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Abstract 

In this paper, we presented the performance of forecasting model and error correction 

will affect the accuracy of short-term load forecasting. Least squares support vector 

machines (LS-SVM) based on improved particle swarm optimization is selected as load 

forecasting model. Forecasting accuracy and generalization performance of LS-SVM 

depend on selection of its parameters greatly. Adaptive particle swarm optimization 

(APSO) based on fitness function was put forward to optimize the kernel parameter σ and 

regularization parameter γ of LS-SVM. Based on the optimized forecasting model, non-

parametric error correction model is also presented by iterative method. The error 

forecasted by non-parametric model was used to update the forecasted load so as to 

improve the forecasting accuracy. Load data selected from some area in South China as 

training and forecasting data is used to analyze. Case study illustrates that the proposed 

forecasting model (NP-APSO-SVM) has more generalized performance and better 

forecasting accuracy compared with the method of standard SVM. 

 

Keywords: Least square support vector machines, improved particle swarm 

optimization, non-parametric model, error correction 

 

1. Introduction 

Load forecasting is the premise and foundation of planning decisions and 

economic operation in power system. Short-term load forecasting is susceptible for 

a wide variety of facts, such as climate conditions and previous load demand data. 

Intelligent algorithm has been applied to short-term load forecasting widely. SVM is 

a promising method for regression proposed by Vapnik based on statistical learning 

theory and structural risk minimization [1], which is closely related to the selection 

of parameter σ and C. As a good solution to problems of the small sample, 

nonlinearity, high dimension and local optimization, SVM has been successfully 

extended to the pattern recognition, information fusion, time series forecasting and 

other fields [2-3]. 

In practice, different parameters would have a great effect on generalization 

ability and forecast accuracy of SVM. There is not a fixed method of choosing the 

optimal parameters in SVM, and Cross-validation is the most widely used method. 

However, this kind of method generally has considerable blindness and randomness, 

which is lack of appropriate theoretical basis and fully depends on their experience, 

so it is difficult to find the optimal points. These shortcomings limit the application 

of support vector machines model to some extent. To further improve the 

performance of SVM, many optimization methods have been used for parameter 

selection [4-5]. HUO Ming, LUO Dian-sheng et al. [6] set an objective function of 

the combination optimization problem and used improved mutative scale chaos 

optimization algorithm to search global optimal value. Thereby the optimal 
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parameters combination was obtained by chaos optimization method.  Ant colony 

algorithm can also be used to parameters selection. Qi Liang [7] applied ant colony 

algorithm to search the value of optimal objective function with the fine 

performance of robustness and distributed computing. The simulations results show 

that ACA was an effecting method for selecting parameters of SVM, and could 

obtain the performance for the function approximation. Moreover, Niu Dong xiao 

Liu Da et al. [8] proposed another optimization method that using genetic algorithm 

to select parameters in the SVM models automatically. 

Some other parameters selection methods have also been presented in many fields. 

ZHAO Ying, LIU Hong-xing [9] proposed A new criterion which was called the 

sum of the squared derivatives. Compared with the already well -known hyper 

parameters optimization method such as k-fold cross-validation method or 

Radius/Margin Bound method, the class-separating hyper-surface designed based on 

this criterion could ‘leg and leg’ the whole original input space for all the samples, 

thus it supports the structural risk minimization principle better. With the leave one 

out (LOO) prediction error on the entire training sample being the object of 

optimization, TAO Shao-hui, CHEN De-zhao [10] put forward the gradient-based 

optimal algorithm to find the optimal parameters of LSSVM based on the fast 

(LOO) method selecting hyper parameters of LSSVM. XIE Hong, WEI Jiang-ping et 

al. [11] presented a new approach of selecting learning parameters based on analysis 

of model structure, which was an optimizing algorithm of Gauss kernel parameter 

based on local optimal searching direction. 

