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Abstract 

Three kinds of global universal controllers are proposed for nonholonomic systems, 

namely, the universal exponential regulators, the universal K-exponential controller and 

the universal practical controller. With help of an introduced state and the dynamic 

feedback technique, a controller with special structure is constructed to obtain an 

augmented closed-loop error system. The error system tends to continuous oscillation. So 

the controller structure is modified to loosen the control objective to practical stability 

and the error can converge to a neighborhood of origin as small as possible. Thus, 

oscillation and peaking phenomena are avoided and engineering precision is obtained. 

Detailed simulations on the three-dimension chained system are carried out, and the 

results show the effectiveness of the proposed controllers. 
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1. Introduction 

In recent years, with the development of the mobile robot technology and aerospace 

technology, the control problems of nonholonomic systems get the attention of the 

scholars around the world. Because the constraint equations of this kind of system always 

contain differential terms and nonholonomic constraint equation [1], it's called the 

nonholonomic system. 

In engineering practice, there are a lot of nonholonomic systems, the causes of this 

phenomenon are various, some of which are caused due to the moving characteristics of 

the object itself, such as for pure roll, no sliding movement of the ball and sliding on the 

ice skate, wheeled mobile robot [2-4], etc.; Also some of them considers actual situation 

and are artificially added, such as flexible manipulators[5], intelligent vehicle [6], the 

surface ship [7], etc.; Some of them are caused by under-actuated, such as satellites in 

space and the space shuttle, space robot [8], etc. These systems have common 

characteristics: they are constrained by the nonholonomic constraint equation, namely in 

the constraint equations of the nonholonomic system contain at least one differential item, 

and unintegrable constraint equation. Because the approximate linearization of 

nonholonomic systems are uncontrolled, the continuous static state feedback control law 

cannot be applied to realize the whole state of stabilization [9-10]. It has important 

theoretical significance for noholonomic system control. 

Based on such typical nonholonomic wheeled mobile robot system to study the point 

stabilization and trajectory tracking control problem, when the control task switching 

between point stabilization and trajectory tracking, require the system to switch to the 

corresponding controller, and this kind of switch is likely to make the system produce 

shock, the components damage [11-13]. In order to avoid this kind of switch, scholars put 

forward the unified controller, the controller of processing a variety of control tasks at the 

same time. 
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At present, the main content of the control problem of nonholonomic systems research 

including object model establishment and transform, motion planning, fixed point 

stabilization and trajectory tracking and optimization control and so on. 

Many industrial controls contain both fixed point stabilization and trajectory tracking 

[14-18]. Traditional switcher will cause the following problems:  

(1) Switching can cause the shock, it is harm to the system;  

(2) It is hard to determine the switch time exactly, the delay features of the practical 

system will cause the system worsen. It is necessary to study and apply to the unity of the 

fixed point stabilization and trajectory tracking controller. 

The content of reference [19] introduce the dynamic feedback technology (but not for the 

linearization) for the second order nonholonomic system, the global continuous time invariant 

dynamic feedback controller is designed, without any switching, obtained the exponential 

convergence speed, but didn't get the asymptotic stability, when t , systems tend to be 

more persistent oscillation. 

According to the content of reference [20], a small constant 0   can be introduced 

for three-dimensional chain systems in order to improve the structure of controller except 

any switches [21-22]. It can eliminate persistent oscillation and obtain the exponential of 

convergence speed. 

 

2. Global Universal Control 
 

2.1. Universal Exponential Regulator 

The mathematical model of three-dimension chain systems is as follows: 

1232211 ,, uxxuxux                                                   (1) 

Where  TxxxX 321 ,,  is the system state,  21,uu is control input. The reference 

mode of system (1) is 

rrrrrrr uxxuxux 1232211 ,,                                                 (2) 

Where
T

rrrr xxxX ],,[ 321  is the system state,  ruu 2r1 , is control input. 

Where
T

rrrr xxxX ],,[ 321  is the system state,  ruu 2r1 , is control input. 

