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Abstract 

This study proposed a quasi-order-based temporal data structure (QOTDS) which differed 

from conventional, algebraic data management models. Based on this QOTDS, a temporal 

data index called the temporal quasi-order index (TQOindex) was established. Firstly, the 

study proposed the concepts of temporal quasi-order (TQO) and linear order partitioning 

(LOP) of time period sets and discussed the construction algorithm of LOP and the optimum 

(minimum) properties. On this basis, a temporal data structure was established based on 

LOP. This structure realized the set-at-a-time data operation-like relational data structure 

and improved the inquiry efficiency by using multiple threads. Subsequently, in the structural 

framework of TQO, we discussed the temporal data index (TQOindex) based on quasi-order 

extensions. This index was effectively applicable to various conventional database platforms 

depending on the disk (external memory)-based data management and also to big data 

dynamic index technology relying on the incremental updating mechanism. Finally, a 

corresponding experimental simulation and comparative evaluation were designed to verify 

the feasibility and effectiveness of TQOindex. Research and experiments showed that QOTDS 

were effective at temporal inquiry and management in cases involving the temporal 

processing and integration mechanisms in new data, such as semantic data, XML data, and 

moving object data. 

 

Keywords: QOTDS, TQOindex, linear order partitioning, incremental updating, 

simulation and evaluation 

 

1. Introduction 

As a reflection of objective entities, computer data are often used to describe and deal with 

time domain problems, especially in the data management fields under networked 

environments such as the web, e-commerce, etc. Such time-variant data can be considered as 

a snapshot data. Driven by the need to govern the past state and predict future development 

and application of such data, the temporal attributes of data should be reflected in any explicit 

formulation and effectively processed. The data carrying time-based tags are temporal data. 

Data query is a basic function of data processing. 

However, due to the special characteristics of time, i.e., unidirectionality (monotonically 

increasing), multi-dimensionality (effective, transaction, and user-time dimension), and 

interrelationship complexity (ALLEN temporal relationship [1]) etc., temporal data can rarely 

be included in the processing framework of traditional data and are merely searchable based 

on a temporal data index. According to previous research, existing temporal indices are 

mainly researched using the following methods: 

A. Processing the temporal and non-temporal parts in sequence: this method is mostly used 

for temporal relationship data queries [2-7] basically relying on the idea of establishing a set 

of time (time period) index systems. In this method, data are firstly processed temporally and 
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then conventionally treated after screening select times. The characteristics of this method are 

indicated as: temporal query technology is researched basing on the attributes of time. 

Supporting by the mature technologies, the processing in sequence is realized effectively. 

B. Including the temporal processing in the non-temporal processing framework: this 

method is mainly used in temporal-spatial data queries ([8-15]) with the concept of treating 

time as a new one-dimensional space and the data concerning the one-dimensional temporal 

and two-dimensional spatial attributes as three-dimensional spatial data. This method focuses 

on the spatial attributes attached to time. Although it effectively employs spatial index 

technology for reference, it fails to reflect the basic characteristics in which time differs from 

space. 

C. Integrating the temporal processing into the non-temporal processing: this method is 

mainly employed for queries in temporal extensive make-up language (XML) data and 

moving object data [16-22]. Its basic idea involves aiming at the characteristics of the data, 

such as, the structural characteristics of XML and the trajectory features of moving objects: a 

corresponding temporal index mechanism is developed and integrated into the non-temporal 

query modules. Being different in its processing sequence from method A and the “integral 

inclusion” of method B, it highlights the characteristics of time and the internal correlation 

and restriction between temporal and non-temporal data. 

In fact, with the expansion of data models that have been applied (such as the temporal 

correlation model for temporal object data, the semi-structural model of temporal XML, and 

the trajectory model of moving object data), the temporal data index mode based on method C 

has drawn much attention. Here, two fundamental points are raised for discussion, namely, to 

effectively express the temporal data structure and index framework of the temporal 

characteristics and the integral mechanism of temporal and non-temporal queries [21-22]. 

