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Abstract 

This paper is concerned with the information fusion filtering problem for a class of 

multi-rate multi-sensor systems, where the system is described at the highest sampling 

rate and different sensors may have different lower sampling rates. Firstly, the local 

filters (LFs) at state updating points are proposed by using the LFs at measurement 

sampling points. Then, the distributed suboptimal fusion filter is obtained by the well-

known covariance intersection fusion (CIF) algorithm. The filtering error variance 

matrices are derived to obtain the fusion weights. The computational cost is reduced since 

the cross-covariance matrices between any two local filters are avoided. Simulation 

example verifies the correctness and feasibility of the proposed algorithm. 
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1. Introduction 

In recent years, the information fusion filtering problem for systems with 

multiple sensors has gained lots of attention due to the widely applications such as 

target tracking, single processing and robot navigation [1]. 

When the stochastic system is measured by multiple sensors, there are two 

approaches to process the multiple measurements from different sensors. One is the 

centralized filter, the other is distributed fusion filter [2]. The centralized filter can 

give the global optimal estimation. However, it can result in high computational 

cost due to the high dimension augmented measurement. Recently, many researchers 

are focus on the distributed filter since it is easily for fault detection and isolation. 

There are many popular distributed fusion algorithms such as federated square-root 

filter [3], maximum likelihood fusion algorithm [4], weighting fusion algorithms in 

the linear minimum variance sense [5] and CIF algorithm [6]. However, the above 

algorithms are only suitable for single rate systems.  

For multi-rate systems, the first important study goes back to the switch 

decomposition technique proposed by Kranc [7]. Generally, there are two methods 

for the state estimation problem for multi-rate systems. One is based on multiscale 

system theory and the other is based on Kalman filtering theory. On the basis of 

multiscale system theory, many famous fusion strategies are proposed for multirate 

systems with the sampling rate ratio being one or positive integer power to two. 

However, the state estimators are very complex and high computational burden. On 

the basis of Kalman filtering theory, many useful filtering strategies are proposed 

such as optimal signal reconstruction method [8], asynchronous centralized fusion 

algorithm [9], sequential filtering algorithm [10], left synchronously lifting 

technology [11], and measurement augmented approach [12]. But, the computational 

cost of the above filtering strategies is high since they are given by 
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state/measurement augmentation. In order to avoid the state augmentation, the 

multi-rate fusion problem is transformed into an equivalent single rate fusion 

problem. For non-uniform sampling systems, a distributed fusion filter is given [13], 

for uniform sampling systems, the corresponding distributed fusion filters are also 

given in [14-15]. However, the cross-covariance matrices are needed to obtain the 

fusion weights. Furthermore, the multi-rate fusion filters for systems with network 

constrains are studied in [16-18]. However, the state/measurement augmentation is 

not avoided. 

In this article, a new LF is obtained by using the LF for the measurement 

sampling points. Then, the well-known CIF algorithm is used to fuse all the LFs. 

The proposed new LF can reduce the computational cost since the state 

augmentation is avoided. The proposed CIF filter can further reduce the 

computational burden since the cross-covariance matrices are avoided.  

 

2. Problem Formulation  

Consider the following linear discrete-time stochastic multi-rate systems measured 

by Q sensors 

( ) ( ) ( )x tb b x tb w tb                                                     (1) 

 ( ) ( ) ( )
r r r r r r

z tb H x tb v tb  , 
r r

b c b , {1, , }r Q                          (2) 

where ( )
n

x tb  is the state vector, ( ) r
n

r r
z tb  , {1, , }r Q are the measured outputs, , 

 and
r

H , {1, , }r Q are the constant matrices with suitable dimensions. ( )
q

w tb   and 

( ) r
n

r r
v tb  , {1, , }r Q  are white noises. The state ( )x tb is updated at the highest rate 

with a period b and the r th sensor measurement ( ) r
n

r r
z tb  is sampled at a lower rate 

with a period 
r r

b c b  where 
r

c  is a positive integer. Superscript r stands for the r th sensor. 