 

2.2. Universal K-exponential Controller 

To obtain asymptotic stability, choose K–class function  ok0  as the initial value of 

auxiliary dynamic variables dx2 , where (0)
e

o X . 

Theorem 1 If the system is 2 1 3 1
2 0,k k k k   , the initial value of dx2  is  

      10,000 4
1

4
1

2

2  
 ooxxx d

                             (3) 

The continuous control law is as follows: 

 

Vzxkxkx

ekxuu

Vzxkxkuu

uuuux

edd

dr

der

rre

13212

22222

231111

2211 ,,00












                                         (4) 

 21,uu  is in bounded and the X  is K global exponential stability. 

Demonstrate 

1) When      00,00  ttXX
 ,  so  21,uu  is in bounded. 
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2) Suppose (0) 0
e

X .By the equation (3) and the 2 2 2( ) (if 0)a b a b ab     we 

known, 

        22

2

2

1
2

1
00

2

1
0 s

ds ooxxV 
                                   (5) 
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                          (6) 

For short, define ooO  , time derivative of the closed-loop system V satisfies:  

   

       tk

d

tk

OetVtxtx

eVtVVkV

1

1

2

21

2

1

2,max

002












                                  (7) 

From equation (3) and 12 2kk  , 

        tktk

d

tk Oeexxeete 122 2

2222 000                            (8) 

From equation (7) and (8), 

      tk

d Oetxtetx 12222


                                     (9) 

According to the equation 2 2
/

d
h e x V and equation (6)-(9), 

       tk

d eOtxtxte 132

212 ,max


                               (10) 

    tktktk
eoeoeOth 111 12

2

1 12232 









 

                            (11) 

There exists strict increasing function  oc2 which satisfies 

     ocdtthth
t







0

2,0lim                               (12) 

According to the definition f and equation from (7)-(10), 
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               (13) 

Where     2

120 6 OkkMO   is K-class function. By the definition of z , we know: 

           

  2

2

012213

022

0200020

 







x

xxxxxz
                  (14) 

Consider the fourth system equation, both f and h  converge to zero with the 

exponential of 1
k and 2 1

k k respectively. 

From equation (12)-(14), there is constant 4 5 6
( , , )c c c satisfies the following equation: 

         tcc
eeczctz 126 0

054 00
 

  

Substitute equation (14) to the above equation, there is the K-class function 1
( )   

satisfies 

      t
etz 1

1

 
                                                       (15) 

Where           26

05

2

241 022
cc

r ecxc  is K-class function. 

From the equation (7),  

          t

r

t

rr OexcOexMttxtx 11 00 23212





                               (16) 

According to the definition of z, and equation (7), (9), (15), (16), there is the following 

equation: 
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Where        OxcO r 02
2

1
23

2

12    is K-class function. 

From equation (7), (9) and (17) ,there is 

          t
etxtxtxtX 4

3321



  
                                   (18) 

Where     23 3  O  is K-class function. So ( )
e

tX  is K-exponential stable. 

3) Suppose (0) 0
e

X , to prove 1 2
( , )u u  is in bounded. By the equation (4),(6),(7), (15), 
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Above all, both O and 1

( )o  are the same order infinitesimal of o .So 1
( )u t is in 

bounded. So 2
( )

d
x t  is in bounded in the same way, and 2

( )u t is also in bounded. 

By the way, 1 2
( , )u u will not converge to zero except fixed-point stabilization. 

4) Suppose (0) 0
e

X , to prove 1 2
( , )u u  is continuous. According to equation (1)-(3), 

only have to prove that when (0) 0
e

X ( 0o ), there is 1 2 1 2
( , ) ( , )

r r
u u u u . From 

definition z there is the following equation: 
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From (6) and (14), there is the following equation: 
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1
/0202lim0/00lim rd xxVzx  

From (4), it can obtain: 
              00/000lim00lim 12311

0
11

0
rdr uVzxkxkuu 





 

So 1
u  is continuous. It can be proved that 2

u is also continuous in the same way. 

 

2.3. Universal Practical Controller  

For universal practical control, the system tracking error converges to a small 

neighborhood of origin. Because the neighborhood can be arbitrarily small, therefore, for 

the engineering application, it can ensure accuracy. 

