
International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015), pp. 71-88

 http://dx.doi.org/10.14257/ijmue.2015.10.1.7

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

The Research and Implementation of Temporal Quasi-order Data

Index

Xiuqin Deng
1
, Hongyan Xing

2
, Xiaoping Ye

3
 and Chengyan Fang

4

1, 2corresponding author, 4
School of Applied Mathematics, Guangdong University of

Technology, Guangzhou, P.R. China
3
School of Computer Science, South China Normal University, Guangzhou, P.R.

China

deng_xiuqin@126.com

Abstract

This study proposed a quasi-order-based temporal data structure (QOTDS) which differed

from conventional, algebraic data management models. Based on this QOTDS, a temporal

data index called the temporal quasi-order index (TQOindex) was established. Firstly, the

study proposed the concepts of temporal quasi-order (TQO) and linear order partitioning

(LOP) of time period sets and discussed the construction algorithm of LOP and the optimum

(minimum) properties. On this basis, a temporal data structure was established based on

LOP. This structure realized the set-at-a-time data operation-like relational data structure

and improved the inquiry efficiency by using multiple threads. Subsequently, in the structural

framework of TQO, we discussed the temporal data index (TQOindex) based on quasi-order

extensions. This index was effectively applicable to various conventional database platforms

depending on the disk (external memory)-based data management and also to big data

dynamic index technology relying on the incremental updating mechanism. Finally, a

corresponding experimental simulation and comparative evaluation were designed to verify

the feasibility and effectiveness of TQOindex. Research and experiments showed that QOTDS

were effective at temporal inquiry and management in cases involving the temporal

processing and integration mechanisms in new data, such as semantic data, XML data, and

moving object data.

Keywords: QOTDS, TQOindex, linear order partitioning, incremental updating,

simulation and evaluation

1. Introduction

As a reflection of objective entities, computer data are often used to describe and deal with

time domain problems, especially in the data management fields under networked

environments such as the web, e-commerce, etc. Such time-variant data can be considered as

a snapshot data. Driven by the need to govern the past state and predict future development

and application of such data, the temporal attributes of data should be reflected in any explicit

formulation and effectively processed. The data carrying time-based tags are temporal data.

Data query is a basic function of data processing.

However, due to the special characteristics of time, i.e., unidirectionality (monotonically

increasing), multi-dimensionality (effective, transaction, and user-time dimension), and

interrelationship complexity (ALLEN temporal relationship [1]) etc., temporal data can rarely

be included in the processing framework of traditional data and are merely searchable based

on a temporal data index. According to previous research, existing temporal indices are

mainly researched using the following methods:

A. Processing the temporal and non-temporal parts in sequence: this method is mostly used

for temporal relationship data queries [2-7] basically relying on the idea of establishing a set

of time (time period) index systems. In this method, data are firstly processed temporally and

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

72 Copyright ⓒ 2015 SERSC

then conventionally treated after screening select times. The characteristics of this method are

indicated as: temporal query technology is researched basing on the attributes of time.

Supporting by the mature technologies, the processing in sequence is realized effectively.

B. Including the temporal processing in the non-temporal processing framework: this

method is mainly used in temporal-spatial data queries ([8-15]) with the concept of treating

time as a new one-dimensional space and the data concerning the one-dimensional temporal

and two-dimensional spatial attributes as three-dimensional spatial data. This method focuses

on the spatial attributes attached to time. Although it effectively employs spatial index

technology for reference, it fails to reflect the basic characteristics in which time differs from

space.

C. Integrating the temporal processing into the non-temporal processing: this method is

mainly employed for queries in temporal extensive make-up language (XML) data and

moving object data [16-22]. Its basic idea involves aiming at the characteristics of the data,

such as, the structural characteristics of XML and the trajectory features of moving objects: a

corresponding temporal index mechanism is developed and integrated into the non-temporal

query modules. Being different in its processing sequence from method A and the “integral

inclusion” of method B, it highlights the characteristics of time and the internal correlation

and restriction between temporal and non-temporal data.

In fact, with the expansion of data models that have been applied (such as the temporal

correlation model for temporal object data, the semi-structural model of temporal XML, and

the trajectory model of moving object data), the temporal data index mode based on method C

has drawn much attention. Here, two fundamental points are raised for discussion, namely, to

effectively express the temporal data structure and index framework of the temporal

characteristics and the integral mechanism of temporal and non-temporal queries [21-22].

The quasi-order-based temporal data structure (QOTDS) proposed here is basically

characterized by forming an LOP-based framework structure through organising temporal

data using time and time period sets. Since QOTDS is built on the mathematics of

relationship, it shows the desired expand space and can be applied to new data fields such as:

temporal XML, moving object data, semantic data etc. Meanwhile, QOTDS also realizes the

set-at-a-time query and multi-thread operation-like relational data and thus are suitable for

distributed data management modes and the data management mode under networked

environments such as P2P; in addition, the QOTDS is also applicable to the dynamic

management of various large temporal datasets under due to its ability to incrementally

update the insertion and deletion of data. Within the framework of QOTDS, this study firstly

established the external memory-based temporal data index mode (TQOindex) depending on

the mapping relationship of linear order branches (LOB) with temporal numerical sequencing.

