
International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017), pp. 19-30

http//dx.doi.org/10.14257/ijmue.2017.12.7.03

ISSN: 1975-0080 IJMUE

Copyright © 2017 SERSC

Android OS with its Architecture and Android Application

with Dalvik Virtual Machine Review

1
Javed Ahmad Shaheen,

2
Mian Ali Asghar,

3
Abid Hussain

1
Computer Science Department, Virtual University of Pakistan, Lahore – Pakistan

2
Computer Science Department, Global Institute Lahore, Lahore – Pakistan

3
Computer Science Department, Virtual University of Pakistan, Lahore – Pakistan

1
javedmatyana@gmail.com,

2
aliurooj143@yahoo.com, 3ms140400004@vu.edu.pk

Abstract

Android OS has broad and open source platform with four layers, commenced with the

Android platform and the features of Android applications, gave a detailed picture of

Android application framework from the potential of developers. The home screen of

devices booted with android have primary navigation and information "hub". These are

in Android devices as to the desktop found on personal computers. If we illustrated with a

simple music player as example to demonstrate the basic working processes of Android

application components as it plays the music by using the service component i.e. media

player from class of libraries layers .In this paper, paper could provide guidance to

understanding the operation mechanism of Android applications and also give some

sense to developing applications on Android platform. This paper also describes some

working of Dalvik virtual machine and also elaborates Kernel of Android Operating

System.

Keywords: Android OS, Android Architecture layers, Android Application, Android

Linux Kernel, Android Dalvik virtual machine, Android Application Component.

1. Introduction

Android applications are mostly developed using Java language by using the Android

software Development Kit. Application framework define the common structure of

programs in the specific domain. Essentially, an application framework is a component

that can be reused; it set the architecture of applications and incorporated as a set of

abstract classes and the cooperation of their instances. Android devices are usually

powered with battery so Android OS is designed to manage processes to keep power

consumption as minimum as it can. In Android devises when an application is not in use

the OS shelves its operation while also available if it needs for immediate use rather than

closed and during this process it does not use battery power or CPU resources and

Android manages the applications stored in memory automatically when memory is low,

the system will begin invisible and automatically closing inactive processes, starting with

those that have been inactive for longest. [16][17]Life hacker reported in 2011 that third-

party task killers were doing more harm than good. Android is an open source operating

system based on Linux kernel and launched by Google. Unlike PC operating system,

mobile phone operating systems are constrained by their hardware, storage space, power

dissipation and mobility conditions. Compared with the development of applications on

PC, there are some different features of applications on mobile phone operating systems.

This paper introduced the basic architecture and application framework of Android

operating system, gives a detailed description of main structure of Android applications

and the methods of applications based on Android application framework and Dalvik

virtual machine.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

20 Copyright © 2017 SERSC

2. Introduction of Android OS:

Android is a comprehensive operating environment that is based on Linux® kernel

with some version like V2.6, it is also a layered system, the architecture of Android

system have shown in this picture, as the picture is showing different layers of android

that is Application layer, Application frame work layer, Library layer, Android Run time

layer and Kernel layer. Each layer is connected with one another which we will discuss in

this paper. Android operating system is a stack of software components which is roughly

divided into five sections and four main layers as shown below in the architecture

diagram

 Figure 2.1

2.1 Applications Layer

It is the site of all Android applications which is responsible to include an email client,

SMS program, maps, browser, contacts, and others. All the mentioned applications are

written using the Java programming language.

2.2 Application Framework Layer

It is the layer which defined the Android application framework. All Android

applications based on the application framework. The Android application framework

includes:

 A rich and extensible set of Views that can be used to build an application with

beautiful user interface includes. As it is in our knowledge the view may constituted

as lists, grids, text boxes, buttons, and even an embeddable web browser.

 A set of Content Providers responsible to enable applications to access data from

other applications (such as Contacts), or to share their own data.

 A Resource Manager responsible to provides access to noncore resources such as

localized strings, graphics, and layout files.

 A Notification Manager responsible to enables all applications to display custom

alerts in the status bar.

 An Activity Manager is responsible to manage the lifecycle of applications and

provides a common navigation back stack.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

Copyright © 2017 SERSC 21

 Location manager: It is responsible to fires alerts when user enters or leaves a

specified geographical location.

 Package manager: It is responsible to retrieve the data about installed packages

on device.

 Window manager: It is responsible to create views and layouts.

 Telephony manager: It is responsible to handle settings of network connection

and all information about services on device.[1]

2.3. Application Library

GNU libs (glibc) is too big and complicated for mobile phones, so Android

implements its own special version of libc, Bionic libc which is in Smaller size - 200K in

it some of features strip out some complicated C++ features, the most significant one no

C++ exception, Very special and small thread implementation, heavily based on kernel

futexes. Bionic libc does not fully support POSIX and is not compatible with glibc.