Theorem 2 If 1312 ,02 kkkk  , error bound is 0  , choose 2
(0) 0

d
x  , from the 

smooth control law: 

 

 
  1134

413212
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4231111

/20,
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kkkk
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ekxuu
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dd

dr
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                           (19) 

State trajectory ( )
e

tX is ultimately global bounded, control input 1 2
( , )u u is in bounded,. 

         tutututu rr
t

2121 ,,lim 


 

Demonstrate A closed loop system is as follows: 
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Where  422 / kVxeh d  , V and f  are defined in (9) and (10) respectively, time 

derivative V satisfies     tkeVtVVkV 12

1 02  , so     txtx d21 , converges to zero 

with the speed of 1
k exponential. Finally, consider the definition of z ,    txtx r 12  is 

exponential convergence, in the same way, it is practical stability. 

Because V  has lower bound, so both  42 / kVzx d   and  41 / kVzx   can converge to 

zero,  21,uu is in bounded, and          tutututu rr
t

2121 ,,lim 


. 

From demonstrate of Theorem 2, because the numerator of  42 / kVzx d   

and  41 / kVzx   are both exponential convergent, the denominator has lower bound 

( 0  ), so it avoid the peaking phenomenon in the theorem 1 completely. 

 

3. The Simulation Verification 

Considering the unicycle mobile robot kinematics model as follows: 

   ,sin,cos vyvx  
From a simple transformation, 

321

321

,

cossin,sincos,

xvuu

xyxyxxx








                        (21) 

It can obtain a three-dimension chain system 1232211 ,, uxxuxux   . 

Suppose that the system initial state is    4/,1,1,,  yx ,initial state of reference 

system is    6/,0,0,,  rrr yx . Choose the controller parameters as 

1.0,4.1,5.1,2,2.0 4321  kkkk . 

 

3.1. Straight Line Tracking 

Target trajectory is a straight line, using the controller mentioned in Theorem 2. The 

results of the simulation are shown in Figure 1, the controller mentioned in this section 

can track the reference line better and faster. 
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(c) Geometrical Locus 

Figure 1. Straight Line Tracking Simulation Time 30 Seconds 

It seems that the peaking phenomenon does not appear in Figure 1, in fact that is 

wrong. Only when ( )V t is closed to zero, the peaking phenomenon will appear. The larger 

the 1
k is, the sooner peaking phenomenon appears; When 1

k is constant, the peaking 

phenomenon will appear finally as long as the simulation time is long enough. 
 

3.2. Circumference Tracking  

Target trajectory is the circumference of radius 1, using the controller that mentioned 

in Theorem 2. The results of the simulation are shown in Figure 2. From Figure 2(b), the 

severe peaking phenomenon is appeared at about 27 seconds. In Figure 2(a) there is 

peaking phenomenon too. Therefore, state error can't really converge to zero, asymptotic 

exponential convergent properties cannot be achieved practically. 
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(c)  Geometrical Locus 

Figure 2. Circumference Tracking 

 

3.3. The Universal Practical Controller 

The universal practical controller is mentioned in Theorem 2, simulations on straight 

line tracking and circular trajectory are shown in Figure 3 and Figure 4. 
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(a) State Error             (b)Control Error 

Figure 3. The Practical Tracking Straight Trajectory 
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Figure 4. The Practical Tracking Circular Path 
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The simulation time of Figure 3 and Figure 4 is the same as Figure 1 and Figure 2,but 

there is no peaking phenomenon in Figure 3 and Figure 4. This shows that the peaking 

phenomenon is eliminated according to theorem 3. However, the state error curve of 

Figure3 and Figure4 doesn’t converge to zero, but converge to a small neighborhood of 

zero. 

 In addition, in Figure 3 and Figure 4, other control error exponential converge to zero 

expect r
v v

in Figure 4. It seems to be inconsistent with the conclusion of Theorem 2. 