This mode reflected structural correlations in the data based on the characteristics of temporal

data (time period) (a quasi order relation) and provided a reference and ideas for the temporal

and non-temporal integrations. Secondly incremental updating is a fundamental challenge in

data management. TQOindex realised the dynamic index mechanism supported by the

technology in the insertion and deletion of the QOTDS incremental data. Finally, relying on a

time data disk storage management based on a B+ tree, TQOindex was usable in all kinds of

conventional database platforms. Therefore, it is operable and extendable to real applications.

This paper is organized as follows: Section 2 introduces the concept of TQO and

investigates the construction algorithm and basic characteristics of the minimum linear

order. Moreover, it also establishes the QOTDS and discusses the query and updating of

LOP. Section 3 discusses the TQOindex based on minimum linear order partition

(MLOP). The data query in this section used the conventional B+ tree mechanism based

on the mapping relationship between LOB and “time and time period” sequences.

Section 4 presents the simulation and evaluation of TQOindex to verify its feasibility

and validity.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 73

2. Data Structure of Quasi-order

Temporal data refers to the two tuples 
stamp

TDMTd , . Where, D is the non-temporal

data,
stamp

T is the time label. Without loss of generality,
stamp

T was assumed to be a valid time

period (VT), VT=[VTs, VTe), VTs and VTe are start and end points of VT respectively (VTs

≤ VTe); if VTs=VTe, we define VT=[VTs, VTe) as an instant. Let Td is a temporal data, the

effective time period of Td is denoted by VT (Td).

A relation R on a set E is called a quasi-order if it is reflexive and transitive.

2.1. LOB and LOP

Definition 1 (TQO) Let E be temporal data set, If the relationship ≾ on E is defined as:

Td1, Td2∈ E, Td1≾ Td2)()(
21

TdVTTdVT  , “≾ ” is called a temporal quasi-order (TQO)

on E.

Let Г be the time period set. If ∀ u ∈ Γ, u = [VTs,VTe), u corresponded to point P(u) =

(VTs, VTe) in the plane VTs-VTe. Such correspondence is a 1-1 correspondence and P(u) is

called a 2-dimension time point corresponding to u. Here, u corresponded to point P(u) and Г

corresponded to a point set)(P in the plane VTs-VTe.

Let P0 = (min{VTs (P)}, max{VTe (P)}), P , starting from point P0, the traversal

sequence obtained by)(P from “top to bottom” and “left to right” is called the)(P

sequence. In the following, Γ,)(P and)(P sequences are not distinguished in this study.

Example 1 Figure 1 shows an example of a)(P sequence.

Definition 2 (LOB and LOP) Let Γ be the time period set having quasi-order “≾ ”. A

whole order branch of Γ is called an linear order branch (LOB, or L) of Γ Ω represents all the

LOB sets on Γ If ,,,, 
jiji

LOBLOBjiLOBLOB  and


i

i
LOB

, Ω is called an

linear order partition (LOP) on Γand is denoted by LOP(Γ).

Algorithm l (The precedence algorithm under LOP)

It was assumed that there was a)(P sequence.

Step1. From the header element
0

u of)(P to :)(
0.

 Pu
i

)()(
0

0.

uVTuVT
sis

)),()((
01

0.

uVTuVT
sis


 1

0.
i

u is the following element of
0.

i
u on .)(P

Step2. From
0.

i
u to :

1.
i

u

)}),(min{)(()()(
101.

jsisieie
uVTuVTuVTuVT  where,

)( Pu
j

)).()()()(),((
jekejsksk

uVTuVTuVTuVTPu 

Step3. From
1.

i
u : repeat Steps 1 and 2 until ,)( Pu

m
∄ ,)( Pu

m
 such that

,))()()()((
mememsms

uVTuVTuVTuVT  the subsequence in)(P from
0

u to
m

u is a LOB1.

Step4. From the header element in)(P \ LOB1, repeat Steps 1 to 3. By calculation,

LOB2 ,, )(LOB were then obtainable.

If },)(max{)(},)(max{)( uuVTVTuuVTVT
eess

 the maximum time

complexity of Algorithm 1 is .2/)()(
es

VTVT

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

74 Copyright ⓒ 2015 SERSC

Figure 1. P(Γ) Sequence

Example 2 As for the P(Γ)=<[1,8), [1, 7), [1,5), [2, 9), [2, 8), [2, 7), [2, 6), [3, 5), [3,4), [4,

6), [4, 5)> in example 1, Algorithm 1 is realised according to Figure 2, we then obtain the

following two LOBs:

LOB1=<[1,8), [1, 7), [1,5), [3, 5), [3,4)>

LOB2=<[2, 9), [2, 8), [2, 7),[2, 6),[4, 6), [4, 5)>

Definition 3 (MLOP) If LOP0 is the LOP on  , if |LOP0|≤|LOP| for every element

LOP , LOP0 is called minimum linear order partition (MLOP) on  .

