
International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

Self-healing Mechanism for Reliable Computing*

Jeongmin Park, Jinsoo Jung, Shunshan Piao and Eunseok Lee
School of Information and Communication Engineering, Sungkyunkwan

University,
Suwon 400-746, South Korea

{jmpark, seba702, sspiao, eslee}@ece.skku.ac.kr

Abstract

One of the four major processes of an autonomic computing system is to free people from

discovering, recovering, and failures, this process is called self-healing. Systems designed to
be self-healing are able to heal themselves at runtime in response to changing environmental
or operational circumstances. Thus, the goal is to avoid catastrophic failure through prompt
execution of remedial actions. This paper proposes a self-healing mechanism that monitors,
diagnoses and heals its own internal problems using self-awareness as contextual
information. The self-management system that encapsulates the self-healing mechanism
related to reliability improvement addresses: (1) Monitoring layer, (2) Diagnosis & Decision
Layer, and (3) Adaptation Layer, in order to perform self-diagnosis and self-healing. To
confirm the effectiveness of self-healing mechanism, practical experiments are conducted
with a prototype system.

1. Introduction

Reliability is a measure of trustworthiness of a computing system, which can be defined as the
probability for component, communication, service or system to successfully achieve their tasks and
objectives. One of the four major processes of an autonomic computing system is to free people from
discovering, recovering, and preventing system failures, this process is called self-healing. The Self-
healing technologies improve system reliability by eliminating or dramatically reducing the
requirement for human operation, as human configuration and maintenance of complicated systems is
often error prone [1].

Approximately 40% of all computer problems are attributable to errors made by system
administrators [4]. Thus, the current system management method, which depends mainly on
professional managers, is required to be improved and are increasingly expected to dynamically self-
manage to accommodate resource variability, detect fault appearances, and recover from system
failure.

The traditional approaches for improving reliability have been focused on log-based level [8,9],
model-based level [6,7], component-based level[16,19]. Most approaches support part of the process of
the self-healing mechanism [16], but not whole process including monitoring, filtering, translation,
analysis, diagnosis, decision and healing.

Thus, this paper concentrates on the whole process of the self-healing mechanism for reliable system
and describes the architecture of self-healing. The architecture that encapsulates the self-healing
mechanism related to reliability improvement is designed with three layers: the monitoring layer, the
diagnosis & decision layer, and the adaptation layer. This paper has two central goals: 1) to describe
the proposed layered architecture that encapsulates the self-healing mechanism; and 2) to present each

* This work was supported in parts by ITRC IITA-2007-(C1090-0701-0046, Basic Research Program of the
Korea Science &Engineering Foundation, and the Post-BK21 Project. Corresponding author: Eunseok Lee

1

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

phase of the self-healing mechanism in detail. To confirm the self-healing mechanism, practical
experiments are conducted with a prototype system.

This paper begins by describing related work in Section 2. Section 3 describes layered software
architecture for self-healing. Section 4 describes the process of the self-healing mechanism including
monitoring, filtering, translation, analysis, diagnosis, decision and healing. In Section 5,
implementation and evaluation are discussed. Finally, in Section 6, conclusions are presented.

2. Related work

In this section, we analyze behaviors, advantages and disadvantages regarding mechanism of the

conventional self-healing systems such as log-based self-healing system, model-based self-healing
system and component-based self-healing system.

2.1 Behaviors

2.2 Advantages

2

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

2.2 Disadvantages

Through the related works, we propose self-healing mechanism based on the analyzed advantages

and disadvantages.

3. Proposed system

Fig. 1. Layered architecture and overall behavior for self-healing

In this section, we describe proposed layered architecture that encapsulates the self-healing

mechanism including modeling, monitoring, filtering, translating, analyzing, diagnosing, deciding, and
healing internal problems. Self-healing architecture is designed as a layered architecture, structured
with three layers (Fig.1) – the monitoring layer, Diagnosis & Decision Layer and Adaptation Layer.
The monitoring layer consists of modules for monitoring the information such as log context, resource,
configuration parameters. Once monitoring module in the monitoring layer detects an anomalous
behavior and presumes that the behavior needs to be treated. In the abnormal phase, modules in the
diagnosis & decision layer are triggered. The diagnosis & decision layer constitutes modules that
filters, translates, analyzes, diagnoses the problems, and decides its strategy. Finally, the adaptation
layer composes modules that execute the strategy selected in diagnosis & decision layer. The behavior
corresponding to the overall architecture is presented in Fig.1.

