
International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015), pp. 137-248

 http://dx.doi.org/10.14257/ijmue.2015.10.1.13

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Decoding Deformed Barcode Images with Scanpath Walkthrough

Poonna Yospanya
1
 and Yachai Limpiyakorn

2

Department of Computer Engineering, Chulalongkorn University
Bangkok 10330, Thailand

1
Poonna.Y@student.chula.ac.th,

2
Yachai.L@chula.ac.th

Abstract

Most camera-based barcode reading systems are scanline-based and designed to work

with barcodes attached on flat or smooth surfaces. These systems are likely not able to

deal with barcodes on surfaces with high level of deformation, thus making it difficult to

find a scanline passing through readable regions. In this paper, an approach that

addresses the decoding of deformed barcode images is presented. Our method is based on

constructing a scangraph that covers over the area of the barcode, and creating a

scanpath that walks through the scangraph by avoiding the regions that are less readable.

Barcode digit templates are then used to decode the data sampled along the scanpath.

Preliminary results show that some challenging deformed barcode images can be

correctly decoded with the presented technique.

Keywords: image processing; deformed surface; barcode, scanpath

1. Introduction

For decades, barcodes have been widely used as a means to encode product

specification in graphical formats. They are commonly used to keep track of shipments

and price retail items, manage financial and logistical documents, and so on. The use of

barcodes is widespread as they are compact and machine-readable.

Several types of barcodes exist, including linear or one-dimensional (1D) barcodes, and

two-dimensional (2D) barcodes such as QR code. The focus of this research is on the one-

dimensional barcode that encodes data of the object to which it is attached in a graphical

form of bars and spaces. The special optical scanners called barcode readers are originally

used for translating the structured graphical format into human-understandable data.

Later, scanners and interpretive embedded software have become available on devices,

such as camera phones and lightweight handheld tablet computers. These devices have

become ubiquitous nowadays. They can also be considered as assistive equipment to

enhance daily life for people with visual disabilities when buying consumer products.

However, most camera-based barcode reading systems are designed to work with

barcodes attached on flat or smooth surfaces. This seems not practical when dealing with

barcodes on surfaces with high level of deformation, containing indecipherable regions in

the barcode images. On a highly deformed surface, such as on a wrinkled snack bag,

reading the barcode becomes a very challenging task which likely makes all the currently

available methods fail.

There are several problems that are unique to this class of barcode images. First of all,

the detection of deformed barcodes is much more difficult due to the fact that elements

are not uniformly aligned. In this case, unlike normal barcode images, bars in these

images are warped and only partially parallel to neighboring bars. The localization

methods that rely on uniformity of barcode element alignment are mostly not directly

applicable.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

138 Copyright ⓒ 2015 SERSC

As wrinkles create ridges and valleys, decoding deformed barcode images also face

problems with lighting and visibility. External lighting casts reflections on ridges and

shadows on valleys. Reflections appear as bright regions over the barcode, causing splits

on some of its bars. Shadows make it harder to differentiate between bars and spaces due

to lower local contrast, which is especially problematic for those algorithms that rely on

image binarization. An example of the aforementioned problems is depicted in Figure 1.

Figure 1. Example Deformed Barcode on a Wrinkled Snack Bag (left). The
Barcode is Binarized Using a Simple Threshold, Showing Splits (framed by
the red square) from Light Reflection, and Merged Lines (marked by the red

circle) from the camera viewpoint (right)

Superimposition may occur on ridges where one side of the ridges is not visible at the

viewing angle of the camera. This may cause a total loss of information if there are bars

or spaces that are completely hidden under this circumstance. However, it is also possible

that parts of the covered bars and spaces are still visible and can be used for decoding.

Unfortunately, bars may appear to merge with neighboring bars, further complicating the

decoding process.

Furthermore, ridges and valleys cause non-uniform perspective distortion, which

makes it harder to reliably determine the width of bars and spaces. Even on a single

individual bar, the width can be inconsistent throughout its length. Some parts of the bar

may appear wider or narrower than some other parts of the same bar.