The quasi-order-based temporal data structure (QOTDS) proposed here is basically 

characterized by forming an LOP-based framework structure through organising temporal 

data using time and time period sets. Since QOTDS is built on the mathematics of 

relationship, it shows the desired expand space and can be applied to new data fields such as: 

temporal XML, moving object data, semantic data etc. Meanwhile, QOTDS also realizes the 

set-at-a-time query and multi-thread operation-like relational data and thus are suitable for 

distributed data management modes and the data management mode under networked 

environments such as P2P; in addition, the QOTDS is also applicable to the dynamic 

management of various large temporal datasets under due to its ability to incrementally 

update the insertion and deletion of data. Within the framework of QOTDS, this study firstly 

established the external memory-based temporal data index mode (TQOindex) depending on 

the mapping relationship of linear order branches (LOB) with temporal numerical sequencing. 

This mode reflected structural correlations in the data based on the characteristics of temporal 

data (time period) (a quasi order relation) and provided a reference and ideas for the temporal 

and non-temporal integrations. Secondly incremental updating is a fundamental challenge in 

data management. TQOindex realised the dynamic index mechanism supported by the 

technology in the insertion and deletion of the QOTDS incremental data. Finally, relying on a 

time data disk storage management based on a B+ tree, TQOindex was usable in all kinds of 

conventional database platforms. Therefore, it is operable and extendable to real applications. 

This paper is organized as follows: Section 2 introduces the concept of TQO and 

investigates the construction algorithm and basic characteristics of the minimum linear 

order. Moreover, it also establishes the QOTDS and discusses the query and updating of 

LOP. Section 3 discusses the TQOindex based on minimum linear order partition 

(MLOP). The data query in this section used the conventional B+ tree mechanism based 

on the mapping relationship between LOB and “time and time period” sequences. 

Section 4 presents the simulation and evaluation of TQOindex to verify its feasibility 

and validity. 
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2. Data Structure of Quasi-order 

Temporal data refers to the two tuples 
stamp

TDMTd , . Where, D is the non-temporal 

data, 
stamp

T  is the time label. Without loss of generality, 
stamp

T was assumed to be a valid time 

period (VT), VT=[VTs, VTe), VTs and VTe are start and end points of VT respectively (VTs 

≤ VTe); if VTs=VTe, we define VT=[VTs, VTe) as an instant. Let Td is a temporal data, the 

effective time period of Td is denoted by VT (Td). 

A relation R on a set E is called a quasi-order if it is reflexive and transitive. 

 

2.1. LOB and LOP 

Definition 1 (TQO) Let E be temporal data set, If the relationship ≾  on E is defined as: 

Td1, Td2∈ E, Td1≾ Td2 )()(
21

TdVTTdVT  , “≾ ” is called a temporal quasi-order (TQO) 

on E. 

Let Г be the time period set. If ∀  u ∈ Γ, u = [VTs,VTe), u corresponded to point P(u) = 

(VTs, VTe) in the plane VTs-VTe. Such correspondence is a 1-1 correspondence and P(u) is 

called a 2-dimension time point corresponding to u. Here, u corresponded to point P(u) and Г 

corresponded to a point set )( P  in the plane VTs-VTe. 

Let P0 = (min{VTs (P)}, max{VTe (P)}), P ,  starting from point P0, the traversal 

sequence obtained by )( P  from “top to bottom” and “left to right” is called the )( P  

sequence. In the following, Γ, )( P  and )( P sequences are not distinguished in this study. 

Example 1 Figure 1 shows an example of a )( P  sequence. 

Definition 2 (LOB and LOP) Let Γ be the time period set having quasi-order “≾ ”. A 

whole order branch of Γ is called an linear order branch (LOB, or L) of Γ Ω represents all the 

LOB sets on Γ If ,,,, 
jiji

LOBLOBjiLOBLOB   and 


i

i
LOB

, Ω is called an 

linear order partition (LOP) on Γand is denoted by LOP(Γ). 

Algorithm l (The precedence algorithm under LOP) 

It was assumed that there was a )( P  sequence. 

Step1. From the header element 
0

u of )( P to :)(
0.

 Pu
i

  

 )()(
0

0.

uVTuVT
sis

 )),()((
01

0.

uVTuVT
sis


 1

0.
i

u  is the following element of 
0.

i
u  on .)( P  

Step2. From 
0.

i
u  to :

1.
i

u   

)}),(min{)(()()(
101.

jsisieie
uVTuVTuVTuVT   where, 

)( Pu
j

 )).()()()(),((
jekejsksk

uVTuVTuVTuVTPu   

Step3. From
1.

i
u : repeat Steps 1 and 2 until ,)(  Pu

m
∄ ,)(  Pu

m
 such that 

,))()()()((
mememsms

uVTuVTuVTuVT    the subsequence in )( P  from 
0

u  to 
m

u  is a LOB1. 

