
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016), pp.107-120

http://dx.doi.org/10.14257/ijmue.2016.11.8.12

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

A Multi-keyword Ranked Search over Encrypted Cloud Data

Supporting Semantic Extension

Zhihua Xia
1
, Li Chen

1
, Xingming Sun

1
 and Jianxiao Liu

2

1
Jiangsu Engineering Center of Network Monitoring, Jiangsu Collaborative

Innovation Center on Atmospheric Environment and Equipment Technology,

School of Computer & Software, Nanjing University of Information Science &

Technology, Nanjing, 210044, China
2
college of informatics, Huazhong Agricultural University, Hubei, China

xia_zhihua@163.com, z_chenli@163.com, sunnudt@163.com and

liujianxiao321@163.com

Abstract

With the emergence of cloud computing, many data owners outsource their local data

to cloud server so as to enjoy high-quality data storage services. For the protection of

data privacy, sensitive data has to be encrypted before outsourcing, which makes effective

data utilization a challenging task. Although existing searchable encryption technologies

enable data users to conduct secure search over encrypted data, the functionality of these

schemes need to be further improved. In this paper, we construct a secure and efficient

multi-keyword ranked search scheme which supports both the semantic extension search

and the multi-keyword ranked search. The semantic extension is achieved through the

mutual information statistical analysis of keywords. And the multi-keyword ranked search

is achieved through a balanced binary tree whose nodes are the vectors of term frequency

(TF) values. The splitting operation and secure transformation are utilized to encrypt the

vectors of index and query. Note that, the encrypted vectors can be well used to calculate

accurate relevance scores. Phantom terms are added to the index vector to blind the

search results to resist statistical attacks. Due to the use of tree-based index structure, the

proposed scheme can achieve the sub-linear search time. Finally, the experiments are

conducted to demonstrate the efficiency of the proposed scheme.

Keywords: multi-keyword ranked search; semantic search; mutual information; secure

transformation; balanced binary tree

1. Introduction

Nowadays, more and more attentions from industry and academia are paid to the cloud

computing, which can provide huge resource of computing, storage and application [1].

Many people are motivated to outsource their local data (such as person health records,

tax documents, financial transactions, and so on) to the cloud for its cost-efficiency and

great flexibility [2]. However, the cloud server could only be semi-trusted, because they

may learn the information of users‟ data and even leak users‟ data to some others. To

protect data privacy, sensitive data has to be encrypted before outsourcing. However, this

will cause a high cost in terms of data usability. For example, the existing techniques

about keyword-based information retrieval, which are widely used on the plaintext data,

cannot be directly applied on the encrypted data [3].

In order to address the above problem, searchable encryption (SE) techniques are

proposed to provide secure search over encrypted data for users [4-8]. Song et al. [7]

proposed the first symmetric searchable encryption (SSE) scheme. The search time of this

scheme is linear to the size of the data collection. Goh et al. [8] proposed formal security

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

mailto:xia_zhihua@163.com
mailto:sunnudt@163.com

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

108 Copyright ⓒ 2016 SERSC

definitions for SSE and designed a scheme based on Bloom filter. The search time of

Goh‟s scheme is ()O n ,where n is the cardinality of the document set.

Many inchoate methods only achieved exact single keyword search. To construct

practical system, some researchers proposed the SE schemes to support multi-keyword

ranked search [9-14]. This type of schemes allows user to input several query keywords to

refine user‟s query. The search results are ranked according to some scoring criteria. This

is a more practical type of technology. In order to deal with dynamic data collection, some

researchers constructed dynamic schemes to support addition, deletion and modification

document collection [15]. Specially, the dynamic search scheme has realized the

multi-keyword ranked search functionality [14]. Considering that people may make spell

errors when inputting query keywords, some researches proposed fuzzy keyword search

schemes, which mainly employ a spell-check mechanism to support tolerance of minor

typos [16-18]. These schemes mainly take the structure of terms into consideration and

use edit distance to evaluate the similarity. They do not consider the terms semantically

related to query keyword, thus many related files may be omitted.

Semantic search is a wide used technology to return more related results to user in

plaintext search field [19-26]. In this paper, we propose a secure and efficient

multi-keyword ranked search scheme, which takes both the semantic search and

multi-keyword ranked search into consideration. The semantic extension is achieved

through semantic relationship graph which is constructed by using the co-occurrence

statistics of keywords. The multi-keyword ranked search is achieved through a balanced

binary tree whose nodes are the vectors of term frequency (TF) values. Splitting operation,

secure transformation and phantom terms are utilized to protect the data privacy. The

proposed scheme achieves the sub-linear search time and can deal with the deletion and

insertion of documents flexibly. In addition, the search efficiency of our scheme can be

further increased by conducting parallel search on the tree index.

The reminder of the paper is organized as follows. In Section 2, we give a belief

introduction to the system model, threat model, and design goals. Section 3 describes

notations and preliminaries. Section 4 describes our scheme in detail. In Section 5, the

search efficiency can be described. We conclude the paper in Section 6.