In literature, most research work allows small deviation on the surface structure such

that correct reading of barcodes can still be obtained. However, as the deviation becomes

greater, correct reading of deformed barcodes becomes increasingly difficult. This paper

thus presents a method of decoding barcode images on deformed surfaces that addresses

some of the problems described above. The invented method is applied for the one-

dimensional barcodes, especially those printed on product packages that would help the

visual disabled for product purchases.

2. Related Work

A lot of research conducted in the area of camera-based barcode reading assumes that

the barcode is on a nearly flat surface or a simple curved surface such as on a bottle.

Earlier techniques rely on either binarization or edge detection in order to extract black

and white patterns information for later decoding. Ohbuchi et al. [1] used a spiral

searching method starting from the center of the image to find a black bar and establish a

scanline perpendicular to the detected black bar. Bar patterns were sampled as gray levels

along the direction of the scanline. These patterns were later binarized with a threshold

computed during the decoding stage. Chai and Hock [2] used a binarized scanline based

on the mean value to convert the cross section of the barcode as a sequence of 1’s and 0’s.

The sequence was then encoded using run-length encoding which was used to compare

with barcode digit patterns. Adelmann et al. [3] used multiple scanlines, each of which

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 139

was assigned with a different set of parameters and binarization thresholds. The results

obtained from each scanline were then selected through a voting scheme. In other works,

probabilistic approaches, such as hidden Markov models [4] and a Bayesian algorithm [5,

6], were used for estimating barcode digits based on detected edges.

Typically, the techniques based on binarization and edge detection are susceptible to

noise and blur. The quality of results strongly depends on the selected threshold values.

With poor selection of threshold values, it may cause narrow bars to split due to the

thinning effect and bar lines close to each other to merge due to the thickening effect.

Later research work has addressed these problems by taking into account the gray level of

the barcode along the scanline. Gallo and Manduchi [7, 8] proposed a method based on

deformable binary templates, which allow shifting and scaling of the templates to best

match the scanned data. Chen et al. [9] improved the method by modeling the combining

templates with some certain blur levels to better approximate the barcode data reading at a

severe out-of-focus level.

3. Research Methodology

Reading the barcode in a given image generally requires both localization and

decoding operations, which work synergistically in order to obtain the information

encoded within. This research merely focuses on the decoding operation, relying on the

input images having been stripped off of objects that are not parts of the barcode. The

proposed decoding method is applied to reading the barcode images printed on deformed

surfaces.

The method consists of three major stages: (1) extracting the barcode structure, (2)

constructing a scangraph, and (3) decoding along a scanpath using templates.

In this work, a scangraph is defined as a directed graph of which the vertices are

scanning fragments, connected in an orderly manner. A scanning fragment is ideally a

short scanline that covers just a single bar or space in the barcode. A complete reading of

the barcode is achieved by scanning through a set of such fragments along a path, called a

scanpath, in the scangraph. A scanpath is derived by performing a search for a decodable

path on the scangraph. More details of these concepts will be described in later sections.

In literature, the methods based on simple scanlines are successfully used for decoding

slightly deformed barcode images, as there are no problems of merging lines, reflections,

or splitting bars as encountered in this research. When decoding highly deformed barcode

images, it is possible that the scanline that crosses over the barcode without passing

through deformed areas cannot be found. The notion of scanpath addresses this problem

by attempting to make a detour across the deformed surfaces and creating a path that is

not strictly a single straight line.

Once a scanpath has been constructed, the scanning operation is carried out using a

method based on template matching. A set of digit templates is pre-computed for

comparison with the barcode patterns extracted along the scanpath. It should be noted

that, although a form of binarization is applied for constructing the scanpath and

segmenting the scanned data, measuring gray-level intensity is used for template

matching to avoid information loss due to inappropriate threshold selection.