3.1 Self-healing Mechanism

Through the historical data, we suppose that solving the problem caused in known fault may be a

reliable system. Fig. 2 depicts the self-healing process against anomalous behaviors. The self-healing
process is divided into two steps – preprocess steps and adaptation steps. In the preprocess steps, in
order for us to model the target system, we input the goal of the target system and model the known
problems causing abnormal behaviors. The problem model can be classified as generic problem and
specific problem. An example of configuration problem can be illustrated as a generic problem, and
dependency problem arising in configuration problem can be taken as an example of a specific
problem. Self-healing in this paper focuses on the generic model that models the configuration problem
caused in known fault.

3

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

Figure 2. Self-healing process

In the adaptation steps, on the basis of the problem model, we use logs data to help in solving
problem. Our self-healing mechanism carries out (1) monitoring to observe behavior properties of
problem model, (2) filtering to extract error log context from normal log context, (3) translating the
filtered error context into the CBE format, (4) analyzing the CBE log, resource information and the
dependency of the components, (5) diagnosing problems from observed symptoms, (6) through the
policy DB and the code cache, decision to the possible healing method and (7) applying the appropriate
healing method.

3.1.1 Common Base Event (CBE)

Common Base Event (CBE) specification defines a new mechanism for managing events in
application and how to communicate self-healing events in the autonomic computing model. The
following 3-tuple information is captured per each event: (1) the reporting component, (2) the affected
component, and (3) the situation. The reporting component is the component being affected by the
situation [5]. After analyzing logs from different products, CBE concluded that different events that
probably occur in computing systems can be categorized into eleven predefined situations; and one
user-defined situation [5]. The set of predefined situations includes: Start Stop, Connect, Request,
Configure, Available, Report, Create, Destroy, Feature, and Dependency situations. For example,
FeatureSituation denotes that some feature has become either available or unavailable on some
component. Each of those situations has some parameters, such as reasoningScope that denotes
whether the impact of the situation is internal to the affected component or it propagates to other
components.

3.1.2 Monitoring Layer (Monitoring): As shown in Fig 3, the functions of the Monitoring Module

in the monitoring layer are as follows: It monitors resource (such as RAM, CPU, etc) status and the
size of the log file generated by the application. To deal with paradoxical situation where the self-
healing system itself may need healing, it monitors error events arising in the predefined State Model.
Through resource status, log files and error state arising in the self-healing system, if the Monitoring
Module detects suspicious events of the component, it deliveries the monitored list to the CBE Parser
in the Diagnosis & Decision layer. Also, if it monitors the anomaly behaviors arising in the self-healing
system, it deliveries the error state to the Diagnosis Agent.

4

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

Figure 3. Monitoring Layer’s behavior

3.1.3 CBE Parser (Filtering and Translation): The functions of the CBE Parser are as follows: It

gathers the monitored list provided by the Monitoring Module, filters error context from normal log
context File. The error context is filtered by means of designated keywords, such as “not”, “error”,
“reject”, “notify”, etc. It translates the filtered error context into the CBE format, and deliveries the
translated information to the Diagnosis Agent.

3.1.4 Diagnosis Agent (Analysis and Diagnosis): The first major attribute of a self-healing system

is self-diagnosing [9]. The Diagnosis Agent analyzes the CBE log, resource information (received from
the Monitoring Module), the dependency of the process and the state of self-healing system and then
diagnoses the current problem (through the Rule Model).

Figure 4. Recognition of System level

It suggests the recovery actions to automatically resolve problems from observed symptoms. The

results of the diagnosis can be used to trigger automated reaction. If the self-healing system itself needs
healing, the diagnosis agent calls an administrator. As shown in Error Level of Fig. 4, it classifies the
Error Event, and sets up the priorities. The results of the diagnosis recognize the situation level. In
addition, the Diagnosis Agent generates the Error Report and modifies the CBE. The Error Report is an
administrator document, and the CBE is a document for the system. Using the first-order logic, we can

5

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

recognize the situation level of system and represent the policy for it. Fig. 4 illustrates context predicate
and its example.

3.1.4 Decision Agent and Executor (Decision and Execution): With the recovery actions, the

Decision Agent uses a policy database that maintains high-level policies (for example, “If (daytime)
then do not restart service x”), and then can take proactive and immediate action corresponding to
Emergency situation (Priority ‘1’) through the code cache. According to the policy database, a suitable
policy is implemented. The Executor then executes the best healing method. The Decision Agent
handles emergency situations in accordance with the Rule Model, and applies the best healing method.