Step4. From the header element in )( P \ LOB1, repeat Steps 1 to 3. By calculation, 

LOB2 ,,  )( LOB  were then obtainable. 

If },)(max{)(},)(max{)(  uuVTVTuuVTVT
eess

 the maximum time 

complexity of Algorithm 1 is .2/)()( 
es

VTVT  
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Figure 1. P(Γ) Sequence 

Example 2 As for the P(Γ)=<[1,8), [1, 7), [1,5), [2, 9), [2, 8), [2, 7), [2, 6), [3, 5), [3,4), [4, 

6), [4, 5)> in example 1, Algorithm 1 is realised according to Figure 2, we then obtain the 

following two LOBs: 

LOB1=<[1,8), [1, 7), [1,5), [3, 5), [3,4)>  

LOB2=<[2, 9), [2, 8), [2, 7),[2, 6),[4, 6), [4, 5)> 

Definition 3 (MLOP) If LOP0 is the LOP on  , if |LOP0|≤|LOP| for every element 

LOP , LOP0 is called minimum linear order partition (MLOP) on  . 

 
 

Figure 2. The Realization of Precedence Algorithm under LOP 
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Figure 3. Temporal Order Matrix TOM(Γ) 

Definition 4 (TOM)  

Let )},({max)},({min
1

uVTiuVTi
sns 

 )},({min
1

uVTj
e

 )}.({max uVTj
em 

 The time 

periods in   is ),,[),[ jiVTVTu
es

  and is denoted by  

),(,
11 mm

jjjiiiji  . Let horizontal axis and vertical axis in the plane being the 

starting and ending points of the [i, j) respectively, the grid point set determined by 

},,{
11 mn

jjjiiiji  (Figure 3) is called Γ-based temporal order matrix (TOM), and 

denoted by }.(TOM  

For ),(
00

 TOMu
ji

}(TOM  can be divided into four regions by :
00

ji
u  

},,{)(
00

00

jjiivuUL
ijji

 },,{)(
00

00

jjiivuUR
ijji

 },,{)(
00

00

jjiivuDL
ijji

  and 

}.,{)(
00

00

jjiivuDR
ijji

  In the formula above, if only “<” is supported, corresponding 

regions are called open regions, and denoted by OUL, OUR, ODL, and ODR respectively. 

Figure 4 shows the “upper-left” UL(23) and “down-right” DR(23) regions of temporal node 

“23” in }(TOM .  
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Figure 4. UL(23) and DR(23) 

Theorem 1 (TOM and quasi-order) if ),(
0

 TOMu  we have 

(1)u0⊆ v0  v0∈ UL(u0); 

(2) v0⊆ u0  v0∈ DR(u0); 

(3) ¬(u0⊆ v0∨ v0⊆ u0) v0∈ OUR(u0)∨ v0∈ ODL(u0) 

Proof (1) Let u0=[i0, j0), v0=[k0, l0), clearly we know u0≤v0  u0⊆v0  k0≤i0, j0≤l0  

v0∈UL(u0) 

 (2) and (3) can be proved in same way. 

Theorem 2 (The properties of precedence algorithm under LOP) 

The LOP obtained using the Algorithm 1 is MLOP. 

Proof Supposing that 
n

LOBLOBLOBLOP ,,,
210
  is obtained by Algorithm 1, where, 

i
LOB  is sequenced according to calculating order. ),1(

0

niLOBu
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1
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).(
0000

ikki
uuuu   Actually, it is only needed to explain that there are elements of 

1i
LOB in ).(

0
i

uDL  Otherwise, if such elements are absent, 
1i

LOB  locates in ),(
0

i
uUL and 

)(min
1i

LOBODR contains .
i

LOB This result was contradicted with the LOB in Algorithm 1. If 

the nodes obtained by here were ,,,,
21 n

uuu  we got ),1()(
1

niuODLu
ii




 that is 

).(
11 iiii

uuuu 


 Therefore, an arbitrary LOP contains n LOBs at least. The proof 

completed. 

Definition 5 (Extended LOB and LOP) 

Let LOB=< u1…, ui, ui+1,…, um>, ui and ui+1∈LOB, the folded line segments obtained 

using following methods are called the extended LOB on VTs-VTe, and is denoted by ELOB.  