Figure 2 illustrates the entire decoding process presented in this paper. The elaboration

of the proposed method is described in the following sections.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

140 Copyright ⓒ 2015 SERSC

Figure 2. Proposed Method of Deformed Barcode Decoding

4. Extracting Barcode Structure

Initially, the visual structure of the barcode needs be discovered in order to create a

scangraph that covers the entire length of the barcode and spans over most of its height.

For a normal barcode image, the discovery process is trivial as it simply involves finding

the orientation of the barcode. The structure itself can be assumed to be rectangular with

vertical bars. For a highly deformed barcode, however, the structure can be of an irregular

shape. In extreme cases, it is sometimes not possible to draw a straight line that passes

through all the bars. Such possibility calls for a thorough shape analysis so that a

scangraph that correctly follows the barcode structure could be built. In this research, a

binarization technique is applied for barcode structure discovery starting with extracting

the connected components called blobs. The extracted blobs are then examined for their

suitability as structural elements.

4.1. Blob Extraction

An input image is initially converted into a grayscale image for subsequent

binarization. It is assumed that the image has uneven brightness and contrast. As a

consequence, a single binarization threshold cannot be used. Adaptive thresholding is thus

applied with a Gaussian window function in this work. The result, however, also contains

noises in the regions around the barcode as a side effect of applying a small averaging

window over larger empty regions. The mask derived from applying a morphological

close operation over a Canny edge image is used to help smooth out noises. Figure 3

demonstrates each operation in this step.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 141

Figure 3. Output from Each Step during Blob Extraction. The Deformed
Barcode Image (top left) is Binarized with an Adaptive Threshold Approach
(top middle). Edge Detection using Canny Algorithm is then Performed (top

right). A Mask out of the Edge Image is Created using a Morphological
Close Operation (bottom left). The Resulting Mask is then Applied to the
Binary Image (bottom middle). Blob Labeling is Finally Performed on the

Masked Image (bottom right)

Blobs of pixels are then extracted from the binary image and consecutively labeled

with a sequence number k = {1, …, N}. Each blob bk is a potential candidate for a bar

element in the barcode. Its number is used during the decoding stage for aligning and

sequencing along with other blobs. A contour Ck is also extracted for each of the blobs as

a set of coordinates {p
k
1, p

k
2, …, p

k
n} that defines the connected line segments forming its

border.

4.2. Blob Selection

Further inspection on the blobs obtained from the previous step is required to eliminate

blobs which are unlikely to be one of the bar elements. Blobs that are too small are

removed. Orientation and length are then used as heuristics to select the remaining blobs.

The selection process is detailed as follows.

For each blob bk, two endpoints (p
k
a, p

k
b) are selected from Ck that are at the opposite

ends of the blob. It is performed by first deriving the minimum rectangle area Rk that

contains all the points in Ck. Next, for each of the four corners of Rk, a point in Ck that is

closest to it will be selected. These four points are then paired up to two pairs of points.

Each pair corresponds to the points closest to either end point of a long side of Rk. The

shortest distance along the contour for both pairs is computed. The pair with the shorter

distance is selected and added into an endpoint set E. Once all the blobs have been

processed to collect all endpoint pairs in E, a linear regression line L is computed from all

points contained in E. For each pair (p
k
a, p

k
b) in E associated with the same blob bk, if p

k
a

and p
k
b are on the opposite side of L, bk is selected as a viable candidate for a barcode

element; otherwise, bk is discarded. Figure 4 illustrates the method of blob selection via an

example image of barcode containing split bars.

Another blob selection criterion of estimated blob length is also established. More

specifically, the length lk of blob bk is calculated from the shortest contour path length

between (p
k
a, p

k
b). Once all the lengths have been collected, the median length lm is

computed and used for specifying the threshold values. Those blobs that are either too

long or too short compared to the thresholds will be discarded.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

142 Copyright ⓒ 2015 SERSC

Figure 4. Blobs are Selected under an Assumption that a Valid Bar Element
Should Span from Top to Bottom. The Image is Split into Top and Bottom

Regions using a Regression Line. Blobs that do not Span Across both
Regions are Discarded

After all the selected candidates have been collected, bar ordering is performed as

follows. For each selected blob bk, the intersection point between the line segment (p
k
a,

p
k
b) and L are determined. The positions of intersection points along L are subsequently

used for sorting the candidate blobs.

