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Abstract 

A nonlinear mathematical model of the flow-coupled secondary regulation system was 

established. Then, the exact feedback linearization was applied to transform the system 

into a linear one by coordinates transformation and state-space feedback based on its 

nonlinear model. Furthermore, the zero dynamics was analyzed to prove the stability of 

the system so as to verify the feasibility of the exact linearization control scheme. And the 

LQR controller was design on the basis of the exact linearization control scheme. Finally, 

the experimental results show that the Flow-coupled secondary regulation system using 

the LQR controller based on the exact linearization control scheme has good 

performance and does better than PID controller when it works far from zero point. 

 

Keywords: Flow-coupled system, nonlinear model, zero dynamics analysis, nonlinear 

control, experimental research 

 

1. Introduction 

The Constant Pressure System (CPS) was paid more attention because it could avoid 

throttle loss and overflow loss to improve system efficiency and could connect some 

different loads. However, the CPS was not suitable to connect the fixed displacement 

actuators, such as reciprocating cylinder. The flow-coupled secondary regulation system 

is a new type of energy-saving system that is different from the CPS working as constant 

pressure rail
 
[1-2]. Its system pressure was variable according to the load. Hence, it can 

connect the fixed displacement actuators. With the energy sources being critical, the 

system becomes more and more important both in theory and practice. In general, the 

system was linearized at a certain point using Taylor series expansion. The performance 

and effectiveness of a controller based on a linear model was generally guaranteed only 

during small deviations from the nominal operating point. And the traditional control laws 

based on linearized models were limited.  Recently, the exact linearization method, in 

witch the system can be exactly transformed into a linear system by adding an appropriate 

control input and using new coordinates, has been developed and applied to nonlinear 

control systems
 
[3-4]. For example, Na Woon and Gao Zhaohui took advantage of exact 

linearization control to PEM fuel cells and BUCK converter respectively
 
[5-6]. In this 

paper, the nonlinear model of the flow-coupled secondary regulation system was 

developed. Then, the exact feedback linearization was applied to transform the system 

into a linear one by coordinates transformation and state-space feedback based on its 

nonlinear model. Furthermore, the zero dynamics was analyzed to verify the validity of 

the controller.  Finally, the experimental results show that the system using the LQR 

controller based on the exact linearization control scheme has good control performance 

and is irrelevant to work point. 
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2. System Model 

The flow-coupled secondary regulation system was shown in Figure.1. The time 

domain representation was given by the following dynamic equations: 
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1-Motor; 2-Hydraulic Pump/Motor; 3-Electro-Hydraulic Servo Valve; 4-Variable Cylinder; 
5-Safety Valve; 6-Check Valve; 7-Load Cylinder; 8-Load; 9-Control Motor; 10-Control 

Pump; 11-Relief Valve 

Figure 1. Schematic Diagram of Flow-Coupled Secondary Regulation 
System 

Servo amplifier equation can be expressed as follows: 

ii K u                                                                  (1) 

Equation between displacement of servo valve and input current can be given as: 

 v sx K i                                                                (2)
 

Inlet flow rate of variable cylinder can be written as:  

1 1

1
( )d v cq C wx p p


                                                               (3) 

Outlet flow rate of variable cylinder can be written as: 

2 2

2
d vq C wx p


                                                           (4) 

Continuity equation of inlet chamber of variable cylinder can be written as: 

1 1
1 1 2 1( )ic ec g

e

V dpdy
q C p p C p A

dt dt
                                                 (5) 

Where  1 0 gV V A y   

Continuity equation of outlet chamber of variable cylinder can be written as: 

2 2
1 2 2 2( )ic ec g

e

V dpdy
C p p C p q A

dt dt
                                        (6) 

Where  2 0 gV V A y   

Force balance equation of variable cylinder can be written as: 
2

1 2 2
( )g c

d y dy
A p p m B Ky

dt dt
                                                      (7) 

Displacement equation of hydraulic pump/motor can be written as: 

max

max

y
D D

y
                                                                       (8) 

Continuity equation of hydraulic pump/motor can be written as: 
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4

L
t L

e

dpV
D C p A

dt
 


                                                             (9) 

Force balance equation of load cylinder can be written as: 

( )L p p

d
p A m g M m B Mg

dt


                                      (10) 

Where symbols denote as follows: 

u: input voltage (V); 

i: input current (A); 

Ki: amplifier gain (A/V); 

Ks: coefficient of servo valve (m/A); 

q1: flow rate of inlet chamber of the variable cylinder (m
3
/s); 

q2: flow rate of outlet chamber of the variable cylinder (m
3
/s); 

Cd: discharge coefficient; 

y: displacement of cylinder (m); 

w: area grades of servo valve spool (m); 

xv: displacement of servo valve spool (m); 