Figure 2. The Realization of Precedence Algorithm under LOP

(1,8)

(1,7)

(1,5)

(2,6)

(2,7)

(2,8)

(2,9)

(3,4)

(3,5)

(4,6)

(4,5)

u0=

ui1= ui1+1=

um=

(1,8)

(1,7)

(1,5)

(2,6)

(2,7)

(2,8)

(2,9)

(3,4)

(3,5)

(4,6)

(4,5)

P0

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 75

Figure 3. Temporal Order Matrix TOM(Γ)

Definition 4 (TOM)

Let)},({max)},({min
1

uVTiuVTi
sns 

)},({min
1

uVTj
e

)}.({max uVTj
em 

 The time

periods in  is),,[),[jiVTVTu
es

 and is denoted by

),(,
11 mm

jjjiiiji  . Let horizontal axis and vertical axis in the plane being the

starting and ending points of the [i, j) respectively, the grid point set determined by

},,{
11 mn

jjjiiiji  (Figure 3) is called Γ-based temporal order matrix (TOM), and

denoted by }.(TOM

For),(
00

 TOMu
ji

}(TOM can be divided into four regions by :
00

ji
u

},,{)(
00

00

jjiivuUL
ijji

 },,{)(
00

00

jjiivuUR
ijji

 },,{)(
00

00

jjiivuDL
ijji

 and

}.,{)(
00

00

jjiivuDR
ijji

 In the formula above, if only “<” is supported, corresponding

regions are called open regions, and denoted by OUL, OUR, ODL, and ODR respectively.

Figure 4 shows the “upper-left” UL(23) and “down-right” DR(23) regions of temporal node

“23” in }(TOM .

14

13

12

11

24

23

22

33

34 44

DR (23)

UL(23)

Figure 4. UL(23) and DR(23)

Theorem 1 (TOM and quasi-order) if),(
0

 TOMu we have

(1)u0⊆ v0  v0∈ UL(u0);

(2) v0⊆ u0  v0∈ DR(u0);

(3) ¬(u0⊆ v0∨ v0⊆ u0) v0∈ OUR(u0)∨ v0∈ ODL(u0)

Proof (1) Let u0=[i0, j0), v0=[k0, l0), clearly we know u0≤v0  u0⊆v0  k0≤i0, j0≤l0 

v0∈UL(u0)

 (2) and (3) can be proved in same way.

Theorem 2 (The properties of precedence algorithm under LOP)

The LOP obtained using the Algorithm 1 is MLOP.

Proof Supposing that 
n

LOBLOBLOBLOP ,,,
210
 is obtained by Algorithm 1, where,

i
LOB is sequenced according to calculating order.),1(

0

niLOBu
ii

 ,
1

0



ik

LOBu

11

2221

111211

121

,

,,,

,,,

,,,,

ji

jiji

jijiji

jijijiji

mnmm

mnmnmm











International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

76 Copyright ⓒ 2015 SERSC

).(
0000

ikki
uuuu  Actually, it is only needed to explain that there are elements of

1i
LOB in).(

0
i

uDL Otherwise, if such elements are absent,
1i

LOB locates in),(
0

i
uUL and

)(min
1i

LOBODR contains .
i

LOB This result was contradicted with the LOB in Algorithm 1. If

the nodes obtained by here were ,,,,
21 n

uuu  we got),1()(
1

niuODLu
ii




 that is

).(
11 iiii

uuuu 


 Therefore, an arbitrary LOP contains n LOBs at least. The proof

completed.

Definition 5 (Extended LOB and LOP)

Let LOB=< u1…, ui, ui+1,…, um>, ui and ui+1∈LOB, the folded line segments obtained

using following methods are called the extended LOB on VTs-VTe, and is denoted by ELOB.

(1) For arbitrary adjacent ui and ui+1 in LOB,

● if VTs(ui)= VTs(ui+1)∨VTe(ui)= VTe(ui+1), ui and ui+1 are connected using a linear

segment.

●if ¬ (VTs(ui) = VTs(ui+1)∨VTe(ui)= VTe(ui+1)), a point v (v =[VTs(ui+1),VTe(ui))) is

inserted between ui and ui+1. Then ui and ui+1 are connected with v using line segments

respectively.

(2)Connecting point P(um) of the minimum time period um on LOB and point P(v0) on the

diagonal on plane VTs-VTe was done using line segments, where, v0=(VTs(um), VTe(um)).

If point u on ELOB belonged to Γ, point u is called real instant, and is denoted by u(r).

Otherwise, it is called fill instant, and is denoted by u(f).

The set constituted by all the ELOBs corresponding to the LOB in MLOP () is called

extended MLOP, and is denoted by EMLOP ().

Example 3 For MLOP=< LOB1, LOB2> in Example 2, EMLOP=< ELOB1, ELOB2>, as

shown in Figure 5. Where, “shallow” node corresponding to u(f).

ELOB1=<[1,9), [1,8), [1, 7), [1,6), [1,5), [2,5) [3,5), [3,4), [4,4) >,

ELOB2=< [2,9), [2, 8), [2, 7), [2, 6), [3,6), [4,6), [4,5), [5,5) >

EMLOP () and MLOP () can be constructed simultaneously. EMLOP() was stored

and managed using a two-dimensional array EMLOP [VTs][VTe], with array elements N=

(no, flag, [VTs, VTe)). Where, no is the ELOB number of time u=[VTs, VTe); flag is used to

identify whether or not u belongs to MLOP. When u ∈ MLOP, flag=t (true); when

u∈EMLOP\MLOP, flag=f (false). For example, in Figure 3, u=[1,5) ∈ ELOB1, thus no=1,

u=[1,5)∈MLOP, flag=t; u=[3,6)∈ELOB2, no=2, u=[3,6)∈EMLOP\MLOP, flag=f.

2.2. Dynamic Management of LOP

In terms of massive temporal data, incremental updating plays an essential role in realizing

dynamic management. Hence, it was necessary to discuss the incremental updating of LOP.