At the end of this step, a sorted set of blobs that are potentially bar elements is

obtained. Each potential bar element is represented by a pair of endpoints and the path

between them along the contour. Together they form a barcode structure that will be used

to create a scangraph in the next section.

5. Constructing Scangraph

In this work, a scangraph Gs = {Vs, Es} is defined as a directed graph, where Vs is a set

of scan fragments, and Es is a set of edges that connect a scan fragment to one of the scan

fragments that potentially follows the former in a scanning order. A scan fragment is a

short scanline that crosses over a single bar or space in the barcode. A scan fragment

crossing a bar is connected to a scan fragment crossing the space next to the bar, and vice

versa.

Gs covers almost the entire region of the barcode. To construct Gs, multiple scanning

tracks along the height of the barcode are firstly created. Each track will then be scanned

in order to collect a track profile, which consists of the blob number and the relative

location on the track each blob passes through. These track profiles are used as the

foundation for constructing the scangraph.

5.1. Scanning Track Tracing

The contour path between each pair (p
k
a, p

k
b) of a selected blob bk from previous step is

divided into lp/ls = Mk segments of length ls, where lp is the length of the contour path

and ls is a pre-determined segment length, producing a set of Mk+1 anchor points {q
k
1, q

k
2,

…, q
k
Mk+1} for each blob bk. Ideally, anchor points of the same rank i from each of the

blobs are threaded together in the scan ordering determined in the previous step to form a

scanning track Ti, which is a sequence of line segments passing through anchor points

{q
1

i, q
2

i, …, q
N

i} and crossing over all the blobs. In fact, some anchor points of the same

rank on different blobs can stray far away from the ideal alignment. Substituting a strayed

anchor point with another one of a different rank from the same blob is allowed if it is

more in line with other anchor points, subject to a penalty distance function. Figure 5

demonstrates a selection of such scanning tracks as a result of this step.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 143

Figure 5. Demonstration of Scanning Track Tracing. Anchor Points are
Created on the Barcode Structure (middle), and Used to Generate Scanning

Tracks (right)

5.2. Track Profiling

Each scanning track Ti is scanned, and at each entry and exit event of a blob, the blob

number and the corresponding track position are recorded. The recorded profile is in the

form of a sequence of tuples {(bk, p
Ti

j) | j 1..N}, where N is the number of events in the

profile. A line segment (p
Ti

j, p
Ti

j+1) between two consecutive events is called a scanning

fragment. This line segment crosses over an element of the barcode. The crossed-over

element can be either a bar or a space. Each bar or space contains a number of scanning

fragments equivalent to the number of scanning tracks. These fragments represent vertices

in the scangraph being constructed.

5.3. Scangraph Construction

Intuitively, the scangraph connects each fragment of a bar to all other fragments of the

space following the bar, and each fragment of a space to all other fragments of the bar

following the space. Ideally, the process of constructing such graph should be trivial.

There are, however, a number of practical issues that make the process more difficult.

Due to high level of deformation, multiple bars can appear merged together at some

points into a single bar. In this case, some scanning tracks will register only one bar

whereas some others will register multiple bars with the same blob number. In addition,

reflections can obscure parts of some bars in the barcode, making them visually split into

multiple pieces. It is observed that some scanning tracks may not register a bar when it

should, or may register the bar twice if the split occurs at a sharp angle such that the track

passes through both parts of the split. There are also problems with noises which create

spurious blobs, but this can be mitigated as long as there are some tracks that do not pass

through them.