Libraries layer includes a set of C/C++ libraries used by various components of the

Android system and provides support to the application framework

 Figure 2.3

2.4 Android Runtime

It includes a set of core libraries and a Java virtual machine (Dalvik virtual machine)

that has been redesigned and optimized by Google to be suitable for Android platform.

Linux kernel is located at bottom layer of Android system and acts as an abstraction layer

between the hardware and the rest of the software stack. It provides core system services

such as security, memory management, process management, network stack, and driver

model. In addition, some bottom functions such as management of threads of Dalvik

virtual machine also rely on the Linux kernel.

2.4.1 Android Application Runtime Environment

Each Android application runs in a separate process, with its own instance of the

Dalvik virtual machine (VM). Based on the Java VM, the Dalvik design has been

optimized for mobile devices. The Dalvik VM has a small memory footprint and multiple

instances of the Dalvik VM can run concurrently on the handset

 Figure 2.4

2.5 Linux Kernel

At the bottom of the layers is Linux. Linux 2.6 with approximately 115 patches. This

provides basic system functionality like process management, memory management,

device management like camera, keypad, display etc. Also, the kernel handles all the

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

22 Copyright © 2017 SERSC

things that Linux is really good at such as networking and a vast array of device drivers,

which take the pain out of interfacing to peripheral hardware.

Figure 2.5

3. Dalvik Virtual Machine

Android applications and the underlying frameworks are almost entirely written in

Java. Instead of using a standard Java virtual machine, Android uses its own VM. This

virtual machine is not compatible to the standard Java virtual machine Java ME as it is

specialized and optimized for small systems. These small systems usually only provide

little RAM, a slow CPU and other than most PCs no swap space to compensate the small

amount of memory Android is running on the Linux kernel and its applications are

written by Java programming language, so Android applications are running on a Java

virtual machine named Dalvik virtual machine. Dalvik virtual machine has been

redesigned and optimized by Google for the hardware features of mobile devices. The

necessary byte code interpreter the virtual machine is called Dalvik. Instead of using

standard byte code, Dalvik has it’s own byte code format which is adjusted to the needs

of Android target devices. The byte code is more compact than usual Java byte code and

the generated .dex files are small. In Android system, there is a tool named .dex, included

in the Android SDK, transforms the Java Class files (which compiled by a regular Java

compiler) into the .dex format. The .dex format files integrate all Java class files and

delete redundant information in every Java class files.

Figure 3. Showing .dex File Format

3.1. Memory in DVM

In Dalvik VM there are four different kinds of memory to distinguish that can be

grouped to clean/dirty and shared/private. Typical data residing in either shared or

private clean memory are libraries and application specific files like .dex files. Clean

memory is backed up by files or other sources and can be pruned by the kernel without

data loss. The private dirty memory usually consists of the applications heap and

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

Copyright © 2017 SERSC 23

writeable control data structures like those needed in .dex files. These three categories of

different memory are quite common and no specialty of Dalvik.

3.2. Feature of DVM

There are several features of Dalvik virtual machine:

3.2.1 Zygote:[12]

Shared dirty memory is possible through a facility of Dalvik called Zygote. It is a

process which starts at boot time and is the parent of all Dalvik VMs in the system. The

Zygote loads and initializes classes that are supposed to be used very often by

applications into its heap. In shared dirty memory resides e.g. the dex data structure of

libraries. After the startup of the Zygote, it listens to commands on a socket. If a new

application starts, a command is sent to the Zygote which performs a standard fork (). The

newly forked process becomes a full Dalvik VM running the started application. The

shared dirty memory is “copy-on-write” memory to minimize the memory consumption

 Dalvik virtual machine has multiple occurrence / instances on one device and

every instance runs in a separate Linux process, an Android application runs in an

instance of a Dalvik virtual machine.

 Dalvik virtual machine relies on the underlying operating system (Linux kernel)

for process isolation, memory management and threading support.

 Dalvik virtual machine is register based.

The follow figure (figure3-2) shows the position of Dalvik virtual machine in Android

system.

Figure 3.2. DVM Position in Android

4. Android Application Component

A core feature of Android is that one application could use component element that

belong to another application mean if the component is permitted using. In order to

achieve such functions, Android system must launch the application while any part of the

application is asked and instantiate Java objects that being asked. Unlike most operating

system, there is no single point that the system can enter in an Android application (for

example, there no main () function in an Android application). Instead, each component

is a different point through which the system can enter an application and instantiate

component object independently.