Assumption 1  ( )w tb and ( )
r r

v tb  are uncorrelated white noises with zero means and 

variance matrices w
R and v

r
R , respectively. 

Assumption 2  The initial state vector (0 )x  is uncorrelated with ( )w tb  and ( )
r r

v tb , and 

satisfies  

E { (0 )} =x   and T
E { ( (0 ) )( (0 ) ) } =x x                                       (3) 

Our objective is to find the distributed CIF filter ˆ ( )
o

x tb based on the measurement 

information ( ( ), ( ), , (0 ))
r r r r r r

z tb z tb b z , {1, , }r Q .  

 

3. Distributed Information Filter 
 

3.1. Local Filter 

In this subsection, we first establish the state space model at the measurement sampling 

points of the r th sensor[2].
 
 

( ) ( ) ( )
r r r r r r r

x tb b x tb w tb                                              (4) 

( ) ( ) ( )
r r r r r r

z tb H x tb v tb                                                 (5) 

where
1 2 T T T T

, [ ] , ( ) [ ( ) ( ) ( ) ]r r r
c c c

r r r r r r r r
w tb w tb w tb b w tb b b       

 
      . 

Further we have the following statistical property 

E[ ( )] 0
r r

w tb  , T
E[ ( ) ( )] d iag ( , , )

r r

w w w

r r r r r c q c q
R w tb w tb R R


                   (6) 

Observe that systems (4) and (5) are transformed into the single rate systems. In the 

following, we will give the LFs ˆ ( | )
r r r

x tb tb  and the corresponding estimation error 
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variance matrices ( | )
r r r

P tb tb at the measurement sampling points for the r th sensor 

subsystem by applying the classical Kalman filter. 

Lemma 1[2] Under Assumptions 1 and 2, the LFs for systems (4) and (5) are 

computed by  

ˆ ˆ( | ) ( | ) ( ) ( )
r r r r r r r r r r r

x tb tb x tb tb b K tb tb                                        (7) 

ˆ ˆ( | ) ( | ) ( ) ( )
r r r r r r r r r r r r r

x tb b tb x tb tb b L tb tb                                    (8) 

ˆ( ) ( ) ( | )
r r r r r r r r r

tb z tb H x tb tb b                                             (9) 

T 1
( ) ( | ) ( )

r
r r r r r r r r

K tb P tb tb b H Q tb



                                                (10) 

  ( ) ( )
r r r r r

L tb K tb                                                                   (11) 

T
( ) ( | )

r

v

r r r r r r r r
Q tb H P tb tb b H R


                                                    (12) 

T
( | ) ( | ) ( ) ( ) ( )

r
r r r r r r r r r r r r

P tb tb P tb tb b K tb Q tb K tb


                                (13) 

T
( | ) ( ( ) ) ( | ) ( ( ) )

r r r r r r r r r r r r r r r r
P tb b tb L tb H P tb tb b L tb H       

T T
( ) ( )

w v

r r r r r r r r
R L tb R L tb                                                    (14) 

where ˆ ( | )
r r r

x tb tb is the filter, ˆ ( | )
r r r r

x tb tb b is the one-step predictor at the measurement 

sampling points, ( )
r r

tb is the innovation sequence with variance ( )
r

r
Q tb


, ( )

r r
K tb is the 

filtering gain, ( )
r r

L tb is the one-step prediction gain, ( | )
r r r

P tb tb is the filtering error 

variance matrix, ( | )
r r r r

P tb tb b is the one-step prediction error variance matrix. The initial 

values are ˆ (0 | 1)
r

x    and (0 | 1)
r

P   . 

Next, we will derive the LFs ˆ ( | )
r r r

x tb lb tb , {1, , }
r

l c at the state updating points by 

applying the LFs ˆ ( | )
r r r

x tb tb at the measurement sampling points and the state update 

equation.  