Figure 6 shows the algorithm for constructing a scangraph that proceeds on a track-by-

track basis. That is, for each track, the algorithm walks through each fragment on the

track sequentially, trying to find suitable successor fragments on all tracks for that

fragment. In this way, a fragment from a track t can branch to a next fragment on any

other track s. Branching is computed differently for fragments that are bars and fragments

that are spaces. A bar fragment q is considered a successor of a space fragment p if at

least one of the following conditions is true:

(1) It is a direct successor of p on the same track,

(2) It is on the same blob and at the same depth on that blob as the direct successor of

p,

(3) It is the first successor of q' that is on a different blob from that of p', where q' is a

successor of p' on track s, and p' is the direct predecessor of p on track t.

Cases (2) and (3) deal with blobs that contain merging bars. Suppose bar a and bar b

merge to form a blob c, fragments from a and b will belong to the same blob. Case (2)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

144 Copyright ⓒ 2015 SERSC

attempts to connect a space fragment between a and b to a bar fragment in b. Case (3)

avoids using fragments from the same blobs in the same path. These two cases are

complementary to cover most possible scenarios.

For branching from a bar fragment to space fragments, it simply takes the branching

from its direct same-track predecessor and moves forward one fragment along their

corresponding tracks. For example, when branching from a bar fragment p having a space

fragment q as its direct same-track predecessor, all the successors of q are considered to

find their direct same-track successors. These successors of successors become the

branching successors of p.

function BranchesAfterSpace(t, p):

 branches := {}

 nextCode := BlobNumber(t, p+1)

 for each track s:

 if s = t:

 Add(branches, (s, p+1))

 else if nextCode exists in trackProfiles[s]:

 n := number of occurrences of nextCode before p

 q := n
th

 fragment having same blob number as nextCode

 Add(branches, (s, q))

 else:

 q' := fragment on branch to s at G[t, p-1]

 previousCode := BlobNumber(s, q')

 q := first fragment after q' whose blob number ≠ previousCode

 Add(branches, (s, q))

 return branches

function BranchesAfterBar(t, p):

 branches := {}

 previousBranches := all branches at G[t, p-1]

 for each branch b in previousBranches:

 s := Track(b)

 q := Fragment(b)

 Add(branches, (s, q))

 return branches

function BuildScangraph():

 G := {}

 for each track t:

 for each fragment p on t:

 if trackProfiles[t, p] is a space:

 G[t, p] := BranchesAfterSpace(t, p)

 else:

 G[t, p] := BranchesAfterBar(t, p)

 return G

Figure 6. Algorithm for Scangraph Construction

6. Decoding along a Scanpath using Templates

To decode the barcode, the scangraph is searched for a path with high template

matching score, then each digit is individually decoded within the scanpath using pre-

computed templates. Prior to describing the algorithm for finding a scanpath, the process

of template matching for each digit will be discussed first in the following sub-section.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 145

6.1. Template Matching

Unlike previous steps that work on the binary image of the barcode, this step uses the

gray-scale image for digit decoding. A digit along the scanpath P is a subpath Pd

containing exactly four consecutive fragments. To decode a digit, Np samples are taken

from the barcode image for gray-level intensity at equally spaced points along Pd at

subpixel level, where Np is the number of samples in each digit template. In this work,

Pearson correlation coefficient is used as the similarity metric to compare digit samples

against those of each digit template.

The templates used in this step are pre-generated directly from the barcode digit

encoding table, with the zero value representing bars and the one value representing

spaces. The resulting templates are then smeared slightly using a Gaussian filter to

correspond with the effect of edge blurring in real photographs. Figure 7 depicts some

examples of the final templates and a sampled digit.

Figure 7. Templates are Generated from Barcode Encoding and Smeared
using a Gaussian Filter to More Closely Match the Blur Effect from the
Camera. The four Templates Shown above are of the Odd-parity digit 0,

even-parity digit 2, no-parity digit 4, and no-parity digit-7, respectively (left).
To Perform Matching along a Scanpath, a Subpath is Sampled (center), and

Evaluated using Pearson Correlation Coefficients Against all Applicable
Templates. A Match with the No-Parity Digit-4 Template is illustrated (right)

6.2. Scangraph Searching

Referring to EAN-13 barcodes, bars and spaces are grouped into digits and guard

patterns. Each barcode digit contains two bars and two spaces, while guard patterns at the

left and the right contain two bars and one space each. Guard pattern at the center contains

two bars and three spaces. There are a total of 13 digits, split into 7 left digits and 6 right

digits. The first digit of the left group is computed from parity values of the following 6

digits. Digits of the right groups have no parity, but the last digit is used as the checksum

for the whole 13 digits. The specification of EAN-13 barcodes as described above is used

for pruning and verifying the search on the scangraph.