2. Problem Formulation

A. System Model

In the proposed SE scheme, the system model includes three entities: the data owner,

the data user, and the cloud server.

encrypted

index tree
cloud server

encrypted

documents

top-k ranked

result

trapdoor

search control (trapdoors)

access control (data decryption keys)

Figure 1. Architecture of Ranked Search Over Encrypted Cloud Data

Data owner has a collection of documents 1 2{ , ,..., }nd d dD
and defines a dictionary of

the keywords 1 2{ , ,..., }mw w wW=
from D . In the initialization of the system, the data owner

constructs an encrypted searchable index tree I from the data collection D , and calculates

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 109

the inverted document frequency (IDF) values and semantic relationship graph (SRG) of

the keywords. Next, all the files in D are encrypted to generate an encrypted data

collection C . Finally, the data owner uploads both the encrypted index I and the

collection C to cloud server, and distributes the secret keys of trapdoor generation and

document decryption, the IDF values, and the SRG to the authorized data users.

Data users are the authorized ones to conduct search operation on cloud. To start a

search, the data users take several keywords as input. First, the set of query keywords will

be extended according to the SRG. Secondly, the weighted IDF values of keywords in the

extended set are used to construct a query vector. Thirdly, phantom terms are added to the

vector which is then encrypted by the splitting technique and secure transformation.

Finally, the encrypted vector is used as the trapdoor which is submitted to the cloud to

search the related documents. After cloud server returns top- k matching encrypted files,

the data users can decrypt the files with the secret keys.

Cloud server stores the encrypted secure searchable index I and the collection of

encrypted documents C . Upon receiving the trapdoor, the cloud server is responsible to

execute search over the index and return the top- k ranked encrypted files to the data user.

In addition, when the document collection has been updated by data owner, the cloud

server also has to update the index and document collection stored in the server.

B. Threat Model

The cloud server is regarded as “honest-but-curious” in our system. That is to say, the

cloud server honestly follows the designated protocols, while it is curious to analyze the

stored information and learn additional information about the index and request. We

consider two threat models with different attack capabilities as follows [9].

Known Ciphertext Model: In this model, the cloud server can only access the

encrypted files, the secure index and the submitted trapdoor. Without the decryption keys,

the cloud server cannot know the plaintext.

Known Background Model: In this stronger model, the cloud server knows more

information such as term frequency, file frequency and co-occurrence statistic of the

keywords [11]. With such statistical information, the cloud server could discern certain

keywords by analyzing the list of search results or the encrypted index.

C. Design Goals

To enable effective and secure multi-keyword semantic ranked search over outsourced

cloud data under the aforementioned model. The designed goals of our system are

following:

Multi-keyword Semantic Ranked Search: The proposed scheme is designed to

support semantic extension search and multi-keyword ranked search. Dynamic operation

is supported to update the document collection.

Search Efficiency: The scheme aims to achieve sub-linear search efficiency by

exploring a tree-based index and an efficient search algorithm. In addition, the parallel

search can be conducted on the index to further improve the search efficiency.

Privacy-Preserving: Our scheme is designed to meet the privacy requirement and

prevent the cloud server from learning additional information from index tree and

trapdoor. Specifically, the privacy is preserved in following three aspects:

1．Index Confidentiality and Query Confidentiality. The underlying plaintext

information, including keywords in the index and query, TF values of keywords

stored in the index, IDF values of query keywords, and the co-occurrence statistic

of keywords, should be protected from cloud server;

2．Trapdoor Unlinkability. The cloud server should not be able to determine whether

two encrypted queries (trapdoors) are generated from the same search request;

3．Keyword Privacy. The cloud server could not identify the specific keyword in query,

index or document collection by analyzing the statistical information like

document/keyword frequency. Note that our proposed scheme is not designed to

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

110 Copyright ⓒ 2016 SERSC

protect access pattern, i.e., the sequence of returned documents.

3. Notations and Preliminaries

A. Notations

 D –The plaintext collection, denoted as a set of n documents 1 2{ , ,..., }nd d dD
.

 C –The encrypted document collection stored in the cloud server, denoted

as 1 2{ , ,..., }nc c cC
.

 W= –The dictionary, the keyword set composing of m keyword, denoted

as
, ...,1 2{ , }mw w wW

.

 W
%

–The subset of W=, denoting the set of keywords in a search request.

 sW%–The extensional semantic query keywords set for W%.

 T – The unencrypted form of index tree for the whole document set D .

 I –The searchable encrypted tree index generated from T .

 Q –The query vector for keyword set sW% .

 s
T

W% –The trapdoor for the search request. It is the encrypted form of Q .

 Dv –The data vector for tree node v . Note that every node has a data vector Dv in the

index tree. Specially, the node v can be either a leaf node or an internal node of the

tree.

