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Abstract 

Image retrieval methods have been significantly developed in the last decade. The 

BOW (Bag-of-words) model lacks spatial information. Some methods stem from BOW 

approach which is recently extended to a vector aggregation model. Most of them are 

either too strict or too loose so that they are only effective in limited cases. In this study, 

we present a novel feature extraction method for image retrieval. We acquire the 

gradients features from the p.d.f (Probability density function) because of essentially 

representing the image. We construct the features by the histogram of the oriented p.d.f 

gradients via aggregation of the orientation codes. Then, we adopt the PCA (Principal 

component analysis) method to reduce the dimensionality of BOW. Furthermore, we 

introduce a novel and robust re-ranking method with the k-nearest neighbors. We 

estimate our method using various datasets. In the experiments on scene retrieval, the 

proposed method is efficient, and exhibits superior performances compared to the other 

existing methods.  
 

Keywords: Image retrieval; bag-of-words; principal component analysis; k-nearest 

neighbors 

 

1. Introduction 

Image retrieval has attracted keen attentions in the computer vision domain in the last 

decade. Most state-of-the-art image retrieval approaches adopt the standard BOW [1] 

model on account of the advances of the local descriptors such as HOG (Histogram of 

oriented gradients) [2].  

Image retrieval includes such as object recognition [3-4], and scene retrieval, posing a 

challenge to cope with significant variations of the objects as well as the change of scene 

in the image.  

BOW is based on the local descriptors densely extracted in an image which are coded 

into features and come into being as the image feature the histogram of the features. The 

BOW has been recently extended to the methods aggregating vectors [5], etc. Those 

orientation codes are aggregated around respective features into the histograms at last.  

Although BOW model works generally well, it has two problems: 1) the loss of spatial 

information when representing the images as histograms of quantized features; 2) the 

deficiency of feature’s discriminative power, either because of feature’s intrinsic 

limitation to tolerate large variation of object appearance, or due to the degradation 

caused by feature quantization. 

In this study, we put forward a novel approach to extract effective features for image 

retrieval. The similarity measure is aimed to handle object translation, scaling and rotation, 

and performs well with moderate object deformation. 

For describing the images, our proposed approach extends the discrete representation 

in BOW to the continuous p.d.f. Since the p.d.f essentially represents the image, we extract 

features from the p.d.f adopt the gradients on the p.d.f in a manner similar to HOG applied 

to image pixel function. By means of computing the gradients, the mean shift vectors [6] 
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are naturally induced and those vectors are coded in the light of their orientations. 

While the retrieval is performed such as by linear SVM (Support vector machine), 

much research effort has been made to resolve effective feature representation [7].  

We aim at raising the retrieval accuracy while maintaining affordable memory and 

time cost. An image that contains the query target may not be visually close to the query 

due to feature variations caused by the changes of view point, deformation or occlusion. 

However, some of query’s neighbors, which can be considered as variations of the query 

object, may obtain the same or similarity features with that image. 

Therefore, we put forward a re-ranking method with the k-NN (K-nearest neighbors) of 

the query. Localized objects in the top-k retrieval images are also used as queries to 

perform retrieve. A new score of each database image is collaboratively determined by 

those ranks, and re-ranking is performed using the new scores.  

Accordingly, our method can successfully retrieve the objects with large variations, 

owing to it is rank-order based, which discards their distances and the features when 

calculating the score.  

The remaining part of this paper is organized as follows: Section 2 introduces the 

related works. Section 3 describes proposed methods, including the details of bag-of-

words, PCA and k-NN re-ranking method. In Section 4, we introduce datasets and features 

which our experiments used images, extract features, the experimental results and the 

performance analysis. Conclusions and suggestions for our future works are given in 

Section 5.  

 

2. Summary of the Related Works 

In this Section, we now review related work in the fields which are closest to our large-

scale image retrieval problem. We briefly introduce the methods designed to handle the 

above mentioned problems of the bag-of-words model. 