(1) For arbitrary adjacent ui and ui+1 in LOB,  

● if VTs(ui)= VTs(ui+1)∨VTe(ui)= VTe(ui+1), ui and ui+1 are connected using a linear 

segment. 

●if ¬ (VTs(ui) = VTs(ui+1)∨VTe(ui)= VTe(ui+1)), a point v (v =[VTs(ui+1),VTe(ui))) is 

inserted between ui and ui+1. Then ui and ui+1 are connected with v using line segments 

respectively. 

(2)Connecting point P(um) of the minimum time period um on LOB and point P(v0) on the 

diagonal on plane VTs-VTe was done using line segments, where, v0=(VTs(um), VTe(um)). 

If point u on ELOB belonged to Γ, point u is called real instant, and is denoted by u(r). 

Otherwise, it is called fill instant, and is denoted by u(f). 

The set constituted by all the ELOBs corresponding to the LOB in MLOP (  ) is called 

extended MLOP, and is denoted by EMLOP ( ). 

Example 3 For MLOP=< LOB1, LOB2> in Example 2, EMLOP=< ELOB1, ELOB2>, as 

shown in Figure 5. Where, “shallow” node corresponding to u(f).   

ELOB1=<[1,9), [1,8), [1, 7), [1,6), [1,5), [2,5) [3,5), [3,4), [4,4) >, 

ELOB2=< [2,9), [2, 8), [2, 7), [2, 6), [3,6), [4,6), [4,5), [5,5) > 

EMLOP ( ) and MLOP ( ) can be constructed simultaneously. EMLOP( ) was stored 

and managed using a two-dimensional array EMLOP [VTs][VTe], with array elements N= 

(no, flag, [VTs, VTe)). Where, no is the ELOB number of time u=[VTs, VTe); flag is used to 

identify whether or not u belongs to MLOP. When u ∈ MLOP, flag=t (true); when 

u∈EMLOP\MLOP, flag=f (false). For example, in Figure 3, u=[1,5) ∈ ELOB1, thus no=1, 

u=[1,5)∈MLOP, flag=t; u=[3,6)∈ELOB2, no=2, u=[3,6)∈EMLOP\MLOP, flag=f. 

 

2.2. Dynamic Management of LOP 

In terms of massive temporal data, incremental updating plays an essential role in realizing 

dynamic management. Hence, it was necessary to discuss the incremental updating of LOP. 

 

2.2.1. Insertion Updating 

Definition 6 (the nearest LOB of time period u)  

If u denotes time and there is a LOBi satisfying following conditions: 

(∃v∈LOBi (u⊆v))∧(∃w(u⊆w)→(w∈LOBi∨w∈LOBi+k)), 

Where k>0, then, LOBi is called the nearest LOB of u. 
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Figure 5.  EMLOP ( ) 

Definition 7 (supremum and infimum of time) 

It is assumed that u is a time period. For v∈LOB0, if condition 

(u⊆v)∧(∃w∈LOB0(u⊆w)→vw) is satisfied, v is called the supremum of u in LOB0 , and is 

denoted by ).(sup
0

uv
LOB

  If (v⊆u)∧(∃w∈LOB0(w⊆u)→wv), v is called the infimum 

of u in LOB0 , and is denoted by ).(inf
0

uv
LOB

  

Algorithm 2 (EMLOP insertion algorithm) 

Step1. Supposing that a new time period u was inserted into the given EMLOP(  ) and 

LOB0 serves as the nearest LOB of u. In LOB0, sup(u)=u0  and inf(u)=u1. According to 

Algorithm 1, a new LOB0 can be obtained by connecting u0 with u1. 

Step2. Acting as the newly-inserted point in EMLP\ LOB0, the point in LOB0 segment 

<u0,u1>\{u0,u1} calls Step 1. 

The maximum time complexity of Algorithm 2 is |EMLOP(  )|×max{|ELOB|}. 