 ()vScore D ,Q
–The function to calculate the similarity score for query vector Q and

data vector Dv stored in node v .

thk score –The smallest relevance score in current RList , which is initialized as 0.

 hchild –The child node of a tree node with higher relevance score.

 lchild –The child node of a tree node with lower relevance score.

B. Vector Space Model

Vector space model is the most popular similarity measure method in plaintext

information retrieval, which supports both conjunctive search and disjunctive search [11].

Moreover, the vector space supports multi-keywords and non-binary presentation. Scoring

is a natural way to rank relevant documents. In this paper, the documents are ranked

according to the “TF×IDF rule”. In the proposed scheme, each document is represented

by a data vector Dv , whose elements are normalized TF values of keywords in this

document. And, a search request is expressed by a query vector Q , whose elements are

the normalized IDF value of query keywords in the document collection. Finally, the

score of a data vector
Dv on query Q is calculated by the inner product of the two vectors:

,()

i

i i

s

v v

w

v w wScore TF IDF

 D ,Q D Q

W% , (1)

Where , iv wTF
denotes the normalized TF value of keyword iw stored in index vector Dv .

If Dv is an internal node of the tree, , iv wTF
is calculated from index vectors in the child

nodes of v. If the index vector Dv is a leaf node, , iv wTF
is calculated as:

2
, , ,()i i i

i

v w d w d w

w

TF TF TF

W , (2)

Where , ,1 lni id w d wTF N , and , id wN denotes the number of keyword iw in document d .

In the search vector Q , iwIDF denotes the normalized IDF value of keyword iw in

document collection, and is calculated as:

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 111

2()i i i

i s

w w w

w

IDF IDF IDF

W% . (3)

Specially, iwIDF denotes the IDF value of keyword iw in the document collection, and

is calculated as:

 ln 1i iw wIDF N N
, (4)

Where iwN denotes the number of documents that contain keyword iw , andN denotes

the total number of documents in the collection. To meet the need of data users,

top- k relevant documents based on the scores are chose.

C. Keyword Balanced Binary tree

The keyword balanced binary (KBB) tree in our scheme is a dynamic data structure

whose node stores a vector D . The elements of vector D are the normalized TF values.

Sometimes, we refer the vector D in the node v to Dv for simplicity. Formally, the node v in

our KBB tree is defined as:

,, , , ,Dv l rv ID P P FID
 (5)

Where ID denotes the identity of node v , lP and rP are respectively the pointers to the left

and right child of node v . Here, if the node v is a leaf node of the tree, FID stores the

identity of a document, and Dv denotes a vector consisting of the normalized TF values of

the keywords in the document. If the node v is an internal node, FID is set to null,

and Dv denotes a vector consisting of the TF values which is calculated as:
[] max{ . [], . []}, 1,..., .D D Dv l v r vi v P i v P i i m (6)

The detailed construction procedure of the tree-based index is presented in next

section.

D. Secure k-NN computation

Secure k -nearest neighbor (k-NN) computation is such a method which can encrypt the

vectors, and the encrypted vectors can still be used to calculate the accurate distances

between each other [27-28]. During the encryption process of secure k-NN, a vector will

be split into two vectors. The splitting technique is secure against known-plaintext

attack[27]. Then, the vectors will be multiplied with the inventible matrices. Here, we

need to calculate the dot product of two encrypted vectors, and denote the data vector

as Dv and the query vector as Q . The secret key is composed of one m bit vector as S and

two m m inventible matrices as 1 2
{M ,M } . First, Q is split into two random vectors

as
, {Q Q }

, and Dv is split into two random vectors as{D ,D }v v

. The vector S is used as a

splitting indicator. Specifically, if the
-j th

bit of S is 0, D []v j
and []Dv j

are set as the same

as []Dv j , while []Q j and []Q j
are set to the random numbers so that their sum is equal

to []Q j . If the
-j th

bit of S is 1, the splitting process is similar except that Dv and Q are

switched. Next, the split data vector pair {D ,D }v v

is encrypted as 1 2,T T

v v
 {M D M D } , and the

split query vector pair
, {Q Q }

is encrypted as
1 1

1 2, {M Q M Q } . Finally, the formula to

calculate the score is:
T 1 T 1

1 1 2 2

T T 1 T T 1

1 1 2 2

T 1 T 1

1 1 2 2

() () () () ()

() ()

.

v v

v

v v

v

v

v v

v

Score

D ,Q M D M Q M D M Q

M D M Q M D M Q

D M M Q D M M Q

D Q D Q

D Q
 (7)

After be split and transformed, neither query vector nor data vector can be guessed by

analyzing their corresponding ciphertext. In addition, the Eq. (7) shows that we can

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

112 Copyright ⓒ 2016 SERSC

calculate the exact dot product of data vector Dv and the query vector Q by using their

encrypted forms.