To alleviate the information loss in feature quantization, soft assignment on features is 

adopted in [8]. The probabilistic relationships between the features are learned in [9]. 

Feature metrics are also learned either to reduce the descriptor dimensionality or to 

increase the feature discriminative power. 

In the Bow (bag-of-words) framework [10], an image is represented by means of a bag 

of local descriptors densely extracted in the image, and then is finally characterized by a 

histogram of features quantizing the underlying probability distribution of the local 

descriptors. The vocabulary provides a discrete partitioning of the feature space by 

features.  

Improved methods include incorporating contextual information into the vocabulary, 

building super-sized vocabulary [11], etc. Typically, multi-vocabulary merging can be 

performed either at rank level, or at score level. 

Matching refinement feature-to-feature matching is a key issue in the Bow model. To 

improve precision, some works analyze the spatial contexts [12] of SIFT features, and use 

the spatial constraints as solution to refining matching.  

On the other hand, to address the problem of vocabulary correlation, the literature [13] 

present to create the vocabularies jointly and decrease correlation from the view of 

vocabulary generation.  

In another way to compensate the deficiency in feature matching is to automatically 

expand the query [14]. It tends to improve the retrieval performance especially when the 

appearance of the object has large variation. Though a faster method is proposed recently 

[15], the re-ranking is still performed only on the top-ranked images.  

In [16], pair wise feature distances between images are updated using k-NN. However, 

constructing such pair-wise data structure is computationally with large dataset. We 

propose a k-NN re-ranking method without sacrificing much efficiency. 

Many works have proposed to transform high-dimensional vectorial representations 
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into compact codes. This includes LSH (Locality sensitive hashing) [17], SSH (Semi-

supervised hashing) [18], ITQ (Iterative quantization) [19].  

Although the significant differences between above-mentioned algorithms, all of them 

include a projection of the original image characteristics into an intermediate real-valued 

space. The projections are either learned in an unsupervised manner or random (as in 

LSH), for instance with PCA (as in SSH) or with an algorithm which reduces the 

quantization error (as in ITQ).  

 

3. Proposed Methods 
 

3.1 Oriented Probability Density Function Gradients 

Considering an input image, N local descriptors, are extracted at dense spatial positions 

with various scales; it can be denoted by  

              1, ,d

ix i N ，                                                            (1) 

While the bag of those descriptors has been used to discretely represent the image, we 

apply kernel density estimator to obtain the p.d.f by formula (2), 

2

2
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                                           (2) 

Where   :f z   indicates the differentiable function for kernel; e.g., 
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 with the parameter h, say h = 0.1 in our experiments, and the 

normalization constant Cd,h. We use this p.d.f for constructing an effective image feature. 

The gradients effectively characterize the “shape” of the p.d.f from the geometrical 

viewpoint, as is the case with HOG applied to extract geometrical feature of an image 

pixel function. 

The gradient vector of the p.d.f is given by formula (3) 
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 Where    2g z f z   is improper to straight forwardly aggregate the p.d.f gradient 

vectors themselves. Thus, we consider the orientation coding of the p.d.f gradients (3), 

followed by aggregation into histograms. 

The orientation coding is usually applied to image gradients such as in HOG. The 

orientation of the image gradients is coded based on a lot of the bins, forming over 

complete set to describe any oriented gradients. Then, we employ the complete set of 

bases given by PCA.  

 

3.2 Principal Component Analysis 

PCA is applied to the p.d.f gradient vectors normalized in unit L2 norm 2/ || ||f fp p   

which indicate only the orientations on a unit hyper sphere. Thereby, we acquire the 

d orthonormal eigen vectors, , 1,..., ,j j k jku j d u u   . Along each basis vector, we can take 

into account positive and negative ones, which totally provides 2d orientation bins by 

2 2

1 1 1

2 2 2

( ;{ } ) [max( ,0) ,max( ,0) ,...,

                  max( ,0) ,max( ,0) ]

d T T

j j

T T T d

d d

C v u u v u v

u v u v





 

 
                                          (4) 

Where v  shows the d-dimensional vector to be coded. This coding produces rather 

sparse orientation codes in which at most d components are nonzero, and the code has a 

unit sum for 2

2|| || 1v  . 
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The orientation of the p.d.f gradient vector is coded by 1

2
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. For 

convenience, we can leave out 
1{ }d

ju 
 in the followings. 