By the above analysis, different parameters should be selected to reduce the 

modeling error of SVM and testing error for different SVM models. At present, a 

variety of improved particle swarm optimization algorithms are used as methods of 

training the parameters of SVM [12-14]. A new kind of adaptive PSO is put forward 

to optimize the parameters of SVM in this paper. Adaptive inertia weight was 

adopted in the improved algorithm and the particles studies not only from itself and 

the best one but also from the mean value of some other particles. 

Meanwhile, analysis of forecasting errors will have influence on the improvement 

of forecasting accuracy to some extent. The forecasting model only considered the 

main factors that affected load changes, and many secondary factors were ignored. 

Actually, the error is an objective reflection of the impact of these secondary factors. 

So the error will be a certain trend under long-term impact of these minor factors. In 

order to improve the prediction accuracy of the original forecasting model, 

forecasting error correction method is added to the current forecasting model, which 

considered the ignoring secondary factors in the process of load forecasting. MA 

Xiao-guang, MENG Wei [15] put forward a fuzzy linear regression—residual error 

amendment model based on real number output and fitting residual error to improve 

the accuracy of load forecasting. The residual error amendment model is derived 

from fuzzy linear regression model, so it can find the most suitable linear function 

to make the line difference sum in ideal linear regression minimum. Zhou Ming, 

YAN zheng et al. [16] also presented forecasting error models by iterative method 

and used the predicted errors to update the forecasted prices so as to gradually 

improve the forecasting accuracy. The results showed that the presented approach 

improved the accuracy of forecasting significantly.  In other forecasting fields, error 

correction model is also applied widely. Ren Hongli [17] presented a new prediction method of 

predictor-based error correction (PREC) in order to effectively use statistical experiences in 

dynamical prediction. Analyses showed that the PREC can reasonably utilize the significant 

correlations between predictors and model prediction errors and correct prediction 

errors by establishing statistical prediction model. An-Sing Chen, Mark T. Leung [18] 

proposed the two-stage models that general regression neural network was used to 

correct the errors of the estimates. Trading simulation experiments suggested that 
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the proposed hybrid approach produced better exchange rate forecasts. James M.W. 

Wong, Albert P.C. Chan et al. [19] developed a vector error correction (VEC) 

model for manpower demand forecast. 

Based on the above analysis, a non-parameter error correction model is presented to correct 

the predicted results of load forecasting by the forecasting error to improve prediction accuracy 

in this paper. In reality, the relationship between variables is unknown, so the model setting error 

usually exits in the traditional linear and nonlinear models, which cannot meet the needs of 

practical application. On the contrary, the non-parameter regression model assumes that the 

relationship between variables is unknown, so non-parametric regression model is a more 

realistic model to estimate regression function. 

The remainder of this paper is organized as follows: The LS-SVM is introduced 

in Section 2, including the formulation of LS-SVM. Improved PSO algorithm is 

presented in Section 3. Non-parametric regression model and simulation are described in 

Section 4. The proposed combined forecasting model will be compared with other 

individual models in Section 5. Conclusions are discussed in Section 4.  

 

2. Methodology 

 

2.1 Least Squares Support Vector Machine（LSSVM） 

The essential idea of SVM regression is to use a kernel function to map the initial 

input data into a high-dimensional space(Hilbert space) so the two classes of data 

become, as far as possible, linearly separable. However, Standard SVM regression 

has some drawbacks, mainly associated with its formulation and efficiency. LS-

SVM are a modification of the standard SVM formulation introduced to overcome 

these disadvantages, and the resulting optimization problem therefore has half the 

number of parameters and the model is optimized by solving a linear system of 

equations instead of a quadratic problem [20]. 