2.2.1. Insertion Updating

Definition 6 (the nearest LOB of time period u)

If u denotes time and there is a LOBi satisfying following conditions:

(∃v∈LOBi (u⊆v))∧(∃w(u⊆w)→(w∈LOBi∨w∈LOBi+k)),

Where k>0, then, LOBi is called the nearest LOB of u.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 77

(1,8)

(1,7)

(1,5)

(1,6) (2,6)

(2,7)

(2,8)

(2,9) (1,9)

(3,4)

(3,5)

(4,6)

(4,5)

(4,4)

(3,6)

ELOB1 ELOB2

(2,5) (5,5)

Figure 5. EMLOP ()

Definition 7 (supremum and infimum of time)

It is assumed that u is a time period. For v∈LOB0, if condition

(u⊆v)∧(∃w∈LOB0(u⊆w)→vw) is satisfied, v is called the supremum of u in LOB0 , and is

denoted by).(sup
0

uv
LOB

 If (v⊆u)∧(∃w∈LOB0(w⊆u)→wv), v is called the infimum

of u in LOB0 , and is denoted by).(inf
0

uv
LOB



Algorithm 2 (EMLOP insertion algorithm)

Step1. Supposing that a new time period u was inserted into the given EMLOP() and

LOB0 serves as the nearest LOB of u. In LOB0, sup(u)=u0 and inf(u)=u1. According to

Algorithm 1, a new LOB0 can be obtained by connecting u0 with u1.

Step2. Acting as the newly-inserted point in EMLP\ LOB0, the point in LOB0 segment

<u0,u1>\{u0,u1} calls Step 1.

The maximum time complexity of Algorithm 2 is |EMLOP()|×max{|ELOB|}.

Example 4 As shown in Figure 5, u=[2, 4) was inserted into EMLOP() and the nearest

LOB was LOB1. In LOB1, u0=sup(u)=[1, 5), while u1=inf(u)=[3, 4). Based on Algorithm 1, a

new ELOB1 was acquired, as shown in Figure 6. In this situation, LOB1 segment <u0, u1>\{u0,

u1}= {[3, 5)}. Then, the process was repeated as above using v=[3, 5) as the newly-inserted

point, as shown in Figure 7. The final results are shown in Figure 8.

(1,8)

(1,7)

(1,5)=sup(u)

(1,6) (2,6)

(2,7)

(2,8)

(2,9) (1,9)

(3,4)=inf(u)

(3,5)

(4,6)

(4,5)

(4,4)

(3,6)

ELOB1 ELOB2

(2,5) (5,5)

u=(2,4)

Figure 6. Insertion of u= [2, 4)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

78 Copyright ⓒ 2015 SERSC

2.2.2. Deletion Updating

Algorithm 3 EMLOP deletion algorithm

Firstly, the following conditions were hypothesised: three points ()),(),([
0

uVTuVTu
es



),sup(
0

uv  and)(inf
0

uw ) in ELOBi need to be deleted; (Open) rectangular frame

)}()()()()()({)(
00000

vVTuVTuVTwVTuVTuVTuuR
eeesss

 intersects with

.,,,
20 m

iii
ELOBELOBELOB 

Step1. In ELOP, all elements that were included in)(
0

uR and also belonged to  were

deleted. Then according to Algorithm 1, a new
0

i
ELOB was produced by connecting

0
v with

0
w in EMLOP.

Step2. Let
k

u denoted an element that was included in }{\)(
00

uuR and also belonged to .

The construction process of
0

i
ELOB was to delete the corresponding

k
u in succeed

,,,,
21 m

iii
ELOBELOBELOB  and then repeat Step 1.

The maximum time complexity of Algorithm 3 is |EMLOP ()|×max{|ELOB|}.

Example 5 AS shown Figure 5, on the EMLOP (), three points (),5,1[
0
u

),7,1[))5,1sup([
0

v and))5,3[)5,1([inf
0

w) in
1

ELOB have been deleted. Figure 9 shows

the two points ()6,2[
1
u and)7,2[

2
u belonged to ELOB2) which needed to be deleted

in)(
0

uR . Based on Algorithm 1,)7,1[
0
v is connected with),5,3[

0
w and the new ELOB1

was thereby obtained, as shown in Figure 9. To establish ELOB1, we needed to delete

)6,2[
1
u and)7,2[

2
u in ELOB2, that is,)6,2[

1
u and)7,2[

2
u can be taken as the

newly-deleted points in EMLOP ()\ELOB1. In ELOB2, sup ([2, 7)) = [2, 8), while inf ([2,

6)) = [4, 6). According to Algorithm 3, by connecting [2, 8) with [4, 6), a new EMLOP was

produced (Figure 10).

(1,8)

(1,7)

(1,5)=sup(u)

(1,6) (2,6)=sup(v)

(2,7)

(2,8)

(2,9) (1,9)

(3,4)=inf(u)

v=(3,5)

(4,6)

(4,5)=inf(v)

(4,4)

(3,6)

ELOB1 ELOB2

(5,5)

u=(2,4) (1,4)

Figure 7. ELOB1 Resulting from the Insertion of u= [2, 4)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 79

(1,8)

(1,7)

(1,5)=sup(u)

(1,6) (2,6)=sup(v)

(2,7)

(2,8)

(2,9) (1,9)

(3,4)=inf(u)

v=(3,5)

(4,6)

(4,5)=inf(v)

(4,4)

ELOB1 ELOB2

(5,5)

u=(2,4) (1,4)

(2,5)

(5,6) (6,6)