PCA produces the eigenvalues
je , and the eigenvalue stands for the power of the code 

on the corresponding basis 2
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, and thus it is utilized to normalize the 

orientation codes as in PCA whitening: 
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Where 2 *2

1 2( , ,..., , ) d d

d dE diag e e e e  .  

In spite of this weighting, the orientation codes are equally dealt with by enhancing the 

orientations, but rarely occur while suppressing the common ones that are frequently 

found on the whole. The rare orientations would be improves the discriminative power. 

 

3.3 Aggregation of p.d.f Gradient Orientation Codes 

The orientation codes (5) are aggregated around the words which are cluster centers in 

the local descriptor space d . We define the aggregation in the following continuous form 

with the p.d.f: 
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                                          (6) 

( , )W x   is the weighting function. To reduce the continuous form into a tractable 

discrete one, it should be noted that the local descriptors , 1,...,ix i N are assumed to be 

randomly sampled according to the p.d.f ( )fp x . 

Given arbitrary function ( )h x , we have the following formula: 

1
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                                                      (7) 

So, formula (6) can be reduced into 
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This is a summation weighted by the inverse of the probability ( )f ip x . The formula (8) 

suppresses the effect of the local descriptors of high probability. 

Then, we induce the normalized gradient in as (8): 
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Where the profile g  is approximately applied to the normalization on account 

of ( ) ( )f gp x p x .  

By introducing the normalized gradient (9) into (8), we finally gain the aggregation 

form to construct features as the histogram of the oriented p.d.f gradients. Let 

, 1,...,k k M  are the k-th word center, and the aggregation around 
k can be given by: 
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These features around the respective words are concatenated into the final feature 

vector: 

2
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Md d d   .                                                 (11) 
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3.4 k-NN Re-Ranking 

On the basis of the above, we can further use the top-k retrieved image to refine our 

retrieval results. 

Considering a query image, the rank of a database image according to S* is denoted 

by  ,R Q D . Let 
iN be the query’s i-th retrieved image. Obviously ( , )iR Q N i .  

Accordingly  
 1, ,i k

q Ni


 is the query’s k-NN re-ranking, as shown in Figure 1. 
In most cases, the majority of these k-nearest neighbors include the same object as in 

the query image. For example, Some images with the same object are not visually close to 

the query, and are ranked very low, owning to the features are variant to view point 

change, object deformation or occlusion, 

We also use each localized object in qN  as a query and perform retrieve. The rank of a 

database image D when using 
iN  as the query is  ;iR N D , as shown in Figure 1.  

According to the rank, we allocate a score  1= ;iR N D to each database image. The 

weighted total scores of the database images are then collaboratively determined as: 

 
   1
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                                             (12) 

 

Figure 1. Illustration of k-NN Re-Ranking 

Rank of 
iN  in the first retrieval. We set 

0 1w   and
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. Query itself 

can be regarded as the 0-th nearest neighbor, and formula (12) is accordingly rewritten as: 
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We also consider the rank of the query in each of its nearest neighbors’ retrieval results, 

i.e. ( ; )iR N Q . Query Q  and its nearest neighbor 
iN  are close only if  ; iR Q N and ( ; )iR N Q  

are both high.  

We revise the weight jw  to be 
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The weighted total scores of database images are determined by: 
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Images are then re-ranked based on  ,S Q D . 

Generally in most cases, the first iteration brings significant performance improvement. 

Furthermore; we may use the new top-k retrieved images to perform re-ranking iteratively.  