Given a set of function samples {(x1, y1),...,(xN, yN)}∈R
d
×R, where N is the 

number of samples and d is the dimensionality of the input data, the classic unbiased 

LS-SVM model for regression tries to approximate a zero-mean function y=f(x) that 

relates the inputs X to the output Y by solving the following optimization problem: 

T 2
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Constraints are as follows: 
T (i i iy x b e   ）               (2) 

Where ω denotes adjustable weighted vector, b denotes the bias, and φ(x) denotes 

non-linear mapping from an input space to a high-dimensional space. J is the 

function to be optimized which depends on the weight vector ω ∈R
d
, γ is a 

regularization factor, and ei is the error committed when approximating the ith 

sample. The problem can be solved using Lagrange multipliers, and Lagrange 

function is in the following: 
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Where Lagrange multiplier αk∈R. Parameters can be obtained by solving the 

following linear system according to partial derivative of the Lagrange function: 
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Where k is the scalar product between a pair of input points, I =[1…1], 

α=[α1…αn], and E is a unit matrix. The scalar product operation in the input space is 
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substituted by a scalar product in a feature space given by a kernel function k(x, xi), 

so the function of LS-SVM model is given by: 

1

( ) ( , )
n

i i
i

y x k x x b


              (5) 

Generally, the specific expression of mapping and high dimensional feature space 

does not need to be known in regression model, as long as the form of kernel 

function can be given. Polynomial functions, radial basis function, sigmoid function, 

etc. are commonly used [21]. In this paper, radial basis function is adopted in the 

following form: 

  2 2
exp[ /(2 )]ii x xk x ,x                 (6) 

Where σ is the kernel parameter. 

A correct procedure for the setting and optimization the parameters of a LS-SVM 

model for regression is of critical importance in enabling us to obtain good 

performances and avoid excessive computation times. Load forecasting is an 

especially difficult case of regression, in that it is very sensitive to the values of the 

parameters in order to get models with good accuracy and generalization abilities. 

The regularization factor γ in Eq. (4) is in charge of the trade -off between the 

smoothness of the model and its accuracy. The bigger the regularization factor the 

more importance is given to the error of the model in the minimization process. An 

excessively large value of γ suggests that the model over-fits the data, thus losing its 

generalization capabilities. Therefore, it is most important to give a proper value to 

the regularization factor. The σ value is related to the distance between training 

points and the smoothness of the interpolation of the model [22]. As a general rule, 

the higher the σ is, the smoother the interpolation between two consecutive points is.  

 

2.2 Parameter Selection using Improved Particle Swarm Optimization 

Recently, PSO developments and applications have been widely explored in 

engineering and science mainly due to its distinct favorable characteristics. Refs. 

[23] is an excellent reference that analyzed and studied the PSO promising 

convergence characteristics With regard to its mathematical development. The 

authors successfully established some mathematical foundation to explain the 

behavior of a simplified PSO model in its search for an optimal solution. Just like in 

the case of other evolutionary algorithms, PSO has many key features that attracted 

many researchers to employ it in different applications [24-25]. 

In PSO, a number of particles form a ‘‘swarm” that evolve or fly throughout the feasible 

hyperspace to search for fruitful regions in which optimal solution may exist. Each particle has 

two vectors associated with it, the position (Xi) and velocity (Vi) vectors. In N-dimensional 

search space, Xi =(xi1, xi2, . . ., xiN) and Vi =(vi1, vi2, . . ., viN) are the two vectors associated with 

each particle i. During their search, members of the swarm interact with each other’s in a 

certain way to optimize their search experience. There are different variants of particle swarm 

paradigms but the most commonly used one is the gbest model where the whole population is 

considered as a single neighborhood throughout the flying experience [26]. In each iteration, 

particle with the best solution shares its position coordinates (gbest) information with the rest of 

the swarm. Each particle has its own best position Pi=(pi1, pi2, . . ., piD) based on the 

personal best objective value obtained and the global best particle, which is denoted 

by Pg=(pg1, pg2, . . ., pgD). 