In actual decoding, template matching is performed alongside the scangraph search and

it is used to determine the next set of fragments being branched to. The actual branching

starts after the guard bars. The depth-first search will start at a first fragment of the first

bar by skipping the first three fragments that are parts of the left barcode guard. For each

point in the scangraph, there are several successive fragments to branch to. For each

possible branch, the four consecutive same-track fragments on that branch are grouped as

a potential digit, and the correlation coefficients between them and each possible digit

template are computed. The operations are repeatedly performed for every branch to

collect all the correlation coefficient pairs. The one with the highest correlation coefficient

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

146 Copyright ⓒ 2015 SERSC

is then selected as the digit candidate and the chosen branch. After the four fragments on

the chosen branch, the process is repeated to find the branch for the next digit.

Once having repeated the process for six digits, the parity values of these six digits is

used to look up the first digit on the parity table. If there is a match, the match will be

selected as the first digit. At this point, the process is advancing through the center guard

of the barcode, and it will continue the same branching strategy as performed on the left

half. If there is no match for the parity values, however, the search is backtracked and the

next best branch is chosen.

When the scanpath reaches the final digit, all the digits are tested against the checksum.

If passing the test, the process reports the decoding result and terminates. Otherwise, the

search is backtracked and attempts another path and/or another decoded digit with the

next best correlation coefficient. If all possible scanpaths are exhausted and it still cannot

find a valid decoding, the search is declared a failure. It is recommended that branching

should be limited to only a few top-scoring paths, as the finding from our experiments

reports that low scoring paths rarely produce a better result. An example of a valid

scanpath is shown in Figure 8.

Figure 8. Example Scanpath that Produces correct Decoding Result. Red
Line Segments Show the Detected Fragments, Connected by Blue Line

Segments

7. Preliminary Results

The proposed method has been implemented with Python 2.7.7, using OpenCV 2.4.9

library for image processing tasks. A set of deformed barcode images has been created as

the tests in the preliminary experiments. Figures 9, 10, and 11 depict the test results in

various scenarios using our own images. Figure 12 reports the result of testing using an

image from the barcode images database [10].

Starting from testing with five different deformed barcodes, some of which are highly

deformed, i.e. containing merged bars and light reflections. All correct decoding results

are obtained as shown in Figure 9. Notice that the chosen scanpaths automatically avoid

irregularities such as reflections and merging. The sub-paths containing these

irregularities generally produce low correlation coefficients. They are thus excluded from

being parts of the selected scanpath.

In some cases, the presented technique may produce no result as shown in Figure 10.

The example exhibits a high degree of merging and binarization errors that cause the

scanning algorithm to miss some elements. Figure 11 demonstrates the case of incorrect

decoding result. Notice that the algorithm erroneously skips a bar when decoding the last

four digits. This is caused by an error in the binarization step.

There are still some issues that need to be addressed. Currently, a track profile is

required as a guide when advancing through each fragment. Note that the track profile is

derived from blob labeling, which is subject to binarization error. This may cause the

algorithm to skip some bars or spaces, producing incorrect results as shown in Figure 10

and Figure 11. Moreover, the current method does not work well with blurry and low-

contrast images. As illustrated in Figure 12, improper threshold values cause Canny edge

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 147

detector to miss most of the edges, which in turn, produces a mask image that does not

cover the barcode well. This results in the binary image with a lot of elements missing.

The following steps of track tracing and profiling then produce invalid output as a

consequence.