Owning to the k-NN re-ranking method can ignore those irrelevant features. The 

presented method takes advantage of the localized objects in the retrieved images. 

Moreover, our re-ranking method is no sensitive to false retrieval results in
qN . 

In our experiments, the score is related to the ranking. An image will not be re-ranked 

very highly unless it is close to the query and the majority of those k-NN images. 

However, the weight corresponding to this outlier is relatively small as the rank itself in 

the query’s retrieval list is not high.  

On the contrary, a relevant image is close to several images in qN  and will have a high 

score. Experimental results show our method is robust to the selection of number k, even 

if k is large and there are many outliers in
qN , the retrieval accuracy can maintain very 

high. 

Since our method is not sensitive to outliers, no spatial verification is needed. Also, re-

ranking can be efficiently performed on the various datasets.  

 

4. Experiments and Analysis 

We describe the datasets and features which used in our experiments. PASCAL-VOC 

2007 dataset [1] is used to analyze the performances of the proposed method. 

PASCAL-VOC 2007 dataset has 5,011 training images and 4,952 test images. The 

dataset includes objects of 20 categories and it poses a challenging task of image retrieval 

due to significant variations in accordance with appearances and poses even with 

occlusions. 

 

4.1 Results of k-NN Re-Ranking 

The performance is evaluated by the standard PASCAL protocol which computes mAP 

(mean average precision) based on the precision curve. The following five topics are 

possible in the presented method.  

Table 1. Performance Analysis on PASCAL-VOC 2007 

          (a) Parameter h                                               (b) Orientation coding 

 

h=1 0.2 0.1 0.05 

0.6052 0.6061 0.6173 0.5956 

(c) Component weighting 

None Inverse eigenvalues 

0.6021 0.6173 

 

Random bases PCA bases 

0.6013 0.6173 

(d) p.d.f gradient 

None Normalized 

0.5986 0.6173 

(1) Parameter h.  

We utilize the function   2
z

hf z e


 with h = 0.1. Because of the curse of 

dimensionality, such adaptive parameter selection becomes less effective in the higher-

dimensional space, since the data samples are sparsely distributed around each sample 

point.  

We apply four h ∈ {1, 0.2, 0.1, 0.05} to the function which are superimposed over the 
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distribution of the distances. The profile of h=0.1 appropriately obtains the neighboring 

samples, while those of the other cover too small or too large portion of neighbors.  

The favorable performance is acquired at h=0.1 as shown in Table 1(a); the larger h = 1 

causes better performance than the smaller one h = 0.05, showing that it is favorable to 

gain somewhat large amount of neighbors for constructing discriminative p.d.f gradients. 

In our experiment, we employ h=0.1, k=25, and 512 features. 

(2) Orientation coding 

We focus on the way of coding p.d.f gradient orientations. Those orientations are coded 

using the PCA basis vectors. For the alternative to the PCA bases, we can also adopt the 

random orthonormal bases to code them.  

The performance comparison is shown in Table 1(b), demonstrating that the PCA bases 

substantially improve the performance. In such a case of complete set of orientation bases, 

which is smaller than over complete one, the data-driven bases provided by PCA 

effectively code the orientations. Similar, we employ h=0.1, k=25, and 512 features. 

(3) Component weighting.  

The effectiveness of the weighting by the inverse of the PCA eigenvalues is shown in 

Table 1(c) with comparison to the case without weighting. The performance is improved 

by the weighting which suppresses the orientations commonly occurring across the 

categories while enhancing the less-frequent but discriminative ones. 

In case that we simply use original p.d.f gradient fp without normalization in formula 

(10), the performance is deteriorated as shown in Table 1(d).  

The method employing fp amounts to the aggregation weighted by the probability fp  

which would highly enhance the samples frequently found in the image. In addition, the 

mean-shift vector ˆ
fp is stable in that it always points to the direction where the p.d.f is 

increased. We use the same parameters which described above. 

(4) Number of features.  