Example 4 As shown in Figure 5, u=[2, 4) was inserted into EMLOP(  ) and the nearest 

LOB was LOB1. In LOB1, u0=sup(u)=[1, 5), while u1=inf(u)=[3, 4). Based on Algorithm 1, a 

new ELOB1 was acquired, as shown in Figure 6. In this situation, LOB1 segment <u0, u1>\{u0, 

u1}= {[3, 5)}. Then, the process was repeated as above using v=[3, 5) as the newly-inserted 

point, as shown in Figure 7. The final results are shown in Figure 8. 
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Figure 6. Insertion of u= [2, 4) 
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2.2.2. Deletion Updating 

Algorithm 3 EMLOP deletion algorithm 

Firstly, the following conditions were hypothesised: three points ( )),(),([
0

uVTuVTu
es

  

),sup(
0

uv  and )(inf
0

uw  ) in ELOBi need to be deleted; (Open) rectangular frame  

)}()()()()()({)(
00000

vVTuVTuVTwVTuVTuVTuuR
eeesss

  intersects with 

.,,,
20 m

iii
ELOBELOBELOB   

Step1. In ELOP, all elements that were included in )(
0

uR  and also belonged to   were 

deleted. Then according to Algorithm 1, a new 
0

i
ELOB was produced by connecting 

0
v  with 

0
w  in EMLOP. 

Step2. Let
k

u  denoted an element that was included in }{\)(
00

uuR  and also belonged to . 

The construction process of 
0

i
ELOB  was to delete the corresponding 

k
u  in succeed 

,,,,
21 m

iii
ELOBELOBELOB   and then repeat Step 1. 

The maximum time complexity of Algorithm 3 is |EMLOP ( )|×max{|ELOB|}. 

Example 5 AS shown Figure 5, on the EMLOP (  ), three points ( ),5,1[
0
u  

),7,1[))5,1sup([
0

v and ))5,3[)5,1([inf
0

w ) in
1

ELOB  have been deleted. Figure 9 shows 

the two points ( )6,2[
1
u and )7,2[

2
u  belonged to ELOB2) which needed to be deleted 

in )(
0

uR . Based on Algorithm 1, )7,1[
0
v  is connected with ),5,3[

0
w  and the new ELOB1 

was thereby obtained, as shown in Figure 9. To establish ELOB1, we needed to delete 

)6,2[
1
u  and )7,2[

2
u  in ELOB2, that is, )6,2[

1
u  and )7,2[

2
u  can be taken as the 

newly-deleted points in EMLOP ( )\ELOB1. In ELOB2, sup ([2, 7)) = [2, 8), while inf ([2, 

6)) = [4, 6). According to Algorithm 3, by connecting [2, 8) with [4, 6), a new EMLOP was 

produced (Figure 10). 
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Figure 7. ELOB1 Resulting from the Insertion of u= [2, 4) 
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Figure 8. Final Results (ELOB1, ELOB2, and ELOB3) 
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Figure 9. ELOB1 Resulting from Deletion 
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Figure 10. ELOB2 Arising from Cascade 
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3. The Data Index TQOindex 

Data structure plays an essential role in index construction. Therefore, the index pattern of 

LOP-based temporal data structure (that is, the TQOindex) needs to be investigated. 

 

3.1. Temporal Quasi-order Index Tree 

Definition 8 (auxiliary query set (AQS) of MLOP) 

For a given EMLOP(  ), query period Q0 = [VTs, VTe) and ∀ELOB∈EMLOP(  ), 

according to quasi-order “≾”, the minimum time point including Q0 for every ELOB on 

ELOP is defined as an auxiliary query point of Q0. The auxiliary query set (AQS) Q0 on 

ELOP is denoted by AQS(Q0). 

Example 6 Let’s consider the MLOP( ) in Example 3, the auxiliary point of the query 

point Q0 = [2, 4) for 
1

ELOB  is [2,5), and that for 
2

ELOB  is [2,6). As seen in Figure 11, 

AQS([2, 4)) = {[2,5), [2,6)}, where [2,5) is a fill point, [2,6) is a real point. 

Definition 9 (LOB-based time number) It was first supposed that u∈LOB; u=[VTs, VTe); 

and LOB∈MLOP, the serial number is no (LOB). The LOB-based time number of the time 

period u is defined as: 

TN(u, LOB)= no(LOB)×10
2r

 +Ve×10
r
-Vs) 

Where r refers to the bits of the maximum end-point for all time periods in the LOB. 

Theorem 3 (basic properties of time number) 

(1) For u,v∈LOB ,  u ≠ v iff TN(u, LOB) ≠ TN (v, LOB). 

(2) For u,v∈LOB ,  u ≾ v iff TN(u, LOB) ≤ TN (v,LOB). 

Proof 

(1) We presumes that u=[VTs(u), VTe(u)) and v = [VTs(v), VTe(v)). U ≠ v  VTs(u)-VTs(v) 

≠0∨VTe(u)-VTe(v)≠0. But TN(u,LOB)-TN(v,LOB)=(VTe(u)-VTe(v))×10
r
-(VTs(u)-VTs(v)). In 

this way, the conclusion was proved. 

