
International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015), pp. 119-126

 http://dx.doi.org/10.14257/ijmue.2015.10.1.11

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

A Case Study on Ubiquitous Sensor Network Programming

Jin-whan Kim

Dept. of Computer Engineering, Youngsan University

San 150 Junam-dong, Yangsan, Gyungnam, 626-790 Korea

kjw@ysu.ac.kr

Abstract

This paper presents research on the TinyOS operating system and associated nesC

programming methods. TinyOS is currently being used in many domestic and foreign

research institutes, universities and companies. We describe TinyOS and nesC programming

methods and their characteristics, comparing with existing programming languages such as

C, C++, and MFC window programming. Additionally control methods and analysis

activation characteristics of two domestic companies’ wireless sensors are introduce. We

tried to explain easily and hope to be used in various industry fields.

Keywords: USN, TinyOS, NesC Programming, Intelligent Wireless Sensor

1. Introduction

The USN (Ubiquitous Sensor Network), aimed at implementing a communication

environment where users freely connect to networks and may transmit and receive wanted

information regardless of place and time, is an environment where various wireless sensors,

computers and telecommunication networks are connected to utilize data in real time.

Specifically an environment which manages and utilizes data in real time through wired and

wireless networks by attaching wireless sensors to all matter, people and environment, to

search for various datum from the sources or networks. The technology has been widely used

in almost all fields including homes, offices, logistics, distribution, environment monitoring,

intelligent homes, military, aerospace, ships and vehicles with more in the future. Generally,

wireless sensors with embedded wireless communication chips, memory, small operating

system (OS) and applications, as in Figure 1, and are called motes or sensor nodes.

Figure 1. Various Intelligent Wireless Sensors

Currently, well-known operating systems for sensor networks include TinyOS, SOS,

MANTIS, Contiki, T-kernel and the locally-developed Nano-Qplus [1, 2, 3, 4, 5, 6, 7]. This

paper analyzes TinyOS, which is widely used in local research institutes, universities and

companies, and explains methods and features of nesC programming. Some important terms

used in nesC programming are new to existing programming languages and may cause

confusion among current programmers. Therefore, this study seeks to explain through

comparison to other existing programming languages (C, C++, MFC Windows programming

languages, etc). Part 2 takes a look at the structure and features of TinyOS and part 3, through a

comparison to existing languages, reviews the structure, terms and usages of nesC programming

language. Finally part 4 proposes case studies using and controlling actual wireless sensors in 2 local

companies.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

120 Copyright ⓒ 2015 SERSC

2. Structure and Features of the TinyOS

TinyOS is a small-scale OS, developed by UC Berkley, providing open source

development to implement a USN environment and features a well modulated and event-

driven environment based on components for operation with limited resources. It uses a small

amount of memory, requiring a small power and implementing modulation and simultaneous

operation [8, 9]. Events and tasks cause sensor nodes to execute in TinyOS. A hardware event

means an interrupt and the interrupt is generated by the timer, sensor and telecommunication

device. A Task means a procedure call in general programming languages, however tasks are

registered in the task queue to be executed based on an FIFO (First In First Out) concept. This

means that a task is executed in a non-preemptive method where the task may not be executed

before another one has completed its execution. If there are no tasks to be executed in the task

queue, to minimize power consumption the system is switched to the slip mode until a new

hardware interrupt or task appears. TinyOS consists of modules of a component basis. Each

component is connected to others through the interface and executed by command and event

functions. The components have features similar to DLLs (Dynamic Linked Library) of the

MFC. Interface is a term used in the nesC similar to class in C++ or MFC programming. The

interface shall be declared to use various interfaces and the command provided by the

interface is similar to the class member function in MFC to execute any action and an event

means a function automatically executed by a certain action or environmental change. This is

similar to the generation of an automatic message caused by the handling Timer, mouse or

keyboard input. Also, the TinyOS performs certain actions through a split—phase method. If

the blocking system calls a func 1() with a long action time, as in Figure 2, then other

programs must wait until the function returns.