ELOB3

Figure 8. Final Results (ELOB1, ELOB2, and ELOB3)

(1,8)

 (1,7)=sup(u)

u=(1,5)

(1,6) (2,6)

(2,7)

(2,8)

(2,9) (1,9)

(3,4)

(3,5)=inf(u)

(4,6)

(4,5)

(4,4)

(3,6)

ELOB1 ELOB2

(2,5) (5,5)

Figure 9. ELOB1 Resulting from Deletion

(1,8)

(1,7)

(2,6)

(2,7)

(2,8)=sup([2.7))

(2,9) (1,9)

(3,4)

(3,5)

(4,6)=inf([4,5))

(4,5)

(4,4)

(3,6)

ELOB1 ELOB2

(5,5)

Figure 10. ELOB2 Arising from Cascade

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

80 Copyright ⓒ 2015 SERSC

3. The Data Index TQOindex

Data structure plays an essential role in index construction. Therefore, the index pattern of

LOP-based temporal data structure (that is, the TQOindex) needs to be investigated.

3.1. Temporal Quasi-order Index Tree

Definition 8 (auxiliary query set (AQS) of MLOP)

For a given EMLOP(), query period Q0 = [VTs, VTe) and ∀ELOB∈EMLOP(),

according to quasi-order “≾”, the minimum time point including Q0 for every ELOB on

ELOP is defined as an auxiliary query point of Q0. The auxiliary query set (AQS) Q0 on

ELOP is denoted by AQS(Q0).

Example 6 Let’s consider the MLOP() in Example 3, the auxiliary point of the query

point Q0 = [2, 4) for
1

ELOB is [2,5), and that for
2

ELOB is [2,6). As seen in Figure 11,

AQS([2, 4)) = {[2,5), [2,6)}, where [2,5) is a fill point, [2,6) is a real point.

Definition 9 (LOB-based time number) It was first supposed that u∈LOB; u=[VTs, VTe);

and LOB∈MLOP, the serial number is no (LOB). The LOB-based time number of the time

period u is defined as:

TN(u, LOB)= no(LOB)×10
2r

 +Ve×10
r
-Vs)

Where r refers to the bits of the maximum end-point for all time periods in the LOB.

Theorem 3 (basic properties of time number)

(1) For u,v∈LOB , u ≠ v iff TN(u, LOB) ≠ TN (v, LOB).

(2) For u,v∈LOB , u ≾ v iff TN(u, LOB) ≤ TN (v,LOB).

Proof

(1) We presumes that u=[VTs(u), VTe(u)) and v = [VTs(v), VTe(v)). U ≠ v  VTs(u)-VTs(v)

≠0∨VTe(u)-VTe(v)≠0. But TN(u,LOB)-TN(v,LOB)=(VTe(u)-VTe(v))×10
r
-(VTs(u)-VTs(v)). In

this way, the conclusion was proved.

(2) If u ≾ v, then it is obvious that u ⊆v VTs(v)≤VTs(u)∧VTe(u)≤VTe(v)VTs(u)-

VTs(v) ≥0∧VTe(u)-VTe(v)≤0. However, TN(u, LOB)-TN(v, LOB)=(VTs(u)-VTs(v))×10
r
-

(VTs(u)-VTs(v)). As a result, required conclusion was verified.

It could be inferred from (1) in the aforementioned theorem that, for each element u in

LOB, there was only one corresponding TN (u, LOB) determined. Meanwhile, from (2) it

indicated that the quasi-order relationship between the elements of LOB could be interpreted

by the corresponding time number.

Definition 10 (TQO-based index, TQOindex) Temporal quasi-order index of time period

set Γ is denoted by TQOindex(Γ)=<EMLOP (Γ), MLOPB
+
-tree (Γ)>. where

(1) EMLOP (Γ) was a two-dimensional array as provided in Definition 4.

(2) MLOPB
+
-tree acted as a B

+
-tree for storing the quasi-order set MLOP and the index

object was the time number TM(u, LOB) corresponding to element u in the LOB.

Example 7 For MLOP in Example 3, the corresponding TQOindex (Γ) is shown in Figure

12.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 81

(1,8)

(1,7)

(1,5)

(1,6) (2,6)

(2,7)

(2,8)

(2,9) (1,9)

(3,4)

(3,5)

(4,6)

(4,5)

(4,4)

(3,6)

ELOB1 ELOB2

(2,5) (5,5)

Q0=(2,4)

ASQ（[2,4)）

Figure 11. AQS(Q0) of the Query Point Q0 = [2, 4)

<1,[1,8）>

<1,[1,5)>

<1,[3,4)>

<1,[3,5)>

EMLOP（Γ）

<2,[4,6)>, <2,[2,7)>

<1,[1,5)>

<1,[1,7)>

<1,[1,8)>

<2,[4,5)>

<2,[4,6)>

<2,[2,5)>

<2,[2,7)>

<2,[2,8)>

<2,[2,9)>

Figure 12. TQOindex (Γ)

3.2. Data manipulation

During data query, we put EMLOP (Γ) into the memory, and let the query time

Q0=[Vs(Q0),Ve(Q0)). Through sequencing storage of the two-dimensional array EMLOP (Γ),

we may obtain AQS(Q0)={(no, Vs, Ve)}. ∀ P0∈ASQ(Q0), the MLPB
+
-tree (Γ) was queried

by taking P0 as the query target. We use B
+
-tree to conduct a query to find out the minimum

time number TN(v0) that was larger than, or equal to, TN(P0) in leaf nodes. Therefore, all

TN(v) that were larger than or equal to TN(v0) in the LOB including v0 are the query result.