There are four different types of application components. Each type serves a distinct

purpose and has a distinct lifecycle that defines how the component is created and

destroyed.

LINUX KERNEL

 LINUX PROCESS

DALVIK VIRTUAL MACHINE

ANDROID APPLICATION

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

24 Copyright © 2017 SERSC

4.1 Activity

An activity represents a single screen with a user interface. The activities in an

application work together to form a cohesive user experience, but each one is independent

of the others. As such, a different application can start any one of these activities. An

activity is implemented as a subclass of Activity. The particular form that an activity

show users and the amount of activities in an application depend on how the developer

design the application. In a multiple activities application, typically, one activity is

specified as the "main" activity, which is presented to the user when launching the

application for the first time. Each activity can then start another activity in order to

perform different actions. Each time a new activity starts, the previous activity is stopped,

but the system preserves the activity in a stack the back stack [1]

4.2 Service

A service is an Android component that runs in the background to perform long-

running operations or to perform work for remote processes and does not provide a user

interface. An activity can connect or bind a service that is running. If the service is not

running, launch it. When connected to a service, the activity can communicate with the

service through the interface that the service exposed. Like other application components,

service components always running in the main thread of an application by default. So for

the intensive or blocking operating a service performs may slow down activity

performance, it is usually start a new thread inside the service that is content provider,

4.3 Content Providers

Content providers provide data share mechanism among applications. The data that be

shared could be in the file system, a SQLite database, or any other persistent storage

location an application can access. A content provider is implemented as a subclass of

Content provider, it defines the data format and it supported and provides a set of method

to enable other applications to query or modify the data. But an application does not call

these methods immediately, instead it call these methods by an object named content

resolver.

4.4 Content Resolver

Content Resolver can communicate with every Content Provider. Content Resolver

cooperated with Content Provider to manger IPC (inter process communication) while

sharing data.

4.5. Broadcast Receivers

Broadcast Receivers is in charge of the reception of system wide broadcast and take

response aiming at the information that a broadcast transmitted. Many broadcasts

originate from the system for example, a broadcast announcing that the screen has turned

off, the battery is low. Applications can also initiate broadcasts. There could be any

number of Broadcast Receivers in an application and each Broadcast Receiver

implemented as a sub class of Broadcast Receiver. Although broadcast receivers don't

display a user interface, they may create a status bar notification to alert the user when a

broadcast event occurs. More commonly, though a broadcast receiver is just a "gateway"

to other components and is intended to do a very minimal amount of work.[10]

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

Copyright © 2017 SERSC 25

5. Intent

Three of the four Application component types i.e. activities, services, and broadcast

receivers are activated by an asynchronous message called intent. Intents bind individual

components to each other at runtime no matter the component belongs to the same

application. Intent can create with an Intent object, which defines the messages by which

can activate either a specific component or a specific type of component.

5.1. Intent Action

This is mandatory part of the Intent object and is a string naming the action to be

performed or, in the case of broadcast intents, the action that took place and is being

reported. The action largely determines how the rest of the intent object is structured. The

Intent class defines a number of action constants corresponding to different intents intent

defines the action to perform and may specify the URI of the data to act on for broadcast

receivers; the intent simply defines the announcement being broadcast. The other

component type, content provider, is not activated by intents. Rather, it is activated when

targeted by a request from a Content Resolver.[3].

5.1.2. Android Intent Standard Actions:

Following table lists down some of important Android Intent Standard Actions. You

can check Android Official Documentation for a complete list of Actions:

Table 5.1

Sr. No Intent Action and description

1 ACTION_ALL_APPS:

List all the applications available on the device.

2 ACTION_ANSWER:

 Handle an incoming phone call.

3 ACTION_ATTACH_DATA:

 Used to indicate that some piece of data should be attached to some other place

4 ACTION_BATTERY_CHANGED:

 This is a sticky broadcast containing the charging state, level, and other information

about the battery.

5 ACTION_BATTERY_LOW:

 This broadcast corresponds to the "Low battery warning" system dialog.

6 ACTION_BATTERY_OKAY:

 This will be sent after ACTION_BATTERY_LOW once the battery has gone back up to

an okay state.

7 ACTION_BOOT_COMPLETED :

This is broadcast once, after the system has finished booting.

8 ACTION_BUG_REPORT:

 Show activity for reporting a bug.

9 ACTION_CALL :

Perform a call to someone specified by the data.

10 ACTION_CALL_BUTTON:

 The user pressed the "call" button to go to the dialer or other appropriate UI for

placing a call.

11 ACTION_CAMERA_BUTTON:

 The "Camera Button" was pressed.