8. Conclusion

The scanpath technique is introduced in this work as a means of barcode decoding that

can work under high deformation condition, which, to the best of our knowledge, has not

previously been specifically explored. The presented approach introduces the use of the

non-linear scanline, so called scanpath, to trace through the deformed barcode image

attempting to avoid parts that are damaged by reflections and hidden elements. A

binarization technique is adopted to provide cues for the detection of reflections and

hidden elements, and to create anchor points for the scanpath to tread through. However,

binarization is not used during the actual decoding. A method based on template matching

is applied for decoding instead. The work is ongoing and preliminary results are

promising. There are still a number of challenging issues. Future research direction would

include the refinement on the construction of scangraph, the enhancement of a more

resilient method for template matching that relies less on binarization, and the

improvement on the part of localization to manage noises, blurs, poor lighting conditions,

and low contrast.

Figure 9. Test Results on Five Different Deformed Barcodes that are all

Successfully Decoded

Figure 10. High Degree of Bars Merging in the Middle Part of the Barcode
Causes the Algorithm to Miss Some Elements

Figure 11. Binarization Error Caused by Shadow Regions Makes the
Algorithm Skip a Bar Element and Produce an Incorrect Decoding Result

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

148 Copyright ⓒ 2015 SERSC

Figure 12. Current Method does not Handle Images with Blurs or Low
Contrast (upper left). In this example, a Failure in Edge Detection (upper

right) Produces an Incomplete Mask Image (lower left), Resulting in Missing
Blobs (lower middle) and Incomplete Track Tracing (lower right)

9. References

[1] E. Ohbuchi, H. Hanaizumi and L. A. Hock, “Barcode readers using the camera devices in mobile

phones”, Int. Conf. on Cyberworlds, (2004).

[2] D. Chai and F. Hock, “Locating and decoding EAN-13 barcodes from images captured by digital

cameras”, Int. Conf. on Information, Communication and Signal Processing, (2005).

[3] R. Adelmann, M. Langheinrich and C. Flörkemeier. “A toolkit for bar code recognition and resolving on

camera phones – jump starting the internet of things”, Workshop Mobile and Embedded Interactive

Systems (MEIS) at Informatik, (2006).

[4] S. Krešić-Jurić, D. Madej and F. Santosa, “Applications of hidden Markov models in bar code

decoding”, In Pattern Recognition Letters, vol. 27, no. 14, (2006), pp. 1665-1672.

[5] E. Tekin and J. Coughlan, “A Bayesian algorithm for reading 1D barcodes”, Canadian Conf. on

Computer and Robot Vision, (2009).

[6] E. Tekin and J. Coughlan, “An algorithm enabling blind users to find and read barcodes”, IEEE

Workshop on Applications of Computer Vision (WACV), (2009).

[7] O. Gallo and R. Manduchi, “Reading challenging barcodes with cameras”, IEEE Workshop on

Applications of Computer Vision (WACV), (2009).

[8] O. Gallo and R. Manduchi, “Reading 1-D barcodes with mobile phones using deformable templates”, In

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 9, (2010), pp 1834-1843.

[9] L. Chen, H. Man and H. Jia, “On scanning linear barcodes from out-of-focus blurred images: a spatial

domain dynamic template matching approach”, in IEEE Trans. on Image Processing, vol. 23, no. 6,

(2014), pp. 2637-2650.

[10] Barcode images database, [Online]. Available: http://www.ski.org/Rehab/Coughlan_lab/Barcode/,

(2009).

Authors

Poonna Yospanya. He received his bachelor degree in Computer

Engineering from Kasetsart University in 1999. After graduation, he

had worked as a systems engineer at KSC Commercial Internet for

two years. He has been working as a lecturer at the Department of

Computer Engineering, Kasetsart University, Sriracha Campus,

since 2001. He is currently pursuing a Master degree in Computer

Science at Chulalongkorn University, Bangkok, Thailand.

http://www.ski.org/Rehab/Coughlan_lab/Barcode/