Algorithm 4 (TQOindex-based query)

Step1 Querying Q0 = [Vs(Q0), Ve(Q0)) was transformed into TN (Q0), and AQS(Q0) was

searched over EMLOP (Q0). If AQS(Q0) = ∅, no query result can be found in MLOP, and the

query was ended. Otherwise, the query continued to Step 2.

Step2 Each u∈AQS (Q0) had access to the MLOPB
+
-tree (Γ) for simultaneous queries

by multi-threads to yield the corresponding query results.

Step3 Converting results (time number) obtained in Step 2 into time periods and

outputting them as the final results.

The maximum time complexity of Algorithm 4 in searching AQS (Q0) in EMLOP (Γ)

was |EMLOP(Γ)|×max{|ELOB|}. ∀ELOB∈EMLOP(Γ) and |E| represented the cardinal

number of set E.

The basic process of TQOindex (Γ)-based temporal query is shown in Figure 13.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

82 Copyright ⓒ 2015 SERSC

TQOB+-tree EMLOP(Γ) Query requirements

Query result set

ASQ（Q）=∅

The end of the query

ASQ（Q）≠∅

Figure 13. TQOindex (Γ)-basedQuery

The characteristics of TQOindex-based temporal query were as follows:

(1) If AQS (Q0)=∅, then no result related to Q0 in Γ and the query was thus ended. In this

case, it was unnecessary to call MLOPB
+
-tree (Γ). The query only proceeded in the memory

and stayed off the disk. The query efficiency was thereby improved. If AQS (Q0) ≠ ∅,

MLOPB
+
-tree (Γ) was proceeded. Elements of AQS (Q0) were queried successively according

to conventional B
+
-tree. When LOB segments satisfying the conditions were distributed

across many leaf nodes, subsequent leaf nodes can be discovered through the leaf node

pointer. After that, with the aid of the LOB serial number, required results can be obtained.

(2) Based on LOB properties, if one result v0 ∈LOB0 was found in LOB0 in a certain leaf

node of the MLOPB
+
-tree (Γ), the segments after v0 in LOB0 were all the query results. Then,

the query result set was obtained, namely set-at-a-time.

(3) The MLOP acts as the LOP of Γ. The LOBs therein were mutually unrelated. When |

AQS(Q0)|>1, diverse auxiliary query points can be simultaneously processed through multi-

threads in the MLOPB
+
-tree (Γ). The larger |AQS(Q0)|, the higher the multi-thread efficiency.

Example 8. Assume that Q0=(2, 4). From EMLOP (Γ) in Figure 5, it was inferred

that AQS(Q0)={(1, (2, 5)), (2, (2, 6)) }. According to TQOindex (Γ) in Figure 12 and

auxiliary query point (1, (2, 5)), the query results <1,(1, 5)> and <1,(1, 8)> were

acquired. Using the auxiliary query point (1, (2, 6)), the query results <2,(2, 7)>, <2,(2,

8)>, and <2,(2, 9)> were acquired. Therefore, the final query result set was {<1,(1, 5)>,

<1,(1, 8)>, <2,(2, 7)>, <2,(2, 8)>, <2,(2, 9)>}.

4. Data Simulation and Evaluation

Map21-tree [23] was selected for comparative evaluation. The parameters involved in the

experimental data were set as follows: the time periods including [0, maxTime) and the

corresponding time period set Γ were generated randomly (maxTime denoted the maximum

time end-point of the time periods generated); the disk block size was 1024 kB. Each test

query was consisted of 50 operational sentences, and running expense corresponding to these

I/O is the mean of the 50 operations.

4.1. Data Query

4.1.1. Based on Data Size

We set maxTime=2000 and the maximum time period span as 10% of maxTime. Then,

data sizes of time periods randomly generated were: 1×10
5
, 2×10

5
, 3×10

5
, 4×10

5
, 5×10

5
,

6×10
5
, 7×10

5
, 8×10

5
, 9×10

5
, and 1×10

6
 respectively. In Figure 14, the horizontal axis denotes

data size (the number of time periods), while the longitudinal axis represents the frequency of

I/O access of the disk block. Figure 14 shows that, under a constant query span, the index

node number increased with increasing dataset size. As a result, there were more nodes

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 83

needing to be accessed. Besides, the I/O frequency presented a rising trend for both

TQOindex and Map21-tree. However, compared with Map21-tree, TQOindex showed a

slower increase of I/O frequency and better performance.

4.1.2. Based on Disk Block Size

Let maxTime=2,000 and query span as 10% of maxTime; 5×10
5

time periods were

generated randomly; disk block sizes were: 2
9
B, 2

10
B, 2

11
B, and 2

12
B respectively. In Figure

15, the horizontal axis denotes block size, while the longitudinal axis refers to I/O frequency

required for the query. It can be inferred from Figure 15 that with the increase of block size,

the I/O query frequency needed by both TQOindex and Map21-tree decreased. This was

attributed to the idea that, under constant time period number, the larger the block size, the

smaller the index node number and the node number that needed to be accessed in the query.

In this situation, TQOindex outperformed Map21-tree.