12 ACTION_CHOOSER: Display an activity chooser, allowing the user to pick what they

want to before proceeding.

13 ACTION_CONFIGURATION_CHANGED:

 The current device Configuration (orientation, locale, etc) has changed.

14 ACTION_DATE_CHANGED:

 The date has changed.

15 ACTION_DEFAULT: A synonym for ACTION_VIEW, the "standard" action that is

performed on a piece of data.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

26 Copyright © 2017 SERSC

16 ACTION_DELETE:

 Delete the given data from its container.

17 ACTION_DEVICE_STORAGE_LOW:

A sticky broadcast that indicates low memory condition on the device.

18 ACTION_DEVICE_STORAGE_OK:

 Indicates low memory condition on the device no longer exists.

19 ACTION_DIAL:

 Dial a number as specified by the data.

20 ACTION_DOCK_EVENT A sticky broadcast for changes in the physical docking state

of the device.

21 ACTION_DREAMING_STARTED Sent after the system starts dreaming.

22 ACTION_DREAMING_STOPPED Sent after the system stops dreaming.

23 ACTION_EDIT Provide explicit editable access to the given data.

24 ACTION_FACTORY_TEST Main entry point for factory tests.

25 ACTION_GET_CONTENT Allow the user to select a particular kind of data and return

it.

26 ACTION_GTALK_SERVICE_CONNECTED A GTalk connection has been

established.

27 ACTION_GTALK_SERVICE_DISCONNECTED A GTalk connection has been

disconnected.

28 ACTION_HEADSET_PLUG Wired Headset plugged in or unplugged.

29 ACTION_INPUT_METHOD_CHANGED An input method has been changed.

30 ACTION_INSERT Insert an empty item into the given container.

31 ACTION_INSERT_OR_EDIT Pick an existing item, or insert a new item, and then edit

it.

32 ACTION_INSTALL_PACKAGE Launch application installer.

33 ACTION_LOCALE_CHANGED The current device's locale has changed.

34 ACTION_MAIN Start as a main entry point, does not expect to receive data.

35 ACTION_MEDIA_BUTTON The "Media Button" was pressed.

6. Boot Sequence and Process

Android boot sequence is hereby illustrated in the diagram 6.1, which describes that

whenever application want to run, it is connected with in application framework with its

specific manager and then it is jointed with native libraries to its native library and then in

run time Dalvik Virtual machine which is loaded by zygote through kernel and it is

initiated that application related class in kernel.

Figure 6.1 Android Boot Sequence

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

Copyright © 2017 SERSC 27

6.1. AN MUSIC PLAYER AS Example for Boot Sequence

Here there is a simple music player; the four components of Android have been

defined in this example. Music Main Activity is an object of Activity type, it provides

interface to users in Application layer and communicates with a Service used to play

music in background by a Broadcast Receiver. Music Player Service is an object of

extensional service type, it’s mainly function is to play music in background and return

play statues to Music Main Activity by broadcast. MusicInfo Manager is a custom class;

it packs a Content Providers provided by system to get music information from flash card.

By the above components cooperate with each other can realize the function of play

music on android platform. The MusicPlayerService run in background returns all play

status to the MusicMainActivity run in foreground by broadcast. A Broadcast Receiver

has registered in MusicMainActivity to receive all broadcast from MusicPlayerService.

The received broadcast will be resolved by MusicMainActivity. According to the

broadcast content, the MusicMainActivity will do some actions shows users the play

status. After the music player launched, the MusicMainActivity will send messages to

MusicInfoManager for the information of music files and the MusicInfoManager will

activate a ContentProvider that provided by system, then get the music files list and return

it to the MusicMainActivity.

6.2. Android Boot Process:

In figure 6.2 we can see the boot process of android when it is switched on and the

detail of these processes is under”

Step 1. Power On and System Startup: When power starts, Boot ROM code start

execution from pre-defined location i.e. is hardwired on ROM. It load Bootloader into

RAM and start execution.

Step 2. Bootloader: Bootloader is small program which runs before Android operating

system running. Bootloader is first program to run so It is specific for board and

processor.

Bootloader perform execution in two stages, first stage It to detect external RAM and

load program which helps in second stage, In second stage bootloader setup network,

memory, etc. which requires to run kernel, bootloader is able to provide configuration

parameters or inputs to the kernel for specific purpose.

Step 3: Kernel: Android kernel start similar way as desktop Linux kernel starts, as kernel

launch it start setup cache, protected memory, scheduling, loads drivers. When kernel

finishes system setup first thing it look for “init” in system files and launch root process

or first process of system.