We exhibit the performances on various numbers of features M ∈ {64, 128, 256, 512, 

1024} in Table 2. According to the Table 2, we can know that the performance of the 

proposed method in PASCAL-VOC 2007. The proposed method effectively works for 

object recognition. We employ h=0.1, and k=25. 

Table 2. Performances on Various Numbers of Bag-of-words 

 64 128 256 512 1024 

BOW+Re-ranking 0.5261 0.5572 0.5822 0.6173 0.6243 

The proposed method obtains high performances even on the small amount of features. 

These results demonstrate that the p.d.f gradient orientations more effectively characterize 

the distribution of the local descriptors. 

Since the performance is sufficiently improved by 256 and 512 features, in the 

following experiments, we apply the proposed method with 256 and 512 features.  

In the implementation of the voting-based method, we switch off rotation in PASCAL-

VOC 2007 as most of these query objects are upright.  

 (5) Number of nearest neighbors k 

Table 3 shows the performance on PASCAL-VOC 2007 when we change k. Even with 

only 25 nearest neighbors, the mAP is already improved to 0.6173. When the k-NN set qN  

becomes larger, the mAP keeps increasing. 
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Table 3. Performances on Various Numbers of  Nearest Neighbors k 

 
5 10 15 20 25 35 

BOW+Re-ranking 0.5902 0.5979 0.6011 0.6127 0.6173 0.6218 

Similarly, since the performance is sufficiently improved by 25-Nearest Neighbors, we 

apply the proposed method with 25-Nearest Neighbors in the following experiments.  

4.2 Comparisons to Other Methods 

(1) Comparisons to baseline bag-of-words model 

 We compared BOW and BOW+Re-ranking with the baseline bag-of-words model. The 

results are shown in fig 2. We can see our method significantly outperforms the bag-of-

words model. Moreover, the mAP of the baseline method increases from 0.4932 to 0.5026, 

0.5318 and 0.5472 respectively, while our method is increases from 0.5602 to 0.5845, 

0.6027 and 0.6173 respectively. This manifests our method is more scalable to larger 

databases.  

 (2) Comparisons to LSH 

We compared BOW and BOW+Re-ranking with LSH also. In each case, the optimum 

choice of parameters that maximizes the speedup for a given precision is used. 

It can be seen that the k-NN re-ranking method performs better than the LSH in fig 2, 

while for the PASCAL-VOC 2007 dataset our method is faster than LSH for all precisions. 

This also shows that the algorithm proposed scales well with respect to the dataset size. 

64 128 256 512
0.40

0.45

0.50

0.55

0.60

0.65

0.70

 

 

m
e

a
n

 a
v
e

ra
g

e
 p

re
c

is
io

n

number of bag-of-words

 BOW

 LSH

 BOW+Re-ranking

 

Figure 2. Mean Average Precision Using Various Numbers of Bag-of-words. 

Note is that the LSH implementation requires significantly more memory compared to 

LSH method for when high precision is required. Although, there are many irrelevant 

images in qN  when k is large, our approach can still achieve very high accuracy in that 

case, which demonstrates the robustness of this rank, based method to outliers. 

Figure 2 shows the performance of k-NN re-ranking. It further significantly improves 

the retrieval performance, indicating that our method is robust to distractors.  

Meanwhile, Figure 2 shows the comparisons of our method with other methods using 

different number of features. The results of our method are among the best on PASCAL-

VOC 2007. 

4.3 Scalability for Large Datasets 

For comparison, we then apply the proposed method to the datasets of INRIA Holidays 
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[20], MIT-Scene [21] for scene retrieval and [4] for object retrieval.  

INRIA Holidays contains 1,491 images of 500 scenes and objects. One image per scene 

is used as query to retrieve within the remaining 1,490 images and accuracy is measured 

as the mAP averaged over the 500 queries.  

MIT-Scene contains 15,620 images from 67 indoor scene categories and all images 

have a minimum resolution of 200 pixels. This retrieval task is very challenging due to 

the large within-class variability and small between-class variability in a large number of 

categories.  