 Through the information delivered by the Diagnosis Agent, The Decision Agent determines the

appropriate healing method with the help of the Policy DB. It also receives feedback information from
the administrator in order to apply the more efficient healing method. The Information received from
the Diagnosis Agent is used to determine the healing method. The Decision Agent determines the
solutions that can be classified into root healing, temporary healing, first temporary healing and second
root healing. Temporary healing is a way of resolving a problem temporarily, such as disconnecting a
network connection, assigning temporary memory. The root healing is the fundamental solutions on the
diagnosed result, including re-setting, restarting, and rebooting. The Decision Agent stores the methods
in the DB as below Table 1, and decides how to select the appropriate healing method. The Table is the
table to determine the optimal resolution method by analyzing given attributes. Looking at the
DECISION column, when placed under the current diverse context, it helps to determine R (Root
Solution), T (Temporary Solution), or TR (first Temporary Solution, second Root Solution). The
FEEDBACK Column is showing feedbacks that were executed by the System Agent to heal the
system.

Table1. Decision Table

The Decision Agent compares the fields with the information received by the System Agent, these

fields are CURRENT JOB, FUTURE JOB and AVAILABLE MEMORY. If the value of the
FEEDBACK Column is POSITIVE, the appropriate method is determined.

3.1.5 Searching Agent, Code Cache and Rule Model: Searching Agent is used to search the

vendor’s website for the knowledge required to solve the problem. This Agent uses search engine (such
as Google). It sends the resulting search information to the administrator. The Code Cache is used to
provide healing code to solve the error of the component arising in emergency situations. Separation of
concerns [14] often provides some powerful guidance to complicated problems. Separation of concerns
has led to the birth of many novel technologies such as aspect-oriented programming, subject-oriented
programming. We used Rule Model approach [15] for self-healing: extract scattered rules from
different procedures.

6

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

Figure.5. Rule Model of the proposed system

We consider only events that are involved in adaptive rules: Errors or failures that occur when

procedures are executed. Most modern languages (such as Java) provide exception capture
mechanisms. These types of events need self-healing to make software robust. Using the Rule Model
that reconfigures services of the proposed system, agents can apply the appropriate adaptation policy.
Fig 7 shows that suitable actions are selected via a Rule Model. The Rule Model document identifies
the different events that can be applied, namely the “Emergency”, “Alert”, “Error” and “Warn”
situation. Theses situations have actions, linked to their respective situation, and then services of the
proposed system are reconfigured by this strategy. We can understand their behavior from the above
document. If the agent classifies the current situation as an emergency situation, it acts transformed
code to heal the component. The above rule represented in XML is transformed to:

4. Implementation and Evaluation

As show in Fig 1, according to the layered architecture for self-healing, we represented the behavior

of the agents. The implementation environment is as follows: we employed .NET Framework, JAVA
SDK1.4, and used Oracle9i as the DBMS. Also we used JADE1.3 for the Agent development. The
sample log used for the self-healing process was the contexts of log that are generated with APACHE.
We implemented the Agents of the proposed system (in the form of a JADE Agent Platform [12]). Each
of the agents is registered with each of the containers, and the ACL (Agent Communication Language)
is used to communicate among the agents. We performed the simulation using six agents.

The Fig 6 shows extracted log data and resource monitoring for self-management

Figure 6. The result of the Monitoring Module

7

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

The proposed system was evaluated and compared qualitatively and quantitatively in terms of the

Log Monitoring Module, the Filtering & Translating Efficiency, and the healing Time. (a) Log
Monitoring Test. In the existing system, if the number of components is Ω, the system has to have Ω
processes to monitor the log. In the proposed system, however, only one process is needed to monitor
the log, as shown in Fig. 7. In this figure, the proposed system demonstrates its ability to stay at a
certain level of memory usage, even when the number of components is increased.

(b) Filtering & Translation Efficiency Test. In the proposed system, the Component Agent
searches for a designated keyword (such as “not”, “reject”, “fail”, “error”, etc.) in the log generated by
the components. By using this approach, we were able to increase the efficiency of the system, in terms
of the size of the log and the number of logs. We analyzed up to 500 logs, filtered out those logs not
requiring

Figure 7. Memory usage and comparison of size and number of logs

any action to be taken, and evaluated the number and size of the logs in the case of both the existing

and proposed systems. As a result of the filtering process, only about 20% of the logs were required for
the healing process, as shown in Fig. 7. Therefore, the proposed system reduces the number and size of
the logs, which require conversion to the CBE format.