0

1000

2000

3000

4000

5000

6000

0 200000 400000 600000 800000 100000
0

120000
0

Number of indexed ranges

Nu
mb
er
 o
f
I/
Os
(d
is
k
bl
oc
ks

ac
ce
ss
)

TQOindex Map21-tree

Figure 14. The Variation of I/O as the Data Size Increases

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000

Disk Block Size in bytes

Nu
mb
er
 o
f
I/
Os
(d
is
k

bl
oc
ks
 a
cc
es
s)

TQOindex Map21-tree

Figure 15. The Variation based on Different Disk Block Size

4.1.3. Based on Query Period Span

It was assumed that maxTime=2,000 and time period set Γ comprised 5×10
5
 randomly

generated time periods. The query period span accounted for 1%, 5%, 10%, 15%, 20%, 25%,

30%, 35%, 40%, 45% and 50% of maxTime respectively. In Figure 16, the horizontal axis

denotes the query span, while the longitudinal axis represents I/O frequency. Figure 16

indicates that with the gradual increase of the query span, index data and the I/O frequency

queried by both TQOindex and Map21-tree decreased. However, in this process, TQOindex

outperformed Map21-tree.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

84 Copyright ⓒ 2015 SERSC

0

500

1000

1500

2000

2500

3000

3500

0% 10% 20% 30% 40% 50% 60%

Query Length (percent of total modeled time)

Nu
mb
er
 o
f
I/
Os
 (
di
sk

bl
oc
ks
 a
cc
es
se
d)

TQOindex Map21-tree

Figure 16. The Variation based on Different Query Spans

4.2. Data Updating

4.2.1. Data Insertion

We set maxTime=2,000, and the time period set Γ consisted of 5×10
5
 randomly generated

time periods, MLOP (Γ) comprised 1,277 LOBs produced in Γ using Algorithm 1. With

5×10
3
 randomly generated time periods being inserted into Γ, some LOBs in MLOP (Γ)

needed reorganising, i.e. incremental updating was produced. Meanwhile, 5,000 newly-

inserted time periods were simulated and investigated to determine the number of time

periods causing the reconstruction of 1 LOB, 2-5 LOBs, ……, respectively. The experimental

results are shown in Table 1 and Figure 17. In figure 17, the horizontal axis shows the

changes during the inserted time periods are located in the largest range, the vertical axis

represents the corresponding number that need to rebuild the LOB.

4.2.2. Data Deletion

In the experimental data, the maximum time span is as maxtime=500 to 2000. Every time,

500000 time periods are randomly generated, there were 1,277 LOBs in total. From 500000

time periods, we select 5000 to do the deleting test. The results show that the total number of

the affected time periods when 5000 time periods are deleted is about 5014, that is, the

average branch number affected by deleting a time period is about 1.003. The experimental

results are shown in figure 18. In figure 18, the horizontal axis shows the number of time

periods that each time period is involved when 5000 time periods are deleted, the vertical axis

represents the changes of the time span when 5000 time periods are deleted.

Table 1. Data Variation Induced by Insertion Updating

number of LOBs needed for

reconstruction
1 2 to 5 6 to 10 11 to 25 More than 25

time periods causing LOB

reconstruction (in 5,000

time periods)

3,623 698 220 220 239

percentage over 5,000 time

periods
72.5 % 13.96 % 4.40 % 4.40 % 4.78 %

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 85

0

10

20

30

40

50

60

70

80

1 [2,5) [5,20) [20,100) [100,500) [500,)

Figure 17. The Changes of the Affected LOB when Inserting New time Periods

0

500

1000

1500

2000

1 3 5

Figure 18. The Number of other Time Periods Effected by the Average Time
Period after Deleting 5000 Time Periods when MaxTime Changes

Figure 19. Temporal Query Test based on Temporal Relational Data

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

86 Copyright ⓒ 2015 SERSC

4.3. Temporal Relational Data Query

As a type of temporal data index structure, TQOindex was proved to be able to efficiently

realize temporal information queries of the data in files of external memory according to the

simulation. As most databases are disk-based, TQOindex is usable on practical database

platforms. SQL Server 2008 was used in this research to randomly generate large-scale VT-

based temporal relational data files. Meanwhile, VTs and VTe were processed as

conventional attributes. By adopting SQL Server 2008, MAP21, TQOindex, and the tuple-

meeting corresponding time conditions were filtered. The corresponding simulation results

are shown in Figure 19.

Due to the presence of corresponding data structures, the TQOindex was applicable

to non-classical data (such as: XML, object-oriented data, moving objects, etc.). By

comparison, Map21 and conventional SQL queries were unsuitable for such extended

application, and their temporal query efficiency for relational data was also much lower

than that of TQOindex. This indicated that the results in this research can show

adaptability and applicability in various situations.

5. Conclusions

Driven by applications in temporal and non-temporal data integration processes, this

research focused on analyzing the applications of QOTDS to relational data

management. Instead of conventional algebraic data patterns, this research investigated

an order-based temporal data structure using following steps: firstly, according to the

internal relationship beween non-temporal data and the time tags in temporal data, the

concept of TQO was proposed. Subsequently, we discussed the precedence algorithm of

LOB, established the temporal data structure (QOTDS) based on quasi-order relation

was discussed and verified optimality (minimality) of QOTDS in certain. Moreover,

based on QOTDS, the incremental algorithm for temporal data query and data updating

was investigated. QOTDS was suitable for both internal and external memory since it

realised set-at-a-time data queries and multi-thread optimisation mechanisms under

mathematical support; besides, it met the management requirements of various new-

type temporal data and showed the desired spatial expansion. Furthermore, a QOTDS-

based data index (TQOindex) was also discussed. Our work indicated that TQOindex

would fulfill index construction on the B+-tree platform supported by a conventional

database system. Lastly, TQOindex has been simulated with large dataset sizes and the

comparative evaluation of TQOindex and existing data index methods proved the

efficacy. Above all, QOTDS was applicable to the data index of objects, XML, and

moving objects.