(2) If u ≾ v, then it is obvious that u ⊆v VTs(v)≤VTs(u)∧VTe(u)≤VTe(v)VTs(u)-

VTs(v) ≥0∧VTe(u)-VTe(v)≤0. However, TN(u, LOB)-TN(v, LOB)=(VTs(u)-VTs(v))×10
r
-

(VTs(u)-VTs(v)). As a result, required conclusion was verified. 

It could be inferred from (1) in the aforementioned theorem that, for each element u in 

LOB, there was only one corresponding TN (u, LOB) determined. Meanwhile, from (2) it 

indicated that the quasi-order relationship between the elements of LOB could be interpreted 

by the corresponding time number. 

Definition 10 (TQO-based index, TQOindex) Temporal quasi-order index of time period 

set Γ is denoted by TQOindex(Γ)=<EMLOP (Γ),  MLOPB
+
-tree (Γ)>. where 

(1) EMLOP (Γ) was a two-dimensional array as provided in Definition 4. 

(2) MLOPB
+
-tree acted as a B

+
-tree for storing the quasi-order set MLOP and the index 

object was the time number TM(u, LOB) corresponding to element u in the LOB. 

Example 7 For MLOP in Example 3, the corresponding TQOindex (Γ) is shown in Figure 

12. 
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Figure 11. AQS(Q0) of the Query Point Q0 = [2, 4) 

 

<1,[1,8）> 

<1,[1,5)> 

<1,[3,4)> 

<1,[3,5)> 

 

EMLOP（Γ） 

<2,[4,6)>, <2,[2,7)> 

<1,[1,5)> 

<1,[1,7)> 

 

<1,[1,8)> 

<2,[4,5)> 

 

<2,[4,6)> 

<2,[2,5)> 

 

<2,[2,7)> 

<2,[2,8)> 

<2,[2,9)> 

  
Figure 12. TQOindex (Γ) 

 

3.2. Data manipulation 

During data query, we put EMLOP (Γ) into the memory, and let the query time 

Q0=[Vs(Q0),Ve(Q0)). Through sequencing storage of the two-dimensional array EMLOP (Γ), 

we may obtain AQS(Q0)={(no, Vs, Ve)}. ∀ P0∈ASQ(Q0), the MLPB
+
-tree (Γ) was queried 

by taking P0 as the query target. We use B
+
-tree to conduct a query to find out the minimum 

time number TN(v0) that was larger than, or equal to, TN(P0) in leaf nodes. Therefore, all 

TN(v) that were larger than or equal to TN(v0) in the LOB including v0 are the query result. 

Algorithm 4 (TQOindex-based query) 

Step1 Querying Q0 = [Vs(Q0), Ve(Q0)) was transformed into TN (Q0), and AQS(Q0) was 

searched over EMLOP (Q0). If AQS(Q0) = ∅, no query result can be found in MLOP, and the 

query was ended. Otherwise, the query continued to Step 2. 

Step2 Each u∈AQS (Q0) had access to the MLOPB
+
-tree (Γ) for simultaneous queries 

by multi-threads to yield the corresponding query results. 

Step3 Converting results (time number) obtained in Step 2 into time periods and 

outputting them as the final results. 

The maximum time complexity of Algorithm 4 in searching AQS (Q0) in EMLOP (Γ) 

was |EMLOP(Γ)|×max{|ELOB|}. ∀ELOB∈EMLOP(Γ) and |E| represented the cardinal 

number of set E. 

The basic process of TQOindex (Γ)-based temporal query is shown in Figure 13. 
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TQOB+-tree EMLOP(Γ) Query requirements 

Query result set 

ASQ（Q）=∅ 

The end of the query 

ASQ（Q）≠∅ 

 
Figure 13. TQOindex (Γ)-basedQuery 

The characteristics of TQOindex-based temporal query were as follows: 

(1) If AQS (Q0)=∅, then no result related to Q0 in Γ and the query was thus ended. In this 

case, it was unnecessary to call MLOPB
+
-tree (Γ). The query only proceeded in the memory 

and stayed off the disk. The query efficiency was thereby improved. If AQS (Q0) ≠ ∅, 

MLOPB
+
-tree (Γ) was proceeded. Elements of AQS (Q0) were queried successively according 

to conventional B
+
-tree. When LOB segments satisfying the conditions were distributed 

across many leaf nodes, subsequent leaf nodes can be discovered through the leaf node 

pointer. After that, with the aid of the LOB serial number, required results can be obtained.  