E. Semantic Relationship Graph

In this paper, we will construct the semantic relationship graph (SRG) by computing

mutual information among keywords. Here, the statistical method proposed by Church

and Hank [29] is adopted. For two keywords x and
y

, their mutual information (,)I x y is

defined as:

2

(,)
(,) log

() ()

p x y
I x y

p x p y

, (8)

Where ()p x and ()p y are the ratios of documents that contain the

keyword x and
y

respectively, and
(,)p x y

is the ratio of documents that contain both the

keyword x and the keyword
y

. In this paper, the mutual information is normalized into as

interval (0,1] as:

max

(,)
(,)

I x y
I x y

I

, (9)

Where maxI denotes the max value in the all mutual information
(,)I x y

, and is a factor

used to scale
(,)I x y

so as to adjust the importance of the extended keywords in the search.

Figure. 2 shows a small scale semantic relationship graph, whose nodes denote the

keywords and edges are the normalized mutual information between the corresponding

two keywords. Here, the factor is set to 1. Church and Hank [29] suggested that there is

a genuine association between x and
y

when
(,) 0I x y

. Thus, we only add an edge

between two nodes when the mutual information between them is greater than 0.

network

Internet

host

WWW
web

LANprotocol

intranet

authentication

0.31

0.2

0.31

0.52

0.21 0.78
0.78

0.45

0.24

1.0

Figure 2. An Example of Semantic Relationship Graph

4. The Proposed Scheme

In this paper, we exploit the KBB tree together with the semantic relationship graph to

achieve semantic and privacy-assured multi-keyword ranked search over encrypted cloud

data. First, the construction of unencrypted KBB tree is introduced. Secondly, the search

process on the unencrypted index is presented. Thirdly, we introduce construction for

multi-keyword ranked retrieval search scheme which add the encryption to construction

of the index and query trapdoor.

A. The Construction of Unencrypted Index Tree

In the Section 3, the construction of the nodes of the KBB index tree is briefly

introduced. In the process of index construction, we first generate a tree node for each

document in the collection. These nodes are used as the leaf nodes of the index tree. The

values of leaf node are the TF values of keywords in the corresponding document.

Secondly, the internal nodes of the tree are generated based on these leaf nodes according

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 113

to the formula (6). The construction process of the index tree is presented in Algorithm 1;

and an example of unencrypted index tree is shown in Figure. 5. Following are the two

symbols in Algorithm 1.

 CurrentNodeSet – The set of current processing nodes which have no parents. If the

number of nodes is even, the cardinality of the set is denoted as 2 ()h h Z , else the

cardinality is denoted as
(2 1)h

.

 TempNodeSet
– The set of the newly generated nodes.

Algorithm 1 Index Tree Construction

()BuildIndexTree D T
:

 procedure

1．Initialization: Input the document collection 1 2{ , ,..., }nd d dD
with the identifiers

{ | 1,2,..., }FID FID n FI D ; Define a function
()GenID

to generate a unique identity

for each tree node.

2．Pad data to all nodes of index tree:

 Define the data structure of each node as
,, , ,Dv l rv ID P P FID

in the index tree;

 for(each document FIDd in D)/*set the data structure of leaf nodes, as Figure.5*/

 Set
. ()v ID GenID

, . , . , .l rv P null v P null v FID FID ,

,[] FID id wi TFD
,for (1,2,...,)i m ;

Insert v to CurrentNodeSet ;

 end for

 for (the number of nodes in CurrentNodeSet is larger than 1) do

if (the number of nodes in CurrentNodeSet is even, i.e. 2h) then

 for (each pair of nodes v and v in CurrentNodeSet) do

Generate a parent node v for v and v ;
. ()v ID GenID

, and . , . , . 0, [] max{ . [], . []}l r v v rv P v v P v v FID D i v D i v D i

for each 1,...,i m ;

 Insert v to
TempNodeSet

;

end for

else /* the number of nodes in CurrentNodeSet is odd, i.e. (2 1)h */

 for (each pair of nodes v and v of the former
(2 2)h

nodes in CurrentNodeSet) do

Generate a parent node v for v and v ;

 Insert v to
TempNodeSet

;

end for

Create a parent node 1v for the
(2 1)h

- th and 2h - th node, and then create a parent

node v for 1v and the
(2 1)h

- th node;

Insert v to
TempNodeSet

;

 end if /*if (the number of nodes in CurrentNodeSet is even, i.e. 2h)*/

Replace CurrentNodeSet with
TempNodeSet

and then clear
TempNodeSet

;

end for /* for (the number of nodes in CurrentNodeSet is larger than 1)*/

return the only node in CurrentNodeSet , namely, the root of index tree T ;

In the index, if
[] 0u i D

for an internal node v , there is at least one path from the

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

114 Copyright ⓒ 2016 SERSC

node v to some leaf, which indicates a document d containing the keyword iw . In addition,
[]u iD

always stores the biggest normalized TF value of iw among its child nodes. Thus, the

possible largest relevance score of its children can be easily estimated.