Acknowledgements

This work was supported by the Industry-University Research Project funded by the

Education and Guangdong Province Grant No. 2012B091100489 and the University

Students’ Innovation project Grant No. 1184513258.

References

[1] J. F. Allen, Comm. of the ACM, vol. 26, no. 11, (1983), pp. 832-843.

[2] T. Bozkaya and M. Ozsoyoglu, ACM Infor. Sci., vol. 112, (1998), pp. 85-123.

[3] R. Bliujute, C. S. Jensen and S. Saltenis, “R-tree based indexing of now-relative bitemporal data”,

Proceedings of the 24th VLDB Conference, (1998).

[4] R. Bliujute, C. S. Jensen and S. Saltenis, Proceedings of the 12th International Conference on Scientific and

Statistical Database Management, (2000).

[5] B. Stantic, S. Khanna and J. Thornton, “An efficient method for indexing now-relative bitemporal data”,

Proceedings of the fifteenth conference of Australasian database, (2004).

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 87

[6] M. M. Moro and V. J. Nehme, “Transaction-time indexing”, In Temporal Database Entries for the Springer

Encyclopedia of Database Systems, volume Time Center Technical Report TR-90, (2008); New York:

Springer US.

[7] D. Lomet, M. Hong and R.Nehme, “Transaction time indexing with version compression”, Proceedings of

the VLDB Endowment, (2008).

[8] Y. Tao and D. Papadias, “MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval

Queries”, Proceedings of the Intl. Conf. on Very Large Data Bases, VLDB, (2001).

[9] D. Pfoser, C. S. Jensen and Y. Theodoridis, “Novel Approaches in Query Processing for Moving Object

Trajectories”, Proceedings of the Intl. Conf. on Very Large Data Bases, VLDB, (2000).

[10] V. P. Chakka, A. Everspaugh and J. M. Patel, “Indexing Large Trajectory Data Sets with SETI”, Proceedings

of the Conf. on Innovative Data Systems Research, (2003); Asilomar, CA, Janpan.

[11] M. Abdelguerfi, J. Givaudan, K. Shaw and R. Ladner, “The 2-3 TR-tree, A Trajectory-Oriented Index

Structure for Fully Evolving Valid-time Spatio-temporal Datasets”, Proceedings of the ACM workshop on

Adv. in Geographic Info. Sys., ACM GIS, (2002).

[12] M. Lee, W. Hsu, C. Jensen, B. Cui and K. Teo, “Supporting Frequent Updates in R-Trees: A Bottom-Up

Approach”, Proceedings of the Intl. Conf. on Very Large Data Bases, VLDB, (2003).

[13] Y. Tao, D. Papadias and J. Sun, “The TPR*-Tree: An Optimized Spatio-temporal Access Method for

Predictive Queries”, Proceedings of the Intl. Conf. on Very Large Data Bases, VLDB, (2003).

[14] C. M. Procopiuc, P. K. Agarwal and S. Har-Peled, “STAR-Tree: An Efficient Self-Adjusting Index for

Moving Objects”, Proceedings of the Workshop on Alg. Eng. and Experimentation, ALENEX, (2001), pp.

178-193.

[15] S. Saltenis and C. S. Jensen, “Indexing of Moving Objects for Location-Based Services”, Proceedings of the

Intl. Conf. on Data Engineering, (2002).

[16] A. Mendelzon and A. Vaisman, “Indexing temporal XML documents”, Proceedings of the 30rd VLDB

Conference, (2004); Toronto, Canada.

[17] F. S. Wang and C. Zaniolo, “Publishing and querying the histories of archived relational databases in XML”,

Proceedings of the Fourth International Conference on Web Information Systems Engineering, (2003);

California, U.S.A.

[18] F. Rizzolo and A. Vaisman, The VLDB Journal, vol. 17, no. 5, (2008), pp. 1179-1212.

[19] X. P. Ye, K. Y. Chen and Y. Tang, Chin. J of Comp., vol. 30, no. 7, (2007), pp. 1074-1085.

[20] D. Pfoser, C. S. Jensen and Y. Theodoridis, “Novel Approaches in Query Processing for Moving Object

Trajectories, “Proceedings of the Intl. Conf. on Very Large Data Bases”, VLDB, (2000).

[21] X. P. Ye, H. Guo, Y. Tang, L. W. Chen, C. Zhou and Q. Y. Liao, Chin. J of Comp., vol. 34, (2011), no. 2,

pp. 256-274.

[23] X. P. Ye, Y. Tang, L. W. Chen, H. Guo, J. Zhu and K. Y. Chen, Sci. in Chin. (E), vol. 52, no. 6, (2009), pp.

899-913.

[24] M. Nascimento and M. Dunham, “Indexing Valid Time Database via B+-Tree”, The MAP21 Approch,

Technical Report CSE-97-08, Dallas, USA: School of Engineering and Applied Sciences, Southern

Methodist University, (1997).

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

88 Copyright ⓒ 2015 SERSC