In the adjustable parameters, inertia weight is the most important parameter. The 

larger weight will help improve the global search capability, while the smaller 

weight will increase the weight capacity of the local search algorithm. In this paper, 

adaptive inertia weight ω (t) based on fitness function was presented to update the 

velocity of each particle. It is beneficial to global search at the beginning of 
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iteration and local search at the end of iteration. This improvement not only makes 

the adaptive PSO converge faster, but also not easily fall into the local optima. 

Each particle updates its coordinates based on its own best search experience 

(pbest and gbest) according to the following equations: 

1 1
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where c1 and c2 are two positive acceleration constants, they keep balance 

between the particle’s individual and social behavior  when they are set equal; r1 and 

r2 are two randomly generated numbers with a range of [0-1] added in the model to 

introduce stochastic nature in particle’s movement; and  ω is the inertia weight and it 

keeps a balance between exploration and exploitation. 

Inertia weight ω is updated in accordance with the value of the objective function of each 

particle in the end of each iteration, and the adaptive adjustment of the specific formula is as 

follows: 
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Where  and are the constraint factors in the range of (0-1), ωmin is the 

minimum inertia weight. f(pg(t)) is the value of fitness function corresponding to the 

best particle in the tth iteration, while f(xmin(t)) is the value of fitness function 

corresponding to the worst particle. f(xi(t)) is the value of fitness function 

corresponding to xi in the tth iteration. 

The definition of fitness function is as follows: 

2

1

1
( )

N

i i
i

f y y
N





                 (12) 

In Eq. (12), yi is the desired output value and ŷi is the training output value, N is 

the number of samples. 

The steps of APSO optimization are as follows: 

Step1. Initialize the parameters of PSO. Set the acceleration factors c1, c2, , vmax, 

Tmax; the current evolution generation is set to t. In this paper, D=2. 

Step2. Let the current position of each particle be pi, and pg be the current 

position of the best particle in the whole population  

Step3. Calculate the population x(t). The smaller particle’s value of fitness 

function is, the better the position of particle is. 

Step4. If the current fitness value of some particle is  better than pi, substitute the 

current position for pi; if the best fitness value of all particles is better than pg, 

substitute the best position of the best fitness value for  pg.  

Step5. Update x(t), v(t) and ω(t) by Eq. (7) and Eq. (8). 

Step6. Determine whether it gets to the global convergence. If reached, continue 

to step 7; otherwise, go to step 3; 

Step7. Output global optimal value, that is optimal parameter vector(C, σ) 
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2.3 Non-Parametric Error Correction 

Non-parametric regression model is characterized by any form of regression 

function, without any constraints, and few constraints for the distribution of 

explanatory variables, so the model has greater flexibility. Non-parametric 

regression model has a better fit than the classical assumption model and higher 

accuracy in the past analysis of regression. Based on the load error data series, non-

parametric regression model is put forward as error model, and local linear 

estimation is used to estimate the model. 

There is no boundary effect to local linear estimation, which means that the 

convergence of boundary points and internal points is as small as the bias, and the 

deviation is independent with density function of explanatory variables. Local linear 

estimation is to minimize the following formula: 

 
2

1

( ) ( )( ) ( )
n

n

i i h i

i

Y m x m x X x K X x


        (13) 

Where Khn(u)= hn
-1

K(hn
-1

u), hn
 
is the bandwidth, and k(·) is the probability density 

function in[-1,1]. If k(·) is the probability density function, local linear estimation of 

m(x) is the least squares estimation of partial model(Xi, Yi), of which Xi is in[x-hn, 

x+hn]. Yi is as follows:  

( ) ( )( )i i iY m x m x X x e               (14) 

When the Xi is closer to x, the weight of Yi is greater. Local linear estimate of 

m(x) can be expressed as matrix: 
1

1( , ) ( )T T T

n x x x xm x h e X W X X WY           (15) 

Where e1=(1,0)
T
, Xx,i=(1,(Xi-x))

T
, Wx=diag{Khn(X1-x),..., Khn(Xn-x)}, Y=[Y1,..., Yn]