r11

r21 r22

d1 d2 d3 d4

d5 d6

0.5 0.3 0 0.8 0 0.6 0.7 0.3 0

0.7

0 1 0 0

0.70.1 0.7 0.1 0.8 0.4 0 0.4

0.5 0.6 0.7 0.8 1 0.7

0.7 1 0.7 0.8 0.8 0.4 0.7 0.4

0.8 1 0.7 0.8

0.7

r

r12

①

①

①
②

③

0.10.7

③④

0.7 0.1

⑤

Figure 5. An Example of the Tree-Based Index

An example of the tree-based index is illustrated in Figure 5 where the document

collection { | 1,...6}id i D and cardinality of the dictionary 4m . In the construction

process of the tree index, we first generate leaf nodes from the documents. Then, the

internal tree nodes are generated based on the leaf nodes. This figure also shows an

example of search process, in which the query vector Q is equal to (0,0.92,0,0.38) . In this

example, we set the parameter k=3 with the meaning that three documents will be

returned to the user. According to the search algorithm, the search starts with the root

node, and reaches the first leaf node d4 through r11 and r22. The relevance score of d4 to

the query is 0.92. After that, the leaf nodes d3 and d2 are successively reached with the

relevance scores 0.038 and 0.67. Next, the leaf noded1 is reached and replace d3 in RList .

Finally, the algorithm will try to search subtree rooted by r12, and find that there will be

no reasonable results in this subtree because the relevance score of r12 is 0.52, which is

smaller than the smallest relevance score in RList . Finally, the search results include d4,

d3, and d1.

B. Search Process on Unencrypted Index Tree

The search process of our scheme is a recursive procedure upon the tree, named as

„Greedy Depth-first Search (GDFS)‟ algorithm. Since the internal node stores the bigger

normalized TF values between its child nodes, it is easy to determine which sub-tree can

be firstly searched in the light of the query vector. The search starts with the root node.

First of all, the search compares the inner product of the two child nodes of root node, and

then decides which sub-tree is preferentially searched. After that, this procedure is

executed recursively until the top- k objects is selected.

We construct a result list denoted as RList , whose element is defined as
,Score FID

.

Specifically, the Score represents the relevance of the document FIDd to the query, and is

calculated according to Formula (1). The RList stores the k accessed documents with the

largest relevance scores to the query. The elements of the list are ranked in descending

order according to the Score , and will be updated timely during the search process. Here,
thk score denotes the smallest score in the RList . Following are the detail of GDFS

algorithm in Algorithm 2.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

app:ds:preferentially

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 115

Algorithm 2 GDFS Algorithm on index tree T

(IndexTreeNode) :RList GDFS v
if (the node v is not a leaf node) then

if ((,) th
vScore k scoreD Q) then

 GDFS(.v hchild);

 GDFS(.v lchild);

else return;

end if

else if ((,) th
vScore k scoreD Q) then

Delete the element with the smallest relevance score from RList ;

Insert a new element
(,), .vScore v FIDD Q

and sort all the elements of RList ;

end if

return;

end if

C. The Construction for Scheme

In this subsection, we construct the multi-keyword ranked search scheme by integrating

splitting operation and secure transformation to the unencrypted index. The scheme

includes two phases: the construction of encrypted index and the search process on index

tree.

1) The Construction of Encrypted Index

()Setup SK

: The setup algorithm takes as the security parameter. The data

owner generates a random ()m m -bit vectorS as a spiting indicator and generates

two
() ()m m m m

invertible matrices
 1 2,M M

as encryption matrix. Specifically,
m is the size of dictionary W , and m is the number of dummy terms. The data

owner outputs a symmetric key as 1 2{ , , } S M MSK
.

 (,)GenSecureIndex D SK I
: First, the algorithm

()BuildIndexTree D T
is called to

generate the unencrypted index tree T . Secondly, before encrypting the index

vector
Dv of T , the data vector

Dv is extended from m -dimensions

to ()m m -dimensions. Each extended element
[]v m jD

, for
1,..., 'j m

is set as a

random number j . Thirdly, the data vectors are split according to the indicate

vector S after applying dimension-extending. The index vector
Dv for each node v is

split two random vectors
 D , Dv v

. Rules are as follows: if [] 0S i ,

[]Dv i
and

[]Dv i
is

set equal to
[]Dv i

. If [] 1S i ,
[]Dv i

and
[]Dv i

is set as two random values whose sum

equals to
[]Dv i

. Fourthly, the split data vectors
 D , Dv v

are encrypted by the

invertible matrices
 1 2,M M

. Finally, the encrypted index tree I is built where the

node v stores two encrypted index vectors
 1 2,I M D M D

T T
v v v

.The data owner

outsources the encrypted searchable index tree to the cloud server until the whole

vectors stored in the index tree nodes are encrypted. In addition, the encrypted

document collection is outsourced.

The IDF values and the SRG also need to be calculated by data owner and distributed

to authorized data users. The IDF values of the keywords in the dictionary are calculated

according to the Formula (4). And SRG is constructed as it is introduced in Section 3. In

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

116 Copyright ⓒ 2016 SERSC

addition, the documents are encrypted by symmetric key cryptography, and the encrypted

documents are uploaded to the cloud server.