The reason is the transformation from robot coordinate system   ,,,, vyx and three-

dimensional chain coordinate system 
 21321 ,,,, uuxxx

. Considering the coordinate 

transformation (21), Theorem 2 shows that   21,uu  will exponential converge to  rr uu 21 ,  

so  3, xv    will exponential converge to  rrrr xv 3,   . In Figure 3, 
0

r
 

,so r
v v

.In 

Figure 4, r


 is a nonzero constant, and 3
x

can only converge to the neighbor of 3r
x

, v can 

only converge to r
v as well. 

 

4. Conclusion 

For the first order nonholonomic system, paper studies three universal controller based 

on dynamic feedback, realizes the exponential of convergence, asymptotic stability and 

the practical stability respectively, which can be used to point stabilization and trajectory 

tracking at the same time without modifying. Detailed simulations on the three-dimension 

chained system are carried out, and the results show the effectiveness of the proposed 

controllers.  

 

Acknowledgements 

This work is financially supported by The National Natural Science Foundation of 

China (Grant No. 51404073), The National Natural Science Foundation of China 

(Grant No.51574088), Support from the University Nursing Program for Young Scholars 

with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2016084), The 9th 

special China Postdoctoral science Foundation projects (Grant No.2016T90268),China 

Postdoctoral Foundation (Grant No.2014M550180), Hei Long Jiang Postdoctoral 

Foundation (Grant No.LBH-TZ-0503),The Scientific Research Fund of Heilongjiang 

Provincial Department of Education (Grant No.12541090). Northeast petroleum 

university graduate student innovation research projects (Grant No.YJSCX2016-

010NEPU) 
 

References 

[1] P. Frihauf, S. J. Liu and K. Miroslav, “A single forward-velocity control signal for stochastic source 

seeking with multiple nonholonomic vehicles”, Journal of Dynamic Systems, Measurement and Control, 

vol. 5, no. 136, (2014). 

[2] A. Sakly, “Stability and stabilization studies for a class of switched nonlinear systems via vector norms 

approach”, ISA transactions, vol. 2, no. 31, (2014). 

[3] J. Yin, “Asymptotic stability in probability and stabilization for a class of discrete-time stochastic 

systems”, International Journal of Robust and Nonlinear Control, vol. 15, no. 25, (2015). 

[4] K. D. Do, “Practical control of under actuated ships”, Ocean Engineering, vol. 13, no. 37, (2010). 

[5] K. D. Do, Z. P. Jiang and J. Pan, “Simultaneous tracking and stabilization of mobile robots: an adaptive 

approach”, IEEE Transactions on Automatic Control, vol. 7, no. 49, (2004). 

[6] W. E. Dixon, D. M. Darken and F. M. Zhang, “Global exponential tracking control of a mobile robot 

system via a PE condition”, IEEE Transactions on System. Man and Cybernetics-Part B: Cybernetics, 

vol. 1, no. 30, (2000). 

[7] G. Oriolo, A. De Luca and M. Vendittelli, “WMR control via dynamic feedback linearization: design, 

implementation, and experimental validation”, IEEE Transactions on Control Systems Technology, vol. 

6, no. 10, (2003). 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.1 (2017) 

 

 

Copyright ⓒ 2017 SERSC      299 

[8] T. C. Lee, K. T. Song and H. C. Lee, “Tracking control of unicycle-modeled mobile robots using a 

saturation feedback controller”, IEEE Transactions on Control Systems Technology, vol. 2, no. 9, 

(2001). 

[9] B. J. Li, H. Chen and J. F. Chen, “Global finite-time stablization for a class of nonholonomic chained 

system with input saturation”, Journal of Information and Computational Science, vol. 3, no. 11, (2014). 

[10] E. P. Li, L. J. Long and J. Zhao, “Global output-feedback stabilization for a class of switched uncertain 

nonlinear systems”, Applied Mathematics and Computation, vol. 1, no. 256, (2015). 

[11] F. Z. Gao, F. S. Yuan and Y. Q. Wu, “Adaptive stabilization for a class of stochastic nonlinearly 

parameterized nonholonomic systems with unknown control coefficients”, Asian Journal of Control, vol. 

6, no. 16, (2014). 