T
 

A. Bandwidth selection 

When hn→0, mn(Xi) →K(0)Yi/K(0)= Yi and mn(Xi)→0, (x≠Xi, i=1,...,n). If bandwidth is 

too small, the function values of the points are zero in addition to data points. So random 

error noise has not been ruled out and there is no meaningful estimate. When hn→∞, 

K((Xi-x)/hn)→K(0) and mn(Xi)→n
-1

∑Yi, (i=1,...,n). However, too large bandwidth value 

will obtain too smooth curves, which is close to a straight line. Therefore, estimation at 

this time is of no significance. 
Seen from the above, the bandwidth is an important parameter to control estimation 

accuracy. Cross-validation method is used to select bandwidth in this paper. Kernel 

estimation is as follows: 

,
ˆ ( ) ( )n i i nj i j

j i

m X W X Y



           (16) 

Finally, we can get the minimum bandwidth hn by comparing the squared fitting error: 

1 2

,

1

ˆ( ) ( ( )) ( )
n

n i n i i i

i
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          (17) 

B. Simulation 

In order to test the effect of local linear estimate, the following fitting model is used to 

simulate:  

sin(2exp( 1))i i iY X u                (18) 

Where Xi=i/100, ui~N(0,1), i=1,...,n, and hn=0.08. Gaussian kernel is selected as kernel 

function and the experiments are simulated on Mtalab 7.1 software platform. 

The simulation results are shown in Figure 1 and Figure 2. Figure 1 is the function 

graph of m(x). Scatter plot for (Xi, Yi) and the local linear estimation curve are in Figure 2. 

The local linear estimation shows good performance compared with Figure 1. 
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Figure 1. y=sin(2*exp(x+1)) 
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Figure 2. Local Linear Estimated Fitting Curve and (X, Y) Scatterplot 

Adjustment process of non-parametric error correction model is as follows: 

(1) Use the model of load forecasting mentioned above to forecast the historical load ŷi  

(2) Calibrate the forecasted value with forecasted error Ei(1): 

1 (1)i i iy y E
 

                          (19) 

(3) Calculate the residual ei(1)=yi-ŷ1i. If Ei(1) meets the required accuracy, go to step 

(6); otherwise, go to step (4). 

(4) Establish another new model of error forecasting according to ei(1) and obtain new 

forecasted error Ei(2); then calibrate the forecasted value: 

2 (1) (2)i i i iy y E E
 

               (20) 

(5) Calculate the residual ei(2)=yi-ŷ2i. If ei(2) meets the required accuracy, go to step (6), 

otherwise, go to step (4). 

(6) Models of error forecasting can be obtained by iterative method, which will be used 

to calibrate load value.  

After completion of the modeling process above, integrated forecasting models can be 

formed: one load forecasting model (APSO-SVM) and several non-parametric error 

correction models. Therefore, the combined forecasting model established by training 

samples is applied to the test samples:  

( ) 1,2, , 1,2,i i i

k

y y E k i n k
 

          (21) 

In Eq. (21), ŷ'i is the final revised load forecasting value, ŷi is the load value forecasted 

by APSO-SVM, Ei(k)is the kth grey error forecasting model. 

 

3. The Case Study 
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24 points load data from some area in South China is selected as training and testing 

samples. Appropriate input variables are selected, mainly including the previous one-

week load data, previous three-day load data, previous one-day load data, previous three-

hour load data, previous two-hour load data, previous one-hour load data, day type, 

humidity, average temperature, maximum temperature and minimum temperature. Load 

data from 1/7/2009 to 30/9/2009 is selected as training samples and used to establish 

forecasting model, and three months of which is training samples and load data from 

1/10/2009 to 31/10/2009 is selected as testing samples.   

Moreover, inner product of feature vectors needs to be calculated, and large feature 

values may cause numerical difficulties, such as the linear kernel and polynomial kernel. 