2) The Search Process on Index Tree

(,)

s
GenTrapdoor

W
W SK T %
%

: With interest keyword set W% , this algorithm

semantically extends the query keywords based on the SRG to gain the extensional

query keywords set sW% . In order to tell the important degree between the original

keywords and the extensional keywords, it has to take the edge‟s weight of SRG

into consideration. First, []Q i will store a value associated with iw . The value is

calculated including three aspects :1) we set the semantic weight values of original

keywords as 1 and get the edge‟s weight values between the original keywords and

the extensional keywords from SRG as the corresponding semantic weight values.

However, when an extensional keyword is semantically related to several original

keywords, we select the maximum value of edge‟s weight values between the

original keywords and the extensional keyword from SRG as its semantic weight

value; 2) If the keyword iw is contained in W%, []Q i stores the IDF value of iw . If the

keyword iw is an extensional keyword, []Q i stores the product of IDF value

of iw and the semantic weight edge‟s value between iw and the original keyword. If

the keyword iw is an extensional keyword and has more than two semantic related

original keywords, []Q i stores the product of IDF value of iw and the maximum

edge‟s weight value. If the keyword iw is not contained in sW% , []Q i is set as 0; 3)

Taking advantage of the formula (3), the query vector Q need to be normalized.

After these series of process, the query vector Q stores the normalized value.

Before encrypting the query vector Q , we extend the dimension of query

vector Q from m to ()m m , secondly. Thirdly, we choose

randomly m ()m m
elements from m elements set their values as 1, the rest are

set as 0. Fourthly, query vector Q is split two random vectors
 {Q ,Q }

. On the

contrary, if
[] 0S i

, []Q i and []Q i are set as two random values whose sum equals

to []Q i . If
[] 1S i

, []Q i and []Q i are set equal to []Q i . Finally, the algorithm returns

the trapdoor
 1 1

1 2,
s

 M Q M Q
W

T %
. And it needs to submit the trapdoor to the

cloud server.

(, ,)

s
Search

W
I T K R%

: With the trapdoor and the parameter k , the cloud server

executes the algorithm.2 computes the relevance score of node v in the index

tree I to the query. The computation is described as in formula (10),

where
{ | [] 1}Qr j m j

. According to the algorithm.2, the cloud server returns

top- k identities of relevant documents to the data user.

1 1
1 1 2 2

1 1
1 1 2 2

() () () ()

(,)

sv

T T
v v

T T
v v

v v

v r

v r

T

Score

I

M D M Q M D M Q

D M M Q D M M Q

D Q D Q

D Q

D Q

W%

 (10)

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 117

5. Performance

In this section, we show experimental evaluations of the proposed technique on a real

dataset: the RFC dataset [30]. Most of the experimental results are obtained with an Intel

Core(TM) Duo Processor (2.93 GHz), except that the efficiency of search is tested on a

server with two Intel(R) Xeon(R) CPU E5-2620 Processors (2.0 GHz), which has 12

processor cores and supports 24 parallel threads. The search efficiency of the proposed

scheme is compared with the method which is presented in [10].

1) Search efficiency

During the search process, if the relevance score at node v is larger than the minimum

relevance score in result list RList , the cloud server examines the children of the node;

else it returns. Therefore, lots of nodes are not accessed during a real search. We denote

the number of leaf nodes that contain one or more keywords in the query as . As a

balanced binary tree, the height of the balanced binary tree is maintained to be
log n

, and

the complexity of relevance score calculation is
()O m

. Thus, the time complexity of search

is
(log)O m n

. Note that the real search time is less than
(log)O m n

. The reasons includes

three aspects: 1) according to our search algorithm, many leaf nodes that contain the

queried keywords are not visited, 2) the accessing paths of some different leaf nodes share

the mutual traversed parts, 3) the parallel execution of search process can improve the

search efficiency .

The search process executed at the cloud server involves searching and computing the

similarity score. The search algorithm terminates after the top- k files have been returned.

We test the search efficiency of the proposed scheme on a server which supports 24

parallel threads. The search performance is tested respectively by starting 1, 4, 8 and 16

threads in our experiments. Figure 6(a) shows that when the size of dictionary and

document collection are fixed, the search time vary with the parameter k . In Figure 6(b),

we compare the search efficiency of our scheme with the recent work by Sun et al.[10].

For Sun et al.‟s method, we choose 4000 keywords and divide them in 50 levels.

Consequently, each level contains 80 keywords. The experimental results show the higher

level the query keywords reside, the higher the search efficiency is. We choose ten

keywords from the 1
st
 level (the highest level, the optimal case) and another ten keywords

from the 26
th
 level (the middle level, the average normal case) respectively for search

efficiency comparison. Figure.6 (b) shows that if the query keywords come from the

middle level of index, the search efficiency of our scheme is more efficient than Sun et

al.‟s work. If the query keywords are chosen from 1
st
 level, our scheme obtains almost the

same efficiency as the Sun et al.‟s scheme when we start 4 threads.