ρ: density of oil (kg/m3); 

pc: inlet chamber pressure of variable cylinder (Pa); 

p1: outlet chamber pressure of variable cylinder (Pa); 

p2: supply pressure to valve (Pa); 

pL: system pressure (Pa); 

Ag: area of variable cylinder piston (m
2
); 

Cic: internal leakage coefficient of variable cylinder (m·N/s); 

Ce: external leakage coefficient of variable cylinder (m·N/s); 

V1: volume of forward chamber (m
3
); 

V2: volume of return chamber (m
3
); 

V0:original Volume of variable cylinder(m
3
); 

A: effective area of load cylinder (m2); 

Ct: total leakage coefficient of load cylinder ((m
3
/s)/Pa); 

βe: volume elasticity modulus of oil(N/m
2
); 

m: total mass of piston and swash plate reffered to piston (kg); 

Bc: damp coefficient of cylinder (N/(ms)); 

K: load spring gradient (N/m); 

D: displacement of secondary unit (m
3
/rad); 

Dmax: the maximum displacement of secondary unit (m
3
/rad); 

ymax: the maximum displacement of cylinder (m); 

ω:angular velocity of hydraulic pump/motor (rad/s); 

V: volume of load cylinder (m
3
); 

 :piston velocity (m/s); 

B: viscous damping coefficient (N/(ms)); 

Mp: mass of load cylinder piston (kg); 

M: load mass (kg) 

Let 1x  , 2 Lx p , 3x y , 4x y , 5 1x p , 6 2x p ,  the state-space equation of 

the system is: 









)(

)()(

xhy

uxgxfx
                                                     (11) 

Where 
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1)( xxh   

 

3. Exact Linearization 

This mathematical model (11) is a standard model of affine nonlinear systems. 

Here
nRx  f , g , h are smooth. This system is said to have relative degree r at a 

point 0x , if r is the smallest integer such that 

0)(

;2,,0,,0)(

1 



 xhLL

riUxxhLL

r

fg

i

fg 
                                   (12) 

And all x  in a neighborhood of 0x . Where fL and gL are the Lie derivatives with 

respect to f  and g . The Lie derivative is a convenient notation, examples being  

1

( ) ( )
n

f i

i i

h
L h x f x

x





  

1

( ) ( )
n

g i

i i

h
L h x g x

x





  

We can obtain: 
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According to the definition of r, we can get r=5<6(dimension of the system). And we 

can select a function ( )x  which has to satisfy with 

 ( ) ( ), 0gL x d x g    and  

2
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4

( )

( )

( )
rank 6

( )

( )

( )

f

f

f

f

h x

L h x

L h x

L h x

L h x

x

 
 
 
 
  
 
 
 
  
 

  

One of roots is as follows: 

1 0 3 6 0 3 5( ) ( ) ( ) ( )g g cx V A x x V A x p x                               (13) 

And we can get the nonlinear coordinate transformation: 
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4
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This transformation is local differential homeomorphism since the Jacobi matrix of 

( )x is not singular. let 
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1z   

We can get the exact linearization controller is: 

5

4

1
( ( ) ) ( ) ( )

( )
f

g f

u L h x v x x v
L L h x

                                      (14) 
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4. Zero DynamicsAnalysis 

The zero outputs have to analysis for r <n. when there exists ( ) 0y t  , system states 

are limited within a area as follows: 

1 2( ) ( ) ( ) 0z t z t z t                                               (15) 

Input ( )u t  is one of the roots of follow equation. 

0 (0, ) (0, ) ( )b a u t                                                 (16) 

Hence, ( )t is controlled by: 

( ) (0, ( ))t q t                                                      (17) 

So we can obtain: 

(0, ( ))
( )

(0, ( ))

b t
u t

a t




                                                     (18) 

Therefore, the dynamics of eq. (16) is the zero dynamics of the system. If the zero 

dynamics is stable, the nonlinear system is locally stable. The inner states, , are not 

observable due to state feedback. However, not only the external states have good 

performance, but also the inner states have to be stable with regard to an exact 

linearization system. That is let ( )fL x   is stable. We can get the linearized matrix 

according to eq. (17): 

(0,0)
q






                                                           (19) 

If the eigenvalue of eq. (19) are within
0C , the system is locally stable. So we can 

obtain the zero dynamics equation: 

4 5 6

1 5 6 4

5

4 5 6

6

( )
( ( ) )

2 ( )

( )

2

e g e ic ec e ic

g c

c

e g e ic e ic ec

A x C C x C x
q A p x x x

p x

A x C x C C x

x

   
      



  

  


  

            (20)  