Component1 Component2

Figure 2. Function Call of Blocking System

However, the split—phase system immediately returns func2() with a long action time, as

in Figure 3. The function enters the task queue and signals the event function func3() to

secure real time actions which are almost immediately performed.

Component1 Component2

Figure 3. Function Call of Split-phase System

func2()

{

...

post task1(); // register in task queue

return SUCCESS;

}

task1()

{

signal func3(); // event function call

return SUCCESS;

}

func1()

{

...

return SUCCESS;

}

commandA()

{

call component2.func2();

...

return SUCCESS;

}

event func3() // event function

{

//processing

...

}

commandA()

call component2.func1();

...

return SUCCESS;

}

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 121

Application developers use components as libraries and interfaces to connect the

components to each other for application development.

3. nesC Programming

TinyOS uses a programming language called the nesC to develop applications. The nesC

language is an expanded form of C and was developed for embedded systems like sensor

networks. The developing environment supports Linux or Windows 2000/XP using Cygwin.

The language takes features of C, C++ and MFC (Microsoft Foundation Class) programming

languages. Software developed by the nesC is converted to C through a conversion process,

compiled to execution codes through a GCC compiler, then downloaded to and executed in

the sensor nodes.

3.1. Component

nesC is designed with component-based structures. All the programs consist of components

and the components may be composed of configurations, connecting modules and other

components [10, 11, 12]. The module implements components using similar codes to C and

the configuration clarifies relationships between components to be used and interfaces. A

nesC program shall contain the main component as the main() function included in a C

language program. This is because the main component calls the system initialization routine

and operates scheduler.

3.1.1. Configuration

The configuration clarifies components to be used, displays mutual connection (->, <-, =)

among interfaces, shows relations between uses and provides and expresses logical writing

among different components. The configuration consists of top-level with an aaa.nc file and

general configuration with bbbC.nc. Each application shall contain at least one aaa.nc file.

There are 3 connection symbols (->, <-, =) to express wires among components in nesC.

· interface aa -> interface bb: aa uses a function implemented and used by bb.

 bb and aa mean the supplier and user interface, respectively.

· interface aa <- interface bb: bb uses a function implemented and used by aa.

 aa and bb mean the supplier and user interface, respectively.

· interface aa = interface bb: Both aa and bb interfaces are the same.

aa and bb mean user or provider interfaces.

With connections as above, the user may use commands, events and interfaces of the

components. Hereafter codes for apps/Blink.nc. are explained:

configuration Blink

//Declaring configuration in the Blink component

{

}

implementation {

 components Main, BlinkM, SingleTimer, LedsC;

 // Declaring components to be used

 Main.StdControl -> BlinkM.StdControl;

 // The BlinkM component provides the StdControl

// interface to Main

 Main.StdControl -> SingleTimer.StdControl;

 // The SingleTimer component provides the StdControl

// interface to Main

 BlinkM.Timer -> SingleTimer.Timer;

 // The SingleTimer component provides the Timer

// Interface to BlinkM

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

122 Copyright ⓒ 2015 SERSC

 BlinkM.Leds -> LedsC;

 // The LedsC component provides the Leds interface to

// BlinkM

}

The StdControl is defined as below in tos/interfaces/StdControl.nc.

interface StdControl {

 command result_t init();

 command result_t start();

 command result_t stop();

3.1.2. Module

The module uses or provides pre-defined interfaces and writes execution codes during the

implementation. The module has files formed with aaaM.nc and writes command(event)

codes in the implementation{}. Each module calls commands and signals events. It signals

required components through uses and provides implementation using provided commands to

other components. All the commands and events declared in the module are written as events

and codes in the implementation. Analyzing the example of apps/Blinkm.nc structure helps

understand the module.

module BlinkM {

 provides {

 interface StdControl; //Provide StdControl to Blink.nc

 }

 uses {

 interface Timer; // An interface used by BlinkM

 interface Leds; // Shall be declared in Blink.nc

 }

}

implementation { // Write a code executed here

 command result_t StdControl.init() {

 // Component initialization

 // CreateWindow() while creating a window in the MFC

 // A command function similar to

 // automatically-executed OnCreate() message handler

 call Leds.init();

 return SUCCESS;