To avoid difficulty of numerical calculation, we will transform samples to the range of [0-

1]: 

min max min( ) /( )x x x x x                 (22) 

Where x is the original load data；xmin is the minimum value；xmax is the minimum 

value；x' is the standardized data. 

A. Load forecasting of APSO-SVM 

Parameters setting of the proposed model are as follows: m=20, c1=c2=2, =0.8, =0.5, 

vmax=100, Tmax=100. 

The relative error (RE), absolute percentage error (APE), and mean absolute 

percentage error (MAPE) between the actual and the forecasted values are used to 

compare the forecasting models and defined as follows: 

ˆ
i i i

= (y y ) yRE -                 (23) 

ˆ
i i i

= y y yAPE -                 (24) 

1

1
ˆ

i i i
i=

n

= y y y
n

MAPE ( )-                (25) 

In addition, standard SVM forecasting model is also used for prediction as compared 

model, and forecasting results and fitting curves are shown in Figure.3 and Figure.4. 

Figure 3 illustrates that actual load curve and fitting curve of training sample at 14:00. 

From Figure 3, the forecasting model of APSO-SVM fits the original load data well and 

has a higher accuracy. Meanwhile, standard SVM is also used to establish forecasting 

model. Figure 4 shows forecasting curves of testing samples using both models compared 

to actual load curve. The results of the two models are shown in Figure 5 and Table 1 

MPAE is 3.11% with SVM model and 2.71% with APSO-SVM which has a higher 

accuracy than SVM. Compared with SVM model, the advantage of APSO-SVM is 

obvious. It makes more accurate load forecasting and less deviation than SVM. It can also 

be seen that APSO-SVM model has better stability and generalization performance. 
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Figure 3. Fitting Curve of APSO-SVM 
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Figure 4. Fitting Curve of Testing Samples 

Table 1. Absolute Percentage Error of Different Forecasting models(%) 

Date SVM APSO-SVM NP-APSO-SVM Date SVM APSO-SVM NP-APSO-SVM 

1 3.6 2.88 2.6 17 3.48 3.3 3.48 

2 2.15 1.26 2.15 18 3.34 1.18 2.34 

3 4.85 3.08 1.85 19 4.72 3.77 0.72 

4 2.11 4.88 0.11 20 3.15 1.41 3.15 

5 3.13 3.6 2.13 21 3.54 2.85 2.54 

6 2.1 2.64 2.1 22 5.18 1.53 1.18 

7 3.35 1.18 0.35 23 2.51 2.87 2.51 

8 3.85 1.86 3.85 24 3.92 3.34 3.92 

9 2.57 4.67 2.57 25 2.89 2.33 2.89 

10 2.44 3.2 0.44 26 2.38 2.37 1.38 

11 1.92 2.15 1.92 27 2.41 1.34 2.41 

12 2.34 3.68 2.34 28 3.83 3.2 1.83 

13 3.37 2.37 3.37 29 1.82 4.47 1.82 

14 1.91 2.31 1.91 30 2.41 2.59 2.41 

15 2.59 4.19 2.59 31 3.88 1.89 2.88 

16 4.75 1.67 1.75 MAPE 3.11 2.71 2.18 
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Figure 5. APE Curves of Testing Samples 
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Figure 6. APE Curves of Testing Samples After the First Error Correction 

B. Non-parametric error correction 

In order to improve the prediction accuracy of PSO-SVM forecasting model, non-

parametric error correction method is added to the current forecasting model, which 

considered the ignoring secondary factors in the process of load forecasting. After the first 

error correction, absolute percentage error curves of forecasting results are shown in 

Figure 6 and Table 1 MAPE is 2.18% with NP-APSO-SVM model which is 0.93% and 

0.53% lower than SVM and APSO-SVM. According to the results, prediction accuracy 

has reached the standard and there is no need for a second error correction. Apparently, 

model of NP-APSO-SVM can narrow the scope of the deviation and improve the 

accuracy of load forecasting. 