(c) Average Healing Time Measurement. We measured the Average Adaptation Time arising in

the existing self-healing system and the proposed self-healing system. For each adaptation time, we
verified that the proposed system’s parsing time and healing time are fastest than the existing system’s,
and rapidly responded problems arising in the urgent situation. However, because the number of
monitoring factors is a little more, although the proposed system’s monitoring time was relatively a
little load through providing the meaningful much more information we verified that high quality of
healing have been increased by monitoring information. Although In the event that the error
component does not generate log, we couldn’t measure the healing time arising in the existing self-
healing system because the existing system was log-based healing system.

5. Conclusion

This paper has described self-healing mechanisms for reliable system. The monitoring layer consists

of modules for monitoring the information such as log context, resource, event state. Once monitoring
module in the monitoring layer detects an anomalous behavior and presumed that the behavior needs to
be treated. In the abnormal phase, modules in the diagnosis & decision layer were triggered. The
diagnosis & decision layer constituted modules that filters, translates, analyzes, diagnoses the
problems, and decides its strategy. Finally, the adaptation layer composed modules that execute the
strategy selected in diagnosis & decision layer. The advantages of this system are as follows. First,
when prompt is required, the system can make an immediate decision and respond right away. Second,
the Monitoring module monitors the generation of the log on the fly. Third, before converting the log
into the CBE (Common Base Event) format, filtering is performed in order to minimize the memory
and disk space used in the conversion of the log. Fourth, using the Rule Model, the appropriate
adaptation policy is selected. However, further decision mechanism is likely to need to select the

8

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

appropriate adaptation policy. Moreover this approach may be extended for the intelligent sub-
modules in the Diagnosis & Decision layer.

References

1. Yuan-Shun Dai, Autonomic Computing and Reliability Improvement, proceeding of the Eighth IEEE
 International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
2. Rajesh Kumar Ravi, Vinaya Sathyanarayana, Container based framework for Self-healing Software system,

proceeding of the 10th IEEE International workshop on Future Trends of Distributed Computing system
(FTDCS’04)

3. David S. Wile and Alexander Egyed, "An Externalized Infrastructure for Self-Healing Systems", WICSA'04,
pp. 285-288, 2004.

4. http://www.ibm.com/autonomic
5. IBM Autonomic Computing, "Automating problem determination: A first step toward self-healing computing

systems", October 2003.
6. P. Oreizy et. al.: An Architecture-Based Approach to Self-Adaptive Software, IEEE Intelligent Systems, Vol.

14, No. 3, May/June (1999) 54-62.
7. David Garlan, Bradley Schmerl, "Model-based adaptation for self-healing systems", WOSS'02, pp. 27-32,

2002.
8. J. Baekelmans, P. Brittenham, T.Deckers, C.DeLaet, E.Merenda, BA. Miller, D.Ogle, B.Rajaraman,

K.Sinclair, J. Sweitzer: Adaptive Services Framework CISCO white paper, October (2003)
9. B. Topol, D. Ogle, D. Pierson, J. Thoensen, J. Sweitzer, M. Chow, M. A. Hoffmann, P. Durham, R. Telford,

S. Sheth, T. Studwell: Automating problem determination: A first step toward self-healing computing system,
IBM white paper, October (2003)
12. Fabio Bellifemine, Giovanni Caire, Tiziana Trucco (TILAB, formerly CSELT) Giovanni Rimassa (University

of Parma): JADE PROGRAMMER’S GUIDE.
13. David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steenkiste, "Rainbow:

Architecture-Based Self-Adaptation with Reusable Infrastructure", IEEE, Vol. 37, No. 10, 2004.
14. David. Parnas, Designing Software for Extension and Contraction, 3rd International Conference on Software

Engineering, pp. 264-277, 1978.
15. Qianxiang Wang, Towards a Rule Model for Self-adaptive Software ACM SIGSOFT Software Engineering

Notes Page 1 January 2005 Volume 30 Number 1 pp. 1-5.
16. Michael E. Shin, Self-healing components in robust software architecture for concurrent and distributed

systems. Science of Computer Programming, Volume 57, Issue 1, July 2005, pp. 27-44.
17. V. Issarny and J. P. Banatre., "Architecture-based Exception Handling", HICSS'34, 2001.
18. Garlan, D., Schmerl, BR, and Chang, J. Using Gauges for Architecture-Based Monitoring and Adaptation. The

Working Conference on Complex and Dynamic System Architecture. Brisbane, Australia, December 2001.
[19] E.Grishikashvili, R.Pereira, A.Taleb-Bendiab Performance Evaluation for Self-Healing Distributed Services

ICPADS (2) 2005: 135-139

9

International Journal of Multimedia and Ubiquitous Engineering

Vol. 3, No. 2, April, 2008

10

	