5 15 25 35 45 55 65 75 85 95 105
0

20

40

60

80

100

120

Value k for top-k retrival

T
im

e
 o

f
s
e

a
rc

h
(m

s
)

MSRR

5 10 15 20 25 30 35 40
0

50

100

600

1100

1600

2100

of documents in the document collection(10
2
)

T
im

e
 o

f
s
e

a
rc

h
(m

s
)

Sun-1st level

Sun-26th level

MSRR

MSRR with 4 threads

MSRR with 8 threads

(a) (b)

Figure 6. The Efficiency of a Search: (a) The Time Cost for Top- k Retrieval

with the Same Dictionary and Document Collection, 1000, 4000n m , (b) the
Time Cost for Different Document Collection with Different Methods

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

app:ds:consequently

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

118 Copyright ⓒ 2016 SERSC

6. Conclusion

In this paper, we solve the problem of multi-keyword ranked search over the encrypted

cloud data, and establish a variety of privacy requirement. The proposed scheme can

return not only the exact matched files, but also the files including the terms semantically

related to the query keywords. We construct the index tree whose data vectors store the

TF values to improve the search efficiency effectively. When inputting the query

keywords, keywords first are extended according to the semantic relationship graph.

Specially, the query vector is expressed as the IDF values of query keywords and

extensional keywords. After that, the trapdoor is uploaded to the cloud server. The cloud

server explores the “inner product similarity” to quantitatively evaluate similarity measure

to capture the relevance of outsourced documents to the query request. According to the

search algorithm, the semantic related top- k files are returned. Taking security and

privacy into consideration, a secure splitting k-NN technique is employed to encrypt the

index and query vector, so that we can obtain the accurate ranked results and perform well

protection on the confidence of the data.

As our future work, we will concentrate on the encrypted data of semantic keyword

search in order to confront with the more sophisticated search.

Acknowledgments

This work is supported by the NSFC (61173141, 61232016, 61572258, 61502242,

U1405254, 61173136, 61373133), 201301030, 2013DFG12860, BC2013012, Fund of

Jiangsu Engineering Center of Network Monitoring (KJR1308, KJR1402), Fund of MOE

Internet Innovation Platform (KJRP1403), CICAEET, and PAPD fund. Zhihua Xia is

supported by Jiangsu Government Scholarship for Overseas Studies (JS-2014-332).

References

[1] L. M. Vaquero, L. R. Merino, J. Caceres and M. Lindner, “A break in the clouds: towards a cloud

definition”, ACM SIGCOMM Computer Communication Review, vol. 39, (2008), pp. 50-55.

[2] S. Kamara and K. Lauter, “Cryptographic cloud storage”, Financial Cryptography and Data Security, pp.

(2010), pp. 136-149.

[3] K. Ren, C. Wang and Q. Wang, “Security challenges for the public cloud”, IEEE Internet Computing,

vol. 16, (2012), pp. 69-73.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: improved

definitions and efficient constructions”, presented at the Proceedings of the 13th ACM conference on

Computer and communications security, Alexandria, VA, USA, (2006).

[5] M. Bellare, A. Boldyreva, and A. O‟Neill, “Deterministic and Efficiently Searchable Encryption”,

Advances in Cryptology - CRYPTO 2007, vol. 4622, (2007), pp. 535-552.

[6] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu and M. Steiner, “Highly-Scalable Searchable

Symmetric Encryption with Support for Boolean Queries”, in Advances in Cryptology – CRYPTO 2013.

vol. 8042, R. Canetti and J. Garay, Eds., ed: Springer Berlin Heidelberg, (2013), pp. 353-373.

[7] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data”, in Security

and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on, (2000), pp. 44-55.

[8] E.-J. Goh, “Secure Indexes”, IACR Cryptology ePrint Archive, vol. 2003, (2003), p. 216.

[9] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword ranked search over

encrypted cloud data”, Parallel and Distributed Systems, IEEE Transactions on, vol. 25, (2014), pp.

222-233.

[10] W. Sun, B. Wang, N. Cao, M. Li, W. Lou and Y. T. Hou, “Privacy-preserving multi-keyword text search

in the cloud supporting similarity-based ranking”, in Proceedings of the 8th ACM SIGSAC symposium

on Information, computer and communications security, (2013), pp. 71-82.

[11] J. Yu, P. Lu, Y. Zhu, G. Xue, and M. Li, “Towards Secure Multi-Keyword Top-k Retrieval over

Encrypted Cloud Data”, IEEE transactions on dependable and secure computing, (2013), p. 1.

[12] J. Xu, W. Zhang, C. Yang, J. Xu, and N. Yu, “Two-Step-Ranking Secure Multi-Keyword Search over

Encrypted Cloud Data”, in Cloud and Service Computing (CSC), 2012 International Conference on,

(2012), pp. 124-130.