[12] K. D. Do, “Global inverse optimal stabilization of stochastic nonholonomic”, Systems and Control 

Letters, vol. 4, no. 75, (2015). 

[13] Y. N. Wang, Z. Q. Miao, H. Zhong and Q. Pan, “Simultaneous stabilization and tracking of 

nonholonomic mobile robots: A Lyapunov-based approach”, IEEE Transactions on Control Systems 

Technology, vol. 4, no. 23, (2015). 

[14] C. Samson, “Control of chained systems-application to path following and time-varying point 

stabilization of mobile robots”, IEEE Transactions on Automatic Control, vol. 1, no. 40, (1995). 

[15] K. D. Do and Z. P. Jiang, “Tracking of underactuated ships”, Systems & Control Letters, vol. 4, no. 47, 

(2002). 

[16] B. L. Ma and S. K. Tso, “Unified controller for both trajectory tracking and point regulation of second-

order nonholonomic chained systems”, Robotics and Autonomous Systems, vol. 4, no. 56, (2008). 

[17] J. H. Li, P. M. Lee and B. H. Jim, “Point-to-Point navigation of under-actuated ships”, Automatica, vol. 

12, no. 44, (2008). 

[18] W. E. Dixon, D. M. Dawson and F. Zhang, “Global exponential tracking control of a mobile robot 

system via a PE condition”, IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 

vol. 1, no. 30, (2000). 

[19] D. Lapierre and S. A. Pascoal, “Nonsingular path following control of a unicycle in the presence of 

parametric modeling uncertainties”, International Journal of Robust and Nonlinear Control, vol. 10, no. 

16, (2006). 

[20] M. A. Lashari, Q. Zia and M. Rehan, “Stabilization and tracking control for a class of discrete-time 

nonlinear systems”, International Bhurban Conference on Applied and Science & Technology, 

Islamabad, Islamic Republic of Pakistan, (2015). 

[21] H. Z. Xiao, Z. J. Li and y. Chun, “Stabilization of nonholonomic chained systems via model predictive 

control”, IEEE 2014 International Conference on Multisensor Fusion and Integration for Intelligent 

Systems, Beijing, China, (2014). 

[22] X. Wenjing and M. Baoli, “Adaptive set stabilization of wheeled  mobile robot with uncertainties”, The 

29th Chinese Control Conference, Beijing, China, (2010). 

 

Author 
 

Ting-ting Wang, was born on January 22, 1982 in Anda, 

Heilongjiang, China. She received the B. A. and M. A. degrees in 

2004 and 2007, respectively, all from Daqing Petroleum Institute, 

China. From 2007 to 2009 she was Assistant at School of Electrical 

Engineering & Information, Daqing Petroleum Institute, China. From 

2009 to 2014 she was Lecturer at School of Electrical Engineering & 

Information, Northeast Petroleum University, China. Since 2014 she 

is Associate Professor at School of Electrical Engineering & 

Information, Northeast Petroleum University, China. Her scientific 

interests include aspects on information and control. 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.1 (2017) 

 

 

300   Copyright ⓒ 2017 SERSC 

Tian-you Li, was born on February 22, 991 in QiQihar, 

Heilongjiang, China. He received the university education in 2010 in 

Northeast university of petroleum China. He majored in Automation. 

He got his Bachelor's degree in 2014. Since 2015, he began to receive 

postgraduate education at School of Electrical Engineering & 

Information, Northeast Petroleum University, China. His research 

direction is control science and engineering. 

 

 

Wan-chun Zhao, was born December 29,1978 in Jiutai, Jilin, 

China. He received the B. A., M. A. and Ph.D degrees in 2002 and 

2005 and 2009, respectively, all from Daqing Petroleum Institute, 

China. From 2009 to 2010 he was Lecturer at School of Petroleum 

Engineering, Daqing Petroleum Institute, China. From 2010 to 2013 

he was Associate Professor at School of Petroleum Engineering, 

Northeast Petroleum University, China. Since 2013 he is Professor at 

School of Petroleum Engineering, Northeast Petroleum University, 

China. Her scientific interests include aspects on information and 

control. 


