two data mining techniques
of network alarms analysis. In: The 2006 Int’l Conference On Data Mining, (DMIN’06), Las
Vegas, NV, USA (2006)

[4] Bellec, J.H., Kechadi, M.T., J.Carthy: A new efficient clustering algorithm for network alarm
analysis. In: The 17th IASTED Int’l. Conference on Parallel and Distributed Computing and
Systems, (PDCS’05), Phoenix, AZ, USA (2005)

[5] Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In:
KDD ’05: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, New York, NY, USA, ACM Press (2005) 499–508

[6] Julisch, K.: Clustering intrusion detection alarms to support root cause analysis. ACM Trans.
Inf. Syst. Secur. 6(4) (2003) 443–471

[7] Li, T., Liang, F., Ma, S., Peng, W.: An integrated framework on mining logs files for com-
puting system management. In: Proc of the 11th ACM SIGKDD international conference on
Knowledge discovery in data mining, Chicago, Illinois, USA (2005)

[8] Bertolotto, M., martino, S.D., Ferrucci, F., Kechadi, M.T.: A visualization system for col-
laborative spatio-temporal data mining. Journal of Geographical Information Science 21(7)
(2007)

[9] M.Bertolotto, Martino, S.D., Ferrucci, F., Kechadi, M.T.: Towards a framework for mining and
analysing spatio-temporal datasets. International Journal of Geographical Information Science
21(8) (2007) 895–906

[10] Compieta, P., Martino, S.D., Bertolotto, M., Ferrucci, F., Kechadi, M.T.: Exploratory spatio-
temporal data mining and visualization. Journal of Elsevier Science Special Issue on Human-
GIS Interaction 18(3) (2007)

[11] Meira, D., Nogueira, J.: Modelling a telecommunication network for fault management appli-
cations. In: Proc. of NOMS’98. (1998) 723–732

[12] Gopal, R.: Layered model for supporting fault isolation and recovery. In: IEEE/IFIP, Proc.
of Network Operation and Management Symposium, Honolulu, Hawaii (2000)

[13] Steinder, M., Sethi, A.: Non-deterministic diagnosis of end-to-end service failures in a multi-
layer communication system. In: Proc. of ICCCN’01, Arizona (2001) 374–379

[14] Liu, G., Mok, A., Yang, E.: Composite events for network event correlation. In: IM’99. (1999)
247–260

[15] Yemini, S., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust event correla-
tion. IEEE Communications Magazine 34(5) (1996) 82–90

[16] Wietgrefe, H., Tuchs, K.D., Jobmann, K., Carls, G., Frohlich, P., Nejdl, W., Steinfeld, S.:
Using neural networks for alarm correlation in cellular phone networks. In: Proc. of IWANNT.
(1997)

[17] Hasan, M., Sugla, B., Viswanathan, R.: A conceptual framework for network management
event correlation and filtering systems. In: 6th IEEE/IFIP, Proc. of Network Operation and
Management Symposium, Boston, MA, USA (1999)

[18] Chao, C.S., Liu, A.C.: An alarm management framework for automated network fault identi-
fication. Computer Communication 27 (2004) 1341–1353

[19] Guha, S., R.Rastogi, K.Shim: Cure: An efficient clustering algorithm for large databases. In:
ACM SIGMOD’98, Seattle, WA, USA (1999)

[20] Zhang, T., Ramakrishnan, R., Livny, M.: Birch: An efficient data clustering method for very
large databases. In: ACM Intl’ Conf. on management of data, 103-114. (1996) 103–114

[21] Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. on Neural Networks 16(3)
(2005) 645–678

[22] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-base algorithm for discovering clusters
in large spatial databases with noises. In: The Int’l Conference on Knowledge discovery and
data mining. (1996) 226–231

[23] Zadeh, L.: Fuzzy logic. Computer (1988) 83–93

[24] Ng, R., Han, J.: Efficient and effective clustering methods for spatial data mining. In: The
Int’l Very large databases conference. (1994) 144–145

[25] Viswanath, P., Pinkesh, R.: l-dbscan: A fast hybrid density based clustering method. In: 18th
IEEE Intl’ Conference on Pattern Recognition(ICPR’06). (2006)

[26] Sia, W., Lazarescu, M.: Clustering large dynamic datasets using examplar points. In: The
IASTED Conference on Artificial Intelligence and Applications, Innsbruck, Austria (2006)

[27] Batagelj, V., Mrvar, A.: Pajek - Analysis and Visualization of Large Networks. In: Graph
Drawing Software. (2003) 77–103

6 Authors

Jacques Henry Bellec is a PhD candidate at the University College Dublin
(UCD) in Ireland. His research interests include Data Mining, Pattern Recog-
nition, Information Storage and Retrieval, Clustering Analysis, Clustering
Applications, Unsupervised Learning, Fault Management and Alarm Correla-
tion. He has a Post-doctorate certificate preliminary to PhD (DEA), a Master
in Computer Science, a Third degree in Computer Science and an Associate
degree in Mathematics from the University College Versailles (UVSQ). He is
an active reviewer of the WSEAS conferences and journals.

Tahar Kechadi was awarded PhD and a DEA (Diplome d’Etude Approfondie)
- Masters degree - in Computer Science from University of Lille 1, France.
He joined the School of Computer Science and Informatics, University College
Dublin, Ireland in 1999. My research interests span the areas of optimisation
techniques, Data mining, heterogeneous distributed systems and Grid comput-
ing. He is full member at CERN. He is a visiting professor at the Universities
of Artois, France and Oslo, Norway. He is a member of the communication of
the ACM Journal and IEEE Computer Society.

	ADP12F.tmp
	

	ADP13A.tmp
	