0

10

20

30

40

0

10

20

30
-4

-2

0

2

4

Date
Hour

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

 

Figure 7. Forecasting Performance of NP-APSO-SVM Model 
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Figure 8. Forecasting Performance of APSO-SVM Model 

Figure 7 and Figure 8 describe the surface curve of the load forecasting deviation 

performance of NP-APSO–SVM model and APSO–SVM model in next month. It depicts 
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the relative forecasting error of every day’s 24 time points of the following 31 days which 

ranges from 01/10/2009 to 31/10/2009. From the two figures, the relative error is in the 

scope [-3%, 3%] with NP-APSO-SVM and [-5%, 5%] with APSO-SVM. It can be seen 

that the load forecasting curve of NP-APSO-SVM makes smaller fluctuation than APSO-

SVM. The NP-APSO-SVM model makes not only accurate load forecasting, but also the 

load forecasting curve to be stable in a relatively long time. 

 

4. Summary and Conclusion 

In this paper, we have presented a hybrid forecasting model based on the non-

parametric error correction. We have also provided the non-parametric error correction 

model to improve forecasting accuracy. 

(1) Combined model of short-term load forecasting is established based on 

adaptive inertial weight particle swarm optimization and least squares support 

vector machines. APSO is used to optimize the kernel parameter σ and 

regularization parameter C, which was proved to have better accuracy. Using 

improved PSO algorithm to optimize parameters of least squares support vector 

machine, velocity of convergence is not only faster, but optimization will not easily 

fall into local optima. 

(2) Based on the optimized regression model, non-parametric error correction is 

also presented by iterative method. Experiment results show that the proposed 

forecasting model can obtain more generalized performance and better forecasting 

accuracy. 

(3) The research in this paper is useful for the regional grid scheduling and power 

management, also can be applied to other fields widely. The results provide a guide 

to the initialization and orientation of the search for the parameter values for this 

kind of model, which is one of the most used in practice for time series modelling 

and prediction. 

 

Acknowledgements 

This paper is supported by Hebei Province Social Science Foundation the Grant 

No.HB12GL073, and Hebei Province Educational department Science Foundation 

the Grant No.GH121003, and National Natural Science Funds of China (Grant No. 

11104058), and Hebei province natural science foundation of China (Grant No. 

A2011201155). 
 

References 

[1] Vapnik, V. “The nature of statistical learning,” New York: Springer (1995). 

[2] Sanchez A. D., “Advanced support vector machines and kernel methods,” Neurocomputing, vol. 55 no. 

1, (2003), pp. 5-20. 

[3] Fei S. W., Liu C. L. and Miao Y. B., “Support vector machine with genetic algorithm for forecasting of 

key-gas ratios in oil-immersed transformer,” Expert Systems with Applications, vol. 36 no.3, (2009), pp. 

6326–6331. 

[4] Wu C. H., Tzeng G. H. and Lin R. H., “A Novel hybrid genetic algorithm for kernel function and 

parameter optimization in support vector regression,” Expert Systems with Applications, vol. 36 no.3, 

(2009), pp. 4725–4735. 

[5] Widodo A. and Yang B., “Wavelet support vector machine for induction machine fault diagnosis based 

on transient current signal,” Expert Systems with Applications, vol. 35 no. 1–2, (2008)30 pp. 7–316.  

[6] Huo M., Luo D. S. and He J., “Chaos Optimization Method of SVM Parameters Selection for Short-

term Load Forecasting,” Proceedings of the CSU-EPSA, vol. 21 no. 5, (2009), pp. 124-128. 

[7] Qi L., “Parameters selection of support vector machine based on ant colony algorithm,” System 

Simulation Technology, vol. 4 no. 1, (2008), pp. 14-18. 

[8] Niu D. X., Liu D., Chen G. J. and Feng, “Support vector machine models optimized by genetic 

algorithm for hourly load rolling forecasting,” Transactions of China electrotechnical society, vol. 22 no. 