Theorem 1 Under Assumptions 1 and 2, for systems (1) and (2), we have the LFs 

ˆ ( | )
r r r

x tb lb tb , 1, 2 , ,
r

l c  at the state updating points  as follows 

1

1
ˆ ˆ ˆ( | ) [ ( | ) ( | )]

ll k

r r r r r r r r rk
x tb lb tb x tb tb w tb kb tb  

 


                  (15) 

ˆ ( | ) ( | ) ( )
r r r r r r r r

w tb k b tb M tb k b tb tb   , {1, , }k l                    (16) 

T 1 T T 1
( | ) ( ) ( )

r

w k

r r r r r
M tb kb tb R H Q tb


 

 
  , {1, , }k l                    (17) 

where ( )
r r

tb , ( )
r

r
Q tb


, ˆ ( | )

r r r
x tb tb are given by Lemma 1. 

Proof: From the iteration of (1) 

1

1
( ) ( ) ( )

ll k

r r rk
x tb x tb lb w tb kb  




    , {1, , }

r
l c             (18) 

By arranging (18) 

1

1
( ) [ ( ) ( )]

ll k

r r rk
x tb lb x tb w tb kb  

 


                            (19) 

Taking projection of both sides of (19) on the linear space ( ( ), ( ), , (0 ))
r r r r r r

L z tb z tb b z , 

we have (15). The white noise smoother ˆ ( | )
r r r

w tb kb tb  is obtained by the following 

recursive projection equation 

ˆ ˆ( | ) ( | ) ( | ) ( )
r r r r r r r r r r r r

w tb k b tb w tb k b tb b M tb k b tb tb      , {1, , }k l        (20) 

From the uncorrelation of ( )
r

w tb kb and ( ( ), , (0 ))
r r r r

L z tb b z , we have the white noise 

predictors  

ˆ ( | ) 0
r r r r

w tb kb tb b   , {1, , }k l                                   (21) 
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Substituting (21) into (20), we can obtain (16). The white noise smoothing gain matrices 

( | )
r r r

M tb kb tb are given by  

T 1
( | ) E[ ( ) ( )] ( )

r
r r r r r r r

M tb kb tb w tb kb tb Q tb





                          (22) 

Substituting (2) into (9), the innovation sequences can be rewritten as 

( ) ( | ) ( )
r r r r r r r r r

tb H x tb tb b v tb                                       (23) 

From ˆ( | ) ( ) ( | )
r r r r r r r r r

x tb tb b x tb x tb tb b    , ˆ( ) ( | )
r r r r r

w tb kb x tb tb b   , (18) and 

Assumption 1, we have 

T T T T 1 T T
E [ ( ) ( )] E [ ( ) ( )] ( )

w k

r r r r r r r
w tb k b tb w tb k b x tb H R H  


              (24) 

Substituting (24) into (22), (17) is obtained. 

Remark 1: From Theorem 1, we see that the LFs at the state updating points are 

derived by applying the LFs at the measurement sampling points. Therefore, 

compared with the state augmented approach, the proposed filter can obviously 

reduce the computational burden for the r th sensor subsystem. Now, we give the 

computational cost at each measurement sampling points: our filter is 3
O ( )n and the 

augmented filter in [12] is 3
O ( ( ) )

r
c n . On the other hand, from the point of view of 

using information, the two filters have the same estimation accuracy. We verify it in 

the simulation research. 

Now, we have obtained the LFs at the state updating points. In the following text, we 

need to derive the filtering error variance matrices to obtain the fusion weights. 
 