 }

 command result_t StdControl.start() {

 return call Timer.start(TIMER_REPEAT, 1000) ;

 // Cause Timer to generate signals at 1000ms interval

 // A function similar to SetTimer() of the MFC

 }

 command result_t StdControl.stop() {

 // command function of StdControl

 return call Timer.stop();

 // command function of Timer

 // A function similar to KillTimer() of the MFC

 }

 event result_t Timer.fired()

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 123

 // Automatically called whenever a signal is generated based on configured Timer interval

 // Generate signals with pre-defined 1000ms interval

 // Event function of the Timer

 // A function similar to OnTimer() message handler of the MFC programming

 call Leds.redToggle();

 // Toggle red-colored LED

 return SUCCESS;

 }

Table 1 explains how to implement actual codes of command and event functions in the

component and calls (or signals) when uses and provides are declared.

Table 1. Usage of Uses and Provides

The Timer is defined as below in tos/interfaces/Timer.nc.

interface Timer

 command result_t start(char type, unit32_t interval);

 command result_t stop();

 event result_t fired();

}

3.1.3. Interface

The Interface has bidirectional features in nesC and plays a role as a connector between

provider and user components. The provider module implements codes for all the commands

and the user module implements all the event codes. Table 2 shows interfaces used in the

nesC programming.

Table 2. Interfaces in nesC

Interface Type Usage

ADC Analog-digital conversion interface

I2C I2C serial bus protocol interface

Leds LED control interface

LogData Interface for log data management

Radio Interface for wireless communication

Receive Interface for receiving messages

Send Interface for transmitting messages

StdControl Standard control interface

BitVector Interface for handling bit vectors

Timer Interface for controlling timer

components commands events

uses
Call

possibility

Implement

execution

codes

provides

Implement

execution

codes

Signal

possibility

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

124 Copyright ⓒ 2015 SERSC

3.1.4. Task, Event, Command

Tasks to be used shall be declared in advance. The Task has no factors and a function with

a return value of void. ‘Post’ keyword shall be used to call a Task and placed it in the task

queue.

TinyOS tasks are consecutively performed based on FIFO (First In First Out) schedule by

the task scheduler. It is interrupted by the Event and the 'signal' keyword shall be used to call

an Event function implemented by user interfaces.

Command functions defined in the interface shall be called by using ‘call’ keywords.

3.1.5. Major Terms used in the nesC

O components : Module + Configuration

O module : Basic element of the component

O interface : Declare events and commands functions

 A “connector” among components

O provides : Component provider

O uses : Component user

O as : Define other name

O command : Command function defined in the interface

O event : Event function defined in the interface

O implementation : Where program variables and actual codes are written

O configuration : Connection with other components

O call: Execute command functions

O signal: Execute event functions

O post: Put task functions to be executed into the task queue

O task: Functions to be consecutively executed in the task queue

O includes: Declare headers to be use

4. Case Studies of Wireless Sensor Control

Cygwin, TinyOS and Java SDK are installed in the Windows XP environment to establish

the development and test environment, and USB drivers are installed to control base motes

connected to the PC for communication with the wireless sensors in Figure 4.

command Func()

{

....

return SUCCESS;

}

{

...

call Func();

}

event aFunc1()

{

....

return SUCCESS;

}

{

...

signal aFunc1();

}

task aaFunc1()

{

....

return SUCCESS;

}

{

...

post aaFunc1();

}

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

Copyright ⓒ 2015 SERSC 125

Figure 4. Base Mote and Wireless Sensor

Serial telecommunication is performed with the PC as in Figure 5 and the base mote

exchanges Zigbee wireless communication with the wireless sensors.

Figure 5. Control Environment for the Wireless Sensor

Microphone (sound), temperature, intensity, humidity and IR signal tests are performed for

wireless sensors manufactured by 2 local companies [13, 14] and the procedure is almost

similar except for controlling sensors for each manufacturer (the compile process, a process

putting execution files into the mote). The study of receiving distance with the base mote

showed that there were no signal transmission and receiving issues within a 15m distance.