(2) Based on LOB properties, if one result v0 ∈LOB0 was found in LOB0 in a certain leaf 

node of the MLOPB
+
-tree (Γ), the segments after v0 in LOB0 were all the query results. Then, 

the query result set was obtained, namely set-at-a-time. 

(3) The MLOP acts as the LOP of Γ. The LOBs therein were mutually unrelated. When | 

AQS(Q0)|>1, diverse auxiliary query points can be simultaneously processed through multi-

threads in the MLOPB
+
-tree (Γ). The larger |AQS(Q0)|, the higher the multi-thread efficiency. 

Example 8. Assume that Q0=(2, 4). From EMLOP (Γ) in Figure 5, it was inferred 

that AQS(Q0)={(1, (2, 5)), (2, (2, 6)) }. According to TQOindex (Γ) in Figure 12 and 

auxiliary query point (1, (2, 5)), the query results <1,(1, 5)> and <1,(1, 8)> were 

acquired. Using the auxiliary query point (1, (2, 6)), the query results <2,(2, 7)>, <2,(2, 

8)>, and <2,(2, 9)> were acquired. Therefore, the final query result set was {<1,(1,  5)>, 

<1,(1, 8)>, <2,(2, 7)>, <2,(2, 8)>, <2,(2, 9)>}. 

 

4. Data Simulation and Evaluation 

Map21-tree [23] was selected for comparative evaluation. The parameters involved in the 

experimental data were set as follows: the time periods including [0, maxTime) and the 

corresponding time period set Γ were generated randomly (maxTime denoted the maximum 

time end-point of the time periods generated); the disk block size was 1024 kB. Each test 

query was consisted of 50 operational sentences, and running expense corresponding to these 

I/O is the mean of the 50 operations. 

 

4.1. Data Query 

 

4.1.1. Based on Data Size 

We set maxTime=2000 and the maximum time period span as 10% of maxTime. Then, 

data sizes of time periods randomly generated were: 1×10
5
, 2×10

5
, 3×10

5
, 4×10

5
, 5×10

5
, 

6×10
5
, 7×10

5
, 8×10

5
, 9×10

5
, and 1×10

6
 respectively. In Figure 14, the horizontal axis denotes 

data size (the number of time periods), while the longitudinal axis represents the frequency of 

I/O access of the disk block. Figure 14 shows that, under a constant query span, the index 

node number increased with increasing dataset size. As a result, there were more nodes 
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needing to be accessed. Besides, the I/O frequency presented a rising trend for both 

TQOindex and Map21-tree. However, compared with Map21-tree, TQOindex showed a 

slower increase of I/O frequency and better performance. 

 

4.1.2. Based on Disk Block Size 

Let maxTime=2,000 and query span as 10% of maxTime; 5×10
5 

time periods were 

generated randomly; disk block sizes were: 2
9 
B, 2

10 
B, 2

11 
B, and 2

12 
B respectively. In Figure 

15, the horizontal axis denotes block size, while the longitudinal axis refers to I/O frequency 

required for the query. It can be inferred from Figure 15 that with the increase of block size, 

the I/O query frequency needed by both TQOindex and Map21-tree decreased. This was 

attributed to the idea that, under constant time period number, the larger the block size, the 

smaller the index node number and the node number that needed to be accessed in the query. 

In this situation, TQOindex outperformed Map21-tree. 
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Figure 14. The Variation of I/O as the Data Size Increases 
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Figure 15. The Variation based on Different Disk Block Size 

4.1.3. Based on Query Period Span 

It was assumed that maxTime=2,000 and time period set Γ comprised 5×10
5
 randomly 

generated time periods. The query period span accounted for 1%, 5%, 10%, 15%, 20%, 25%, 

30%, 35%, 40%, 45% and 50% of maxTime respectively. In Figure 16, the horizontal axis 

denotes the query span, while the longitudinal axis represents I/O frequency. Figure 16 

indicates that with the gradual increase of the query span, index data and the I/O frequency 

queried by both TQOindex and Map21-tree decreased. However, in this process, TQOindex 

outperformed Map21-tree. 
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Figure 16. The Variation based on Different Query Spans 

4.2. Data Updating 

 