Table 1. Specifications of Flow-Coupled Secondary Regulation 
System 

Specifications unit value Specifications Unit value 

Ag m
2
 1.78×10

-3
 βe Pa 6.9×10

8 

Ks m/A 1.5×10
-5

 Cic m·N/s 2.4×10
-11

 

Cd — 0.61 Cec m·N/s 7.3×10
-13 

w m 1.16×10
-2 

V0 m
3
 5×10

-5
 

ρ
 

kg/m
3
 900 m Kg 1 

ymax m 0.015 Bc N·s /m 500 

Ct m·N/s 3×10
-11 

K N/m 1.66×10
5
 

A m
2
 2.82×10

-3 
M Kg 2000 

V m
3
 10

-3 
B N·s /m 1000 

ω Rad/s 314 Dmax m
3
/rad 6.37×10

-6
 

The specifications were shown in Table 1. Then zero dynamics was got. 

(0,0) 0.1
q




 


 

 Hence, the exact linearization controller was valid and can be expressed as: 
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  

    

   
   
      
 

Now, the system became linear after exact linearization (shown in eq. 21).  
(5)y v                                                              (21) 

We can synthesize the new system using linear control theory. 

 

5.  Design of LQR Controller Using Dominant-Pole Algorithm 

According to the optimal control law based on linear quadratic regulator
 
[7], the 

performance index is given:  

0

1
( ( ) )

2

T TJ X QX v t Rv dt


                                           (22) 

Where, Q and R are weight matrix. They are limitary symmetrical positive definite 

matrix during the zone of ],0[  . Meanwhile, they can be obtained using dominant-pole 

algorithm. Therefore, the goal is to seek for the optimal control input ( )v t  to minimize 

performance index J . The index J is the smallest when 
* *v K Z  according to the 

optimal control law of linear quadratic regulator. 

Where feedback gains
*K can be determined as 

PBRKKKKKK T1*

5

*

4

*

3

*

2

*

1

* ],,,,[   

P is the root of Riccati algebra equation: 

01   QPBPBRPAPA TT
  

The resulting controller is derived: 

])([
)(

1 *

1
ZKxhL

xhLL
u n

fn

fg




                                    (23) 

According to engineering practice, the dominant poles were placed: 

1,2 3 1.8s j    

Hence, the weight matrix and feedback gains were got: 

 81        43.2        9        0        0

 43.2     23.04      4.8     0        0

 90        4.8          1        0        0

  0         0             0        0        0 

  0         0             0 

Q 

       0        0

 
 
 
 
 
 
  

, R=I 

* [90.0000  124.3590   83.1176   33.2787    8.1583]K   
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6.  Experimental Research 

An experimental prototype of flow-coupled secondary regulation system was 

established (see in Figure 2) and experimental researches had been conducted in 

order to validate the functionality of the controller. The load cylinder velocity with 

LQR controller in case of different input is shown in Figure.3. Meanwhile, curve 1-

3 and 4 is the load cylinder velocity response when the input is 1-2, 4 and 8 

voltage.Figure.4 plots the load velocity comparisons between using LQR controller 

and PID controller. Meanwhile, curve 1 and 3 is the load velocity using PID 

controller when the input is 8 and 1 voltage. Curve 2 and 4 is the load velocity using 

LQR controller when the input is 8 and 1 voltage. From the Figure.3, we can obtain 

that the load cylinder velocity is proportional to the input and the response time is 

less than 2 second after using LQR controller. Meanwhile, the system can be 

controlled exactly. The Figure.4 shows that the LQR controller and PID controller 

are effective when the input is 1 voltage and the response time with PID controller 

is reduced to 1.5 second. Meanwhile, we can obtain that the LQR controller is better 

than PID controller when the input is 8 voltage From Figure.4. The response time 

with PID controller achieves to 3 second and the overshoot is more than 15%. 

However, the overshoot is nearly free with LQR controller. 
 

 
 

Figure. 2 Experimental Prototype of Flow-Coupled Secondary Regulation 
System  
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Figure 3. Load Cylinder Velocity with LQR Controller in Case of Different 
Input 
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Figure 4. Load Cylinder Velocity Comparisons between Using LQR 
Controller and PID Controller 

 

7.  Conclusion 

From the experimental results, we can know that the exact linearization controller 

is very effective and suitable to the system, which fully verifies the system is 

nonlinear in nature. Furthermore, The LQR controller based on the nonlinear 

description-variable model is irrelevant to the input. The PID controller based on 

the linearized model is effective near the zero point. But, the LQR controller is 

better than the PID controller when the system works far from the zero point. With 

the development of the nonlinear control theory, the nonlinear system can be 

synthesized by means of   the nonlinear control theory, but the increment 

linearization. 
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