Step 4: init process: it very first process, we can say it is root process or grandmother of

all processes. Init process has two responsibilities

1. Mount directories like /sys, /dev, /proc

2. Run init.rc script.

Step 5: Zygote and Dalvik: We know that separate Virtual Machine (VMs) instance will

pop up in memory for separate per app in JAVA but in Android app should launch quick

as possible. If Android OS launch different instance of Dalvik VM for every app then it

consume lots of memory and time. So, to overcome this problem Android OS has

“Zygote”. Zygote enable shared code across Dalvik VM, lower memory footprint and

minimal startup time. Zygote is a VM process that starts at system boot time as we

discussed in previous step. Zygote preloads and initializes core library classes. These are

three core classes which are read-only and part of Android SDK or Core frameworks.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

28 Copyright © 2017 SERSC

Step 6. System Service: After completion of all steps runtime request Zygote to launch

system servers. These are written in both native and java. The System servers in JAVA

can consider as process as the same system server is available as System Services in

Android SDK. Zygote fork new process to launch system services and we can see source

code in ZygoteInit class and “startSystemServer” method.

Step 7 : Boot Completed: As System Services starts up and running in memory,

Android has completed booting process and “ACTION_BOOT_COMPLETED” standard

broadcast action will fire.

Figure 6.2

7. Conclusion

Android as a full, open and free mobile device platform with its powerful function and

good user experience rapidly developed into the most popular mobile operating system.

This article gives a detailed introduction of Android OS, Android layers application

framework and native libraries and the working principal of Android applications run

time and Dalvik virtual machine. As a final point, a music player on the android platform

has presented as an example to point up this mechanism how boot sequence of Android

carry on and this paper also have brief knowledge about Android Components.

References

[1] OL. Google Android Developers, Android Develop Guide,http://developer.android.com/guide/topics/

fundamentals.html

[2] J. Liu, J. Yu, “Research on Development of Android Applications”, Fourth International Conference on

Intelligent Networks and Intelligent Systems, (2011).

[3] M. F. Yang, “Android Application Development Revelation”, China Machine Press, vol. 11, (2010).

[4] M. Zhengguo Hu, Jian Wu, Zhenggong Deng, Programming Methodology, National Defence Industry

Press, vol. 6, (2008).

[5] M. Junmin Ye, “Software Engineering”, Tsinghua University Press, vol.6, (2006).

[6] tutorialspoint.com

[7] J. Dongjiu Geng, Yue Suo, Yu Chen, Jun Wen, Yongqing Lu, “Remote Access and Control System

Based on Android Mobil Phone”, Journal of Computer Applications, vol.2, (2011), pp. 560-562.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

Copyright © 2017 SERSC 29

[8] J. Li Lin, Changwi Zou, “Research on Cloud Computing Based on Android Platform”, Software Guide,

vol.11, (2010), pp.137-139

[9] http://en.wikipedia.org/wiki/Android_(operating_system)

[10] http://www.openhandsetalliance.com/android_overview.html

[11] http://www.android.com

[12] D. Bornstein, “Dalvik VM Internals”, Google I/O conference 2008 presentation video and slides.

http://sites.google.com/site/ io/Dalvik-vm-internals, (2008).

[13] B. Dolan-Gavitt, et al, “Virtuoso: Narrowing the Semantic Gap in Virtual Machine Introspection”, IEEE

Security and Privacy, (2011).

[14] "The truth about Android task killers and why you don't need them". PhoneDog, (2011), Retrieved

October 30, 2012.

[15] V. Matos "Lesson 3: Android Application's Life Cycle" (PDF). grail.cba.csuohio.edu. Cleveland State

University. Archived from the original (PDF), (2014). Retrieved April 15, 2014.

[16] "Android PSA: Stop Using Task Killer Apps". Phandroid.com. (2011). Retrieved October 30, 2012.

[17] R. Meier. Professional Android 4 Application Development. Books.google.com. Retrieved February 9,

2014.

Authors

Javed Ahmad Shaheen, He is presently working as SST (CS)

in Punjab School Education Department; he has done his MSCS

(Networking) from Virtual University of Pakistan Lahore. He has

practical experience of Network installation.

Mian Ali Asghar, He is also presently working as SST (CS) in

Punjab School Education Department; he is doing his MSCS from

Global Institute Lahore. He has good command over Web

Development and Software Engineering.

Abid Hussain, He is also presently working as SST (CS) in

Punjab School Education Department; he is doing his MSCS

(Networking) from Virtual University of Pakistan Lahore. He has

good command over Wireless Networking and Programming.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 12, No. 7 (2017)

30 Copyright © 2017 SERSC