3.2. Fusion Filter 

Theorem 2 Under Assumptions 1 and 2, for systems (1) and (2), we have the local 

filtering error variance matrices at the state updating points ( | )
r r r

P tb lb tb , {1, , }
r

l c  as 

follows 

T
( | ) ( | ) ( )

l l

r r r r r r
P tb lb tb P tb tb 

 
 

1 T 1 T

, 1
( , | ) ( )

l k l w m l

r r r rk m
P tb k b tb m b tb   

   


    

T 1 T

1
( , | ) ( )

l l xw m l

r r r rm
P tb tb m b tb  

  


 

1 T

1
( , | )( )

l k l w x l

r r r rk
P tb kb tb tb  

  


    

(25) 

T 1 T T T
( , | ) ( ) ( | )

w w w k

r r r r k m r r r r
P tb k b tb m b tb R R H M tb m b tb  


      

1 T T
( | ) + ( | ) ( | ) ( | )

m w

r r r r r r r r r r r r r r r r
M tb k b tb H R M tb k b tb H P tb tb b H M tb m b tb 


      

T
( | ) ( | )

v

r r r r r r r
M tb k b tb R M tb m b tb   ,  , {1, , }k m l                      (26) 

1
( , | ) ( ( ) )

x w k w

r r r r n r r r
P tb tb k b tb I K tb H R 


   , {1, , }k l                  (27) 

where km
 is Kronecker delta function, ( , | )

w

r r r r
P tb k b tb m b tb   is the white noise 

smoothing error variance matrix, ( , | )
x w

r r r r
P tb tb k b tb is the covariance matrix between 

state and system noise, also we have 
T

( , | ) ( ( , | ) )
w x x w

r r r r r r r r
P tb k b tb tb P tb tb k b tb   . The 

initial values are ( | )
r r r

P tb tb and ( | )
r r r r

P tb tb b computed by Lemma 1. 

Proof: Subtracting (15) from ( )
r

x tb lb , we have the estimation error variance equation  

ˆ( | ) ( ) ( | )
r r r r r r r

x tb lb tb x tb lb x tb lb tb      

1

1
ˆ ˆ( ) [ ( | ) ( | )]

ll k

r r r r r r rk
x tb lb x tb tb w tb kb tb  

 


      

1 1

1 1
ˆ ˆ[ ( ) ( )] [ ( | ) ( | )]

l ll k l k

r r r r r r r rk k
x tb w tb kb x tb tb w tb kb tb     

   

 
        
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1

1
( | ) ( | )

ll k l

r r r r r rk
x tb tb w tb kb tb  

  


                              (28) 

From(28), we have the estimation error variance matrix at the state updating points  
T

( | )= E [ ( | ) ( | ) ]
r r r r r r r r r

P tb lb tb x tb lb tb x tb lb tb    

T 1 T T 1 T

, 1
( | ) ( ) E [ ( | ) ( | ) ] ( )

ll l k l m l

r r r r r r r r rk m
P tb tb w tb k b tb w tb m b tb     

     


     

T T 1 T

1
E[ ( | ) ( | )] ( )

l l m l

r r r r r rm
x tb tb w tb m b tb  

  


   

1 T T

1
E[ ( | ) ( | )]( )

l k l l

r r r r r rk
w tb kb tb x tb tb  

  


                           (29) 

Subtracting (16) from ( )
r

w tb kb , and using (23), we have the white noise estimation 

error equation  
ˆ( | ) ( ) ( | )

r r r r r r r
w tb kb tb w tb kb w tb kb tb      

( ) ( | ) ( | ) ( | ) ( )
r r r r r r r r r r r r r r

w tb kb M tb kb tb H x tb tb b M tb kb tb v tb             (30) 

From (30), the uncorrelation of ( | )
r r r r

x tb tb b and ( )
r r

v tb , and Assumption 1, the white 

noise smoothing error variance matrix is computed by 
T

( , | ) E [ ( | ) ( | ) ]
w

r r r r r r r r r r
P tb k b tb m b tb w tb k b tb w tb m b tb     , , {1, , }k m l  