See the Figure 3 and Figure 4, the proposed method exhibits the favorable performance 

compared to the others, though the improvement is not so significant. However, it should 

be noted that the dimensionality of the proposed feature with 256 and 512 features to 

improve the retrieval performance. 

Caltech-256 contains 256 object categories and 30,607 images besides a background 

category in which none of the images belonging to those 256 categories. The intraclass 

variances regarding such as object locations, sizes and poses in the images are quite large.  

Caltech-256 INRIA MIT-Scene
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Figure 3. Mean Average Precision while k=25, Number of Bag-of-words=256 

Caltech-256 INRIA MIT-Scene
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Figure 4. Mean Average Precision while k=25, Number of Bag-of-words=512 

We report the averaged retrieval accuracy over two methods, and the results are shown 
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in Figure 3 and Figure 4.  

It can be seen that the retrieve performance scales well with the dataset size and it 

benefits considerably from using multiple parallel processes. 

In addition to the improved retrieve performance; using multiple parallel processes on 

a compute cluster has the additional benefit that the size of the dataset is not limited by 

the memory available on a single machine.  

5. Conclusions 

We achieve simultaneous image retrieval by utilizing a new BOW method. The 

proposed method is built upon the probability density function acquired by applying 

kernel density estimator to those local descriptors. The method exploits the oriented p.d.f 

gradients to effectively characterize the p.d.f. The proposed method extracted image 

features, and thus it is applicable to any kinds of image retrieval tasks. Meanwhile, a k-

NN re-ranking method is further proposed to improve the retrieval performance.  

These experimental results exhibit that the proposed method over other methods on 

PASCAL-VOC 2007, MIT-Scene, INRIA Holidays and Caltech-256 datasets. It should be 

attended again that the parameter setting, especially the h = 0.1, is shown to be robust, 

while the performances might be further increased by tuning the parameter setting 

carefully in each dataset.  

Extensive estimation on several datasets demonstrates that our method increases the 

performances more significantly on the more challenging datasets due to its high 

discriminative power. Our method can be integrated in a classification or retrieval system 

with other components to better image classification or retrieval performance. 

Acknowledgments 

The authors would like to thank the reviewers for their critical and constructive 

comments and suggestions. 

This paper is supported by the National Natural Science Foundation of China 

(Grant No.61402420), and the Science and Technology Foundation of Henan 

Educational Committee (No.14B520049). 

References 

[1] G. Csurka, C. Bray, C. Dance, L. Fan. Visual categorization with bags of keypoints. In ECCV Workshop 

on Statistical Learning in Computer Vision, (2004), pp: 1-22.  

[2] N. Dalal, B. Triggs. Histograms of oriented gradients for human detection. In CVPR, (2005), pp: 886-

893.  

[3] The PASCAL Visual Object Classes Challenge 2007 (VOC2007). http://www.pascal-network.org/ 

challenges/VOC/voc2007/index.html. 

[4] G. Griffin, A. Holub, P. Perona. Caltech-256 object category dataset. Technical Report 7694, Caltech, 

(2007). 

[5] H. J′egou, M. Douse, C. Schmid, P. P′erez. Aggregating local descriptors into a compact image 

representation. In CVPR, (2010), pp: 3304-3311.  

[6] D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Transaction 

on Pattern Analysis and Machine Intelligence, 24(5), (2002), pp: 603-619.  

[7] L. Bo, X. Ren, D. Fox. Hierarchical matching pursuit for image classification: Architecture and fast 

algorithms. In NIPS, (2011), pp: 2115-2123.  

[8] J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman. Lost in quantization: Improving particular object 

retrieval in large scale image databases. In CVPR, (2008).  

[9] A. Mikul´ık, M. Perd’och, O. Chum, J. Matas. Learning a fine vocabulary. In ECCV, 6313, (2010), pp:1-

14.  
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