6, (2007), pp. 148-153. 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.6 (2015) 

 

 

340   Copyright ⓒ 2015 SERSC 

[9] Zhao Y., Liu H. X., and Gao D. T., “Sum of squared derivatives criterion and SVM hyperparameters 

optimization,” Journal of System Simulation, vol. 20 no. 12, (2008), pp. 3150-3156. 

[10] Tao S. H., Chen D. Z., and Hu W., “M. Gradient algorithm for selecting hyper parameters of LSSVM in 

process modeling,” Journal of Chemical Industry and Engineering, vol. 58 no. 6, (2007), pp. 1514-1518. 

[11] Xie H., Wei J. P., and Liu H., “Parameter selection and optimization method of SVM model for short-

term load forecasting,” Proceedings of the CSEE, vol. 26 no. 22, (2006), pp. 43-47. 

[12] Kennedy J., Eberhart R. C. and Shi Y., “Swarm Intelligence,” San Francisco: Morgan Kaufman 

Publishers, (2006). 

[13] Shi Y. and Eberhart R. C., “A modified particle swarms optimizer,” Proceedings of IEEE Conference on 

Evolutionary Computation, (1998), pp. 69-73. 

[14] Naka S., Genji T., Yura T. and Fukuyama Y., “A hybrid particle swarm optimization for distribution 

state estimation,” IEEE Trans. on Power Systems, vol. 18 no. 1, (2003), pp. 60-68. 

[15] Ma X. G. and Meng W., “Application of residual error amendment method in power load forecasting,” 

Power System Technology, vol. 24 no. 4, (2001), pp. 21-25. 

[16] Zhou M., Yan Z., Ni Y. X. and Li G. Y., “A novel ARIMA approach on electricity price forecasting 

with the improvement of predicted error,” Proceedings of CSEE, vol. 24 no. 12, (2004), pp. 63-68. 

[17] Ren H. L., “Predictor-based error correction method in short-term climate prediction,” Progress in 

Natural Science, vol. 18 no. 1, (2008), pp. 129-135. 

[18] Chen A. S. and M. T. Leung, “Regression neural network for error correction in foreign exchange 

forecasting and trading,” Computers & Operations Research, vol. 31 no. 7, (2004), pp. 1049-1068. 

[19] Wong J., A. Chan and Y. H. Chiang, “Forecasting construction manpower demand: A vector error 

correction model,” Building and Environment, vol. 42 no. 8, (2007), pp. 3030-3041. 

[20] Rubio G., “A heuristic method for parameter selection in LS-SVM: Application to time series 

prediction,” International Journal of Forecasting, (2010). 

[21] Avci E., “Selecting of the optimal feature subset and kernel parameters in digital modulation 

classification by using hybrid genetic algorithm-support vector machines: HGASVM,” Expert Systems 

with Applications, vol. 36 no. 2, (2009), pp. 1391–1402. 

[22] Rojas I., Pomares H., Gonza′lez J., Bernier J., Ros E. and Pelayo F., “Analysis of the functional block 

involved in the design of radial basis function networks,” Neural Processing Letters, vol. 12, (2000), pp. 

1–17. 

[23] Wu Q., “A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle 

swarm optimization,” Expert Systems with Applications, vol. 37, (2010), pp. 2388-2394. 

[24] Tang L. B., Tang L. X. and Sheng H., “Forecasting volatility based on wavelet support vector machine,” 

Expert Systems with Applications, vol. 36 no. 2, (2009), pp. 2901–2909. 

[25] Lin S. W., Ying K. C., Chen S. C. and Lee Z. J., “Particle swarm optimization for parameter 

determination and feature selection of support vector machines,” Expert Systems with Applications, vol. 

35 no. 4, (2008), pp. 1817–1824. 

[26] Liu L. X., Zhuang Y. Q. and Liu X. Y., “Tax forecasting theory and model based on SVM optimized by 

PSO,” Expert Systems with Applications, vol. 38, (2011), pp. 116-120. 