However, the signal sensitivity reduced between 15 and 20m and stopped operation at farther

than 20m. Also, in measurements using hurdles, like concrete walls, showed that the

receiving distance became shorter even though it was possible to transmit signals.

Transmitting and receiving signals were not done in an elevator but worked in a refrigerator.

Also, the system worked at a normal walking speed but the signal became weaker while

running. Executing an oscilloscope program written by Java showed in Figure 6 that signals

were transmitted through wireless sensors.

Figure 6. Oscilloscope with Wireless Sensor Signal

5. Conclusion

The wide penetration of computers and the internet have had a positive impact on society,

including upgrading efficiency and productivity and the easy exchange of information among

people at a long distance. Recently, studies have focused on attaching wireless sensors to all

materials, people, robots and environment and various fields (all fields of industry like homes,

offices, logistics, distribution, monitoring environment, intelligent homes, military, aerospace,

ships and vehicles, etc.), integrating various networks like computers, wired and wireless

internet service. Many countries compete by participating in researching and developing

fundamental and applied technologies in hopes of them emerging as future core technologies.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 1 (2015)

126 Copyright ⓒ 2015 SERSC

Developing USN-related technologies is going to accelerate and it is imperative to develop

and prepare technologies and business models.

Acknowledgement

This thesis was supported by the research funding of Youngsan University.

References

[1] L. H. Diakite, L. Yu and A. Halidou, “Improvement of Energy Efficiency in Wireless Sensor Network

(WSN)”, JDCTA, vol. 8, no. 2, (2014), pp. 119-125.

[2] M. Alwadi and G. Chetty, “Feature Selection and Energy Management for Wireless Sensor Networks”,

International Journal of Computer 46 Science and Network Security, vol. 12, no. 6, (2012), pp. 46-51.

[3] G. H. Gao and T. Yang, "Implementation of the Wireless Sensor Network Routing Protocols Based on

TinyOS", JCIT, vol. 8, no. 5, (2013), pp. 474-483.

[4] J. Song, P. Ma and S. Park, “Micro sized OS for Sensor Networks”, Telecommunication Software, (2007),

pp. 26-35.

[5] Y. H. Kim, “Geometry-Based Sensor Selection for Large Wireless Sensor Networks”, Journal of Information

and Communication Convergence Engineering, vol. 12, no. 1, (2014), pp. 8-13.

[6] T. S. Jin, “Position Estimation of Mobile Robots using Multiple Active Sensors with Network”, International

Journal of Fuzzy Logic and Intelligent Systems, vol. 11, no. 4, (2011), pp. 217-309.

[7] S. Naveed and N. Y. Ko, “Analysis of Indoor Robot Localization Using Ultrasonic Sensors”, International

Journal of Fuzzy Logic and Intelligent Systems, vol. 14, no. 1, (2014), pp. 75-72.

[8] http://docs.tinyos.net/index.php/TinyOS_Tutorials.

[9] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.

Brewer and D. Culler, “TinyOS: An operating system for sensor networks”, In Ambient Intelligence,

Springer Berlin Heidelberg, (2005), pp. 115-148.

[10] http://www.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf.

[11] http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer and D. Culler, “The nesC Language: A Holistic

Approach to Networked Embedded Systems”, In Proceedings of Programming Language Design and

Implementation (PLDI), (2003).

[13] http://www.hanback.co.kr.

[14] http://www.hybus.net.

Author

Jin-whan Kim received a BS degree in computer and statistics from

Pusan National University in 1989, and MS and Ph.D. in computer and

science from Yonsei University, Seoul, Korea, in 1992 and Pusan

National University, Pusan, Korea, in 2006, respectively. He is an

associate professor in Youngsan University and as a CEO in MMiGroup

Co., Ltd. His research areas are dynamic signature verification, on-line

character recognition, voice processing, multi-modal biometric system,

ubiquitous computing and wired/wireless Internet security.

Phone: +82-55-380-9331

E-Mail: kjw@ysu.ac.kr