[13] F. Zhangjie, S. Xingming, L. Qi, Z. Lu, and S. Jiangang, “Achieving Efficient Cloud Search Services:

Multi-keyword Ranked Search over Encrypted Cloud Data Supporting Parallel Computing”, IEICE

Transactions on Communications, vol. 98, (2015), pp. 190-200.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

app:ds:confronted
app:ds:with

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 119

[14] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A Secure and Dynamic Multi-keyword Ranked Search Scheme

over Encrypted Cloud Data”, Parallel and Distributed Systems, IEEE Transactions on, (2015), pp. 1-1.

[15] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric encryption”, in Financial

Cryptography and Data Security, ed: Springer, (2013), pp. 258-274.

[16] M. Chuah and W. Hu, “Privacy-aware bedtree based solution for fuzzy multi-keyword search over

encrypted data”, in Distributed Computing Systems Workshops (ICDCSW), 2011 31st International

Conference on, (2011), pp. 273-281.

[17] W. Zhou, L. Liu, H. Jing, C. Zhang, S. Yao, and S. Wang, “K-Gram Based Fuzzy Keyword Search over

Encrypted Cloud Computing”, (2013).

[18] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword search over encrypted data in

cloud computing”, in INFOCOM, 2010 Proceedings IEEE, (2010), pp. 1-5.

[19] F. Lamberti, A. Sanna, and C. Demartini, “A relation-based page rank algorithm for semantic web search

engines”, Knowledge and Data Engineering, IEEE Transactions on, vol. 21, (2009), pp. 123-136.

[20] J. Hendler, “Web 3. 0: The Dawn of Semantic Search”, Computer, vol. 43, (2010), pp. 77-80.

[21] J. Wei, S. Bressan, and B. C. Ooi, “Mining term association rules for automatic global query expansion:

methodology and preliminary results”, in Web Information Systems Engineering, 2000. Proceedings of

the First International Conference on, (2000), pp. 366-373.

[22] D. Pal, M. Mitra, and K. Datta, “Query expansion using term distribution and term association”, arXiv

preprint arXiv:1303.0667, (2013).

[23] L.-F. Lai, C.-C. Wu, P.-Y. Lin, and L.-T. Huang, “Developing a fuzzy search engine based on fuzzy

ontology and semantic search”, in Fuzzy Systems (FUZZ), 2011 IEEE International Conference on,

(2011), pp. 2684-2689.

[24] B. M. Fonseca, P. B. Golgher, E. S. De Moura, B. Pôssas, and N. Ziviani, “Discovering search engine

related queries using association rules”, Journal of Web Engineering, vol. 2, (2003), pp. 215-227.

[25] M. Song, I.-Y. Song, X. Hu, and R. Allen, “Semantic query expansion combining association rules with

ontologies and information retrieval techniques”, in Data Warehousing and Knowledge Discovery, ed:

Springer, (2005), pp. 326-335.

[26] M. Song, I.-Y. Song, X. Hu, and R. B. Allen, “Integration of association rules and ontologies for

semantic query expansion”, Data & Knowledge Engineering, vol. 63, (2007), pp. 63-75.

[27] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure kNN computation on encrypted

databases”, in Proceedings of the 2009 ACM SIGMOD International Conference on Management of

data, (2009), pp. 139-152.

[28] J. Li, X. Li, B. Yang, and X. Sun, “Segmentation-based Image Copy-move Forgery Detection Scheme”,

Information Forensics and Security, IEEE Transactions on, vol. 10, (2015), pp. 507-518.

[29] K. W. Church and P. Hanks, “Word association norms, mutual information, and lexicography”,

Computational linguistics, vol. 16, (1990), pp. 22-29.

[30] B. Gu, Victor S. Sheng, K. Y. Tay, W. Romano, and S. Li, “Incremental Support Vector Learning for

Ordinal Regression”, IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 7, pp.

1403-1416.

[31] Z. Pan, Y. Zhang, and S. Kwong, “Efficient motion and disparity estimation optimization for low

complexity multiview video coding”, IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 166-176.

[32] “Request for Comments. Available”, http://www.rfc-editor.org/index.html, (2011).

Authors

Zhihua Xia, received the BS degree in Hunan City University,

China and PhD degree in computer science and technology from

Hunan University, China, in 2006 and 2011, respectively. He works

as an associate professor in School of Computer & Software,

Nanjing University of Information Science & Technology. His

research interests include digital forensic and encrypted image

processing. He is a member of the IEEE.

Li Chen, She is currently pursuing her MS in computer science

and technology at the College of Computer & Software, in Nanjing

University of Information Science & Technology, China. Her

research interests include keyword search over encrypted cloud data.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

120 Copyright ⓒ 2016 SERSC

Xingming Sun, received his PhD in computing science from

Fudan University, China, in 2001. He is currently a professor in

Nanjing University of Information Science & Technology, China.

His research interests include network and information security,

digital watermarking.

Jianxiao Liu, is a lecture in college of informatics of Huazhong

Agricultural University. His current research interest is service

computing and machine learning.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