T T T T
E [ ( ) ( )] E [ ( ) ( | ) ] ( | )

r r r r r r r r r r r
w tb k b w tb m b w tb k b x tb tb b H M tb m b tb        

T
( | ) E [ ( | ) ( ) ]

r r r r r r r r r
M tb k b tb H x tb tb b w tb m b     

T T T
+ ( | ) E [ ( | ) ( | ) ] ( | )

r r r r r r r r r r r r r r r r
M tb k b tb H x tb tb b x tb tb b H M tb m b tb     

T T
( | ) E [ ( ) ( )] ( | )

r r r r r r r r r r
M tb k b tb v tb v tb M tb m b tb                                 (31) 

where 

T
E [ ( ) ( | ) ]

r r r r r
w tb k b x tb tb b   

T T 1 T 1 T

1
E [ ( ) ( )] E [ ( ) ( ) ] ( )

k p w k

r r r rp
w tb k b x tb w tb k b w tb p b R  

 


          (32) 

In (32), we use the fact that ˆ( | ) ( ) ( | )
r r r r r r r r r

x tb tb b x tb x tb tb b    and 

ˆ( ) ( | )
r r r r r

w tb kb x tb tb b   . Substituting (32) into (31), we have (26). Using 

ˆ( | ) ( | )
r r r r r r

x tb tb w tb kb tb  , we have 

T
( , | ) E [ ( | ) ( | ) ]

x w

r r r r r r r r r r
P tb tb k b tb x tb tb w tb k b tb    

T T
ˆE [ ( | ) ( ( ) ( | ) ) ] E [ ( | ) ( ) ]

r r r r r r r r r r r
x tb tb w tb k b w tb k b tb x tb tb w tb k b          (33) 

From (7) and (23), we have the following filtering error equation  

ˆ( | ) ( ) ( | ) ( | ) ( ) ( )
r r r r r r r r r r r r r r r

x tb tb x tb x tb tb x tb tb b K tb tb      

[ ( ) ] ( | ) ( ) ( )
n r r r r r r r r r r r

I K tb H x tb tb b K tb v tb                               (34) 

Substituting (34) into (33), and using the Assumption 1, we have 

T
( , | ) [ ( ) ]E [ ( | ) ( ) ]

x w

r r r r n r r r r r r r r
P tb tb k b tb I K tb H x tb tb b w tb k b                  (35) 

Using (32), we can obtain (27). Substituting (31) and (33) into (29), we can obtain (25). 

Next, we shall give the following suboptimal CIF filter ˆ ( )
o

x tb , {1, , }
r

l c by using the 

well known CIF algorithm[6] 

1
ˆ ˆ( ) ( ) ( | )

Q

o r r r rr
x tb A tb x tb lb tb


                                        (36) 

where LFs ˆ ( | )
r r r

x tb lb tb , {1, , }r Q are computed by Theorem 1. The corresponding 

fusion weights ( )
r

A tb are computed by
  

1 1 1

1
( )( ( )( ) ( | ) ( | ))

Q

rr r r r rr r rr
A tb tb tb tb lb tb tbP P lb tb 

  


                   (37) 

where ( )
r

tb are computed by 
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1 1

1
( ) tr( ( ))| |tr( ( ))

Q

r r rr r rr r
tb lb tb lb tbP tb P tb

 


   ,  0 ( ) 1

r
tb  , 

1
( ) 1

Q

rr
tb


     (38) 

where ( | )
r r r

tb lb tbP  are given by Theorem 2. 

Remark 2 From (36)-(38), we know that the proposed distributed fusion filter is 

suboptimal since the correlation between any two LFs is ignored. On the other hand, the 

computational cost is reduced since the computation of the cross-covariance matrices 

between any two sensor subsystems is avoided. 

 

4. Simulation Results 

Consider the following tracking system with three sensors  
2

1
( ) ( ) 1 0 ( )2

0 1

b
b

x tb b x tb w tb

b

 
   

     
 

  

                                       (39) 

( ) ( ) ( )
r r r r r r

z tb H x tb v tb  ,   1, 2, 3r                                         (40) 

where  ( ) ( ) ( )x tb s tb s tb


 , ( )s tb and ( )s tb are the position and velocity at tb time instant. b is 

the state update period. Our aim is to find the distributed suboptimal CIF filter ˆ ( )
o

x tb .  
 