4.2.1. Data Insertion 

We set maxTime=2,000, and the time period set Γ consisted of 5×10
5
 randomly generated 

time periods, MLOP (Γ) comprised 1,277 LOBs produced in Γ using Algorithm 1. With 

5×10
3
 randomly generated time periods being inserted into Γ, some LOBs in MLOP (Γ) 

needed reorganising, i.e. incremental updating was produced. Meanwhile, 5,000 newly-

inserted time periods were simulated and investigated to determine the number of time 

periods causing the reconstruction of 1 LOB, 2-5 LOBs, ……, respectively. The experimental 

results are shown in Table 1 and Figure 17. In figure 17, the horizontal axis shows the 

changes during the inserted time periods are located in the largest range, the vertical axis 

represents the corresponding number that need to rebuild the LOB.  

 

4.2.2. Data Deletion 

In the experimental data, the maximum time span is as maxtime=500 to 2000. Every time, 

500000 time periods are randomly generated, there were 1,277 LOBs in total. From 500000 

time periods, we select 5000 to do the deleting test. The results show that the total number of 

the affected time periods when 5000 time periods are deleted is about 5014, that is, the 

average branch number affected by deleting a time period is about 1.003. The experimental 

results are shown in figure 18. In figure 18, the horizontal axis shows the number of time 

periods that each time period is involved when 5000 time periods are deleted, the vertical axis 

represents the changes of the time span when 5000 time periods are deleted. 

Table 1. Data Variation Induced by Insertion Updating 

number of LOBs needed for 

reconstruction 
1 2 to 5 6 to 10 11 to 25 More than 25 

time periods causing LOB 

reconstruction (in 5,000 

time periods) 

3,623 698 220 220 239 

percentage over 5,000 time 

periods 
72.5 % 13.96 % 4.40 % 4.40 % 4.78 % 
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Figure 17. The Changes of the Affected LOB when Inserting New time Periods 
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Figure 18. The Number of other Time Periods Effected by the Average Time 
Period after Deleting 5000 Time Periods when MaxTime Changes 

 

 

Figure 19. Temporal Query Test based on Temporal Relational Data 
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4.3. Temporal Relational Data Query 

As a type of temporal data index structure, TQOindex was proved to be able to efficiently 

realize temporal information queries of the data in files of external memory according to the 

simulation. As most databases are disk-based, TQOindex is usable on practical database 

platforms. SQL Server 2008 was used in this research to randomly generate large-scale VT-

based temporal relational data files. Meanwhile, VTs and VTe were processed as 

conventional attributes. By adopting SQL Server 2008, MAP21, TQOindex, and the tuple-

meeting corresponding time conditions were filtered. The corresponding simulation results 

are shown in Figure 19. 

Due to the presence of corresponding data structures, the TQOindex was applicable 

to non-classical data (such as: XML, object-oriented data, moving objects, etc.). By 

comparison, Map21 and conventional SQL queries were unsuitable for such extended 

application, and their temporal query efficiency for relational data was also much lower 

than that of TQOindex. This indicated that the results in this research can show 

adaptability and applicability in various situations. 

 

5. Conclusions 

Driven by applications in temporal and non-temporal data integration processes, this 

research focused on analyzing the applications of QOTDS to relational data 

management. Instead of conventional algebraic data patterns, this research investigated 

an order-based temporal data structure using following steps: firstly, according to the 

internal relationship beween non-temporal data and the time tags in temporal data, the 

concept of TQO was proposed. Subsequently, we discussed the precedence algorithm of 

LOB, established the temporal data structure (QOTDS) based on quasi-order relation 

was discussed and verified optimality (minimality) of QOTDS in certain. Moreover, 

based on QOTDS, the incremental algorithm for temporal data query and data updating 

was investigated. QOTDS was suitable for both internal and external memory since it 

realised set-at-a-time data queries and multi-thread optimisation mechanisms under 

mathematical support; besides, it met the management requirements of various new-

type temporal data and showed the desired spatial expansion. Furthermore, a QOTDS-

based data index (TQOindex) was also discussed. Our work indicated that TQOindex 

would fulfill index construction on the B+-tree platform supported by a conventional 

database system. Lastly, TQOindex has been simulated with large dataset sizes and the 

comparative evaluation of TQOindex and existing data index methods proved the 

efficacy. Above all, QOTDS was applicable to the data index of objects, XML, and 

moving objects. 
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