Figure 1. Distributed Suboptimal CIF Filter 

Figure 2. Comparison Curves of MSEs of LFs and the CIF Filter 

 

0 20 40 60 80 100 120 
0 

5 

10 

15 

20 

  

  

0 20 40 60 80 100 120 
0 

2 

4 

6 

8 

  

  LF1 

LF2 
LF3 

FF 

LF3 

FF 
LF1 

LF2 

t/step t/step 

a)Position b)Velocity 

M
S

E
s 

M
S

E
s 

0 20 40 60 80 100 120 
-200 

0 

200 

400 

600 

800 

  

  

0 20 40 60 80 100 120 
-5 

0 

5 

10 

15 

20 

25 

  

  

True value 

Fusion filter 

True value 

Fusion filter 

t/step t/step 

a)Position b)Velocity 

T
ru

e 
v
al

u
e 

an
d

 s
u
b
o

p
ti

m
al

 f
il

te
r 

T
ru

e 
v
al

u
e 

an
d

 s
u
b
o

p
ti

m
al

 f
il

te
r 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 10, No. 1 (2015) 

 

 

Copyright ⓒ 2015 SERSC  155 

Figure 3. Comparison Curves of MSEs of our LF and the Augmented Filter  

In the simulation, we take 120 data and set 0 .5b  second, 
1

4c  , 
2

3c  ,
3

2c  , 

1
[1 1]H  , 

2
[0 .5 1]H  , 

3
[1 0 ]H  , 1

w
R  , 

1
3 0

v
R  , 

2
1 5

v
R  , 

3
2 0

v
R  , 

T
(0 ) [0 0 ]x  and 

0 2
0 .1P I .  

By using Lemma 1, we can obtain the LFs ˆ ( | )
r r r

x tb tb  and the corresponding filtering 

error variance matrices ( | )
r r r

P tb tb  at the measurement sampling points. Further, the LFs 

ˆ ( | )
r r r

x tb lb tb , 1, 2 , ,
r

l c  at state updating points can be obtained by using Theorem 1. 

The corresponding error variance matrices are given by Theorem 2. Then, we can obtain 

the suboptimal CIF filter ˆ ( )
o

x tb  by using (36)-(38).  

The state tracking curves are given in Figure 1. The comparison curves of the mean 

square error (MSE) of the CIF and all LFs by 200 times Monte Carlo tests are given in 

Figure 2. From Figure 2, we see that proposed CIF has the higher accuracy than any LFs. 

In order to compare the computational cost and the accuracy of proposed LF and the filter 

in [12], we give comparison curves of the two filters for the first sensor subsystem. At the 

measurement sampling points, the computational cost of our LF is 3 3
O ( ) O ( 2 ) O (8 )n   , 

the computational cost of the filter in [12] is 3 3

1
O (( ) ) O (8 ) O (5 1 2 )c n   , (

1
2 , 4n c  ). We 

see that our filter can obviously reduce the computational cost. The comparison curves of 

MSE by 200 times Monte Carlo tests are given in Figure 3. From Figure 3, we see that the 

two filters have the same estimation accuracy. 

 

5. Conclusion 

In this paper a multi-rate multi-sensor distributed suboptimal information fusion 

filtering problem for linear stochastic system is studied. Firstly, the LFs at the 

measurement sampling points are given by the classical Kalman filter. Then, t he 

LFs at the state updating points are derived by the LFs at the measurement sampling 

points. The corresponding filtering error variance matrices are derived to obtain the 

fusion weights. Furthermore, a CIF algorithm is applied to fuse all the LFs. 

Simulation results show better performance than any LFs. 
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