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Abstract 

The aim of the present attempt was simultaneous effects of joule heating and mass 

transfer on hydromagnetic peristaltic hemodynamic Jeffery fluid model filled with porous 

medium in a tapered vertical channel. The Mathematical modeling is investigated by 

utilizing long wavelength and low Reynolds number assumptions. The result indicates an 

appreciable increase in the temperature with increase in β, Br, Pr, Da and M whereas the 

temperature of the fluid diminished with an increase in Jeffery fluid (λ1) and we notice 

that the temperature profile is found almost parabolic in nature.  The concentration 

distribution decreases when increase in β, Pr, Sc, Br and Sr in an entire asymmetric 

vertical tapered channel. 
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1. Introduction 

Peristalsis consists of contraction and expansion of tract performing the progressive 

waves which propel the contents forward along the tract by Latham [1]. The stimulus for 

these waves is the distension of the tract with fluid material such as food, blood, and 

secretions from glands, urine, embryo and others. This distension of tract at any cross 

section irritates the inner layer of the tract (mucosa in case of gastrointestinal tract), at the 

same time the nerve plexus (network of intersecting nerves) connected with the central 

nervous system via fibers initiates the peristaltic waves along the walls of the tract. This 

mechanism regulates the flow from the area of lower pressure to area of higher pressure. 

Nowadays, peristalsis has exploited its significance in industry, like in sanitary fluid 

transport, artificial blood pumps in heart-lung machine and transport of corrosive fluids 

where the contact of fluid with the boundary is prohibited. Mathematical studies of 

peristalsis were initiated by Fung & Yih [2], Shapiro et al. [3] and others. 

Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels has 

been studied by Kh.Mekheimer [4]. In another attempt, T.Hayat et.al. [5] discussed on 

peristaltic transport of nanofluid in a compliant wall channel with convective conditions 

and thermal radiation. In another paper, A.M. Abd-Alla et al. [6] investigated on the 

peristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a 

tube with an endoscope. Effect of an endoscope and rotation on the peristaltic flow 

involving a Jeffrey fluid with magnetic field has studied by A.M. Abd-Alla et al. [7]. 

Peristaltic transport of Jeffrey fluid in a channel with compliant walls and porous space 

was discussed by T. Hayat et.al. [8]. Jeffrey fluid model for blood flow through a tapered 
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artery with a stenosis was studied by N.S. Akbar et.al. [9].The literature on the topic is 

now available and we can only mention a few relevant interesting investigations in 

References, R.H. Reddy et al. [10], Srinivas, S. and Pushparaj, V [11], S. V. H. N. 

Krishna Kumari et al. [12], Lika Hummady et al. [13], Ravikumar [14, 15, 16, 17&18], 

T.Hayat, M.U. Qureshi and N.Ali [19], M. Mishra, A. R. Rao [20]. 

Heat transfer analysis is prevalent in the study of peristaltic flows due to its large 

number of applications in processes like hemodialysis (method used for removing waste 

products from blood in the case of renal failure of kidney) and oxygenation. In peristaltic 

flows when the fluid is forced to flow due to the sinusoidal displacements of the tract 

boundaries, the fluid gains some velocity as well as kinetic energy. The viscosity of the 

fluid takes that kinetic energy and converts it into internal or thermal energy of the fluid. 

Consequently, the fluid is heated up and heat transfer occurs. This phenomenon is 

modeled by the energy equation with dissipation effects. For two dimensional flows the 

energy equation reduces to a second order partial differential equation that is parabolic in 

nature. Peristaltic flow and heat transfer in a vertical porous annulus with long wave 

approximation was studied by K. Vajravelu et al. [21]. Mass Transfer Effects on 

Unsteady MHD Blood Flow through Parallel Plate Channel with Heat Source and 

Radiation analyzed by R. Latha and B. Rushi Kumar [22]. S. Nadeem and N.S. Akbar 

[23] investigated on an Influence of radially varying MHD on the peristaltic flow in an 

annulus with heat and mass transfer. Influence of induced magnetic field and heat transfer 

on the peristaltic motion of a Jeffrey fluid in an asymmetric channel discussed by Safia 

Akram and S. Nadeem [24]. K. Nirmala et al. [25] pointed out on   combined effects of 

hall current, wall slip, viscous dissipation and Soret effect on MHD Jeffrey fluid flow in a 

vertical channel with Peristalsis. Influence of Joule heating on MHD peristaltic flow of a 

nanofluid with compliant walls was investigated by M. Gnaneswara Reddy et al. [26].The 

influence of heat and mass transfer on MHD peristaltic flow through a porous space with 

compliant walls have studied by S. Srinivas and M. Kothandapani [27].Some pertinent 

studies on the present topic can be found from the list of Refs. Such as K. Venugopal 

Reddy et al.[28], Sk Abzal [29] and G. Ravindranath reddy et al.[30], Khilap Singh et 

al.[31] and Bala Siddulu Malga et al. [32]. 

 

2. Formulation of the Problem 

The model simulates the peristaltic transport of a viscous fluid through an infinite two-

dimensional asymmetric vertical tapered channel through the porous medium. Asymmetry 

in the flow is due to the propagation of peristaltic waves of different amplitudes and phase 

on the channel walls. We assume that the fluid is subject to a constant transverse magnetic 

field B0. The flow is generated by sinusoidal wave trains propagating with steady speed c 

along the tapered asymmetric channel walls. 

The geometry of the wall surface is defined as 

 







 tcXdXmbHY



2
sin2

                         (2.1) 

  







 




tcXdXmbHY

2
sin1

  

                             (2.2) 

Where b is the half-width of the channel, d is the wave amplitude, 𝑐 is the phase speed 

of the wave and m   1m  is the non-uniform parameter, 𝜆 is the wavelength, t is the 

time and X is the direction of wave propagation. The phase difference 𝜙 varies in the 

range 0 ≤ ϕ ≤ π, ϕ = 0 corresponds to symmetric channel with waves out of phase and 

further b, d and ϕ satisfy the following conditions for the divergent channel at the inlet 
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It is assumed that the left wall of the channel is maintained at temperature T0 while the 

right wall has temperature T1. 

 

 

Figure 1. Schematic Diagram of the Physical Model 

The constitutive equations for an incompressible Jeffrey fluid are 

SIpT                                                          (2.3) 

 rr
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where T  and S  are Cauchy stress tensor and extra stress tensor, respectively, p  is the 

pressure, I  is the identity tensor, 1 is the ratio of relaxation to retardation times, 2 is the 

retardation time r is the shear rate and dots over the quantities indicate differentiation 

with respect to time. 

In laboratory frame, the equations of continuity, momentum, energy and concentration 

are described as follows 
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Where 
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U and V  are the velocity components in the laboratory frame ( X , Y ), k1 is the 

permeability of the porous medium, is the density of the fluid, p is the fluid pressure, k 

is the thermal conductivity,  is the coefficient of the viscosity, Q0 is the constant heat 

addition/absorption, Cp is the specific heat at constant pressure, σ is the electrical 

conductivity, g is the acceleration due to gravity T  is the temperature of the fluid, C  is 

the concentration of the fluid, Tm is the mean temperature,  Dm is the coefficient of mass 

diffusivity, and KT is the thermal diffusion ratio. 

The relative boundary conditions are 

0U ,
0TT  ,  

0CC   at
1HY   

0U ,
1TT   , 

1CC   at    
2HY   

Introducing a wave frame (x, y) moving with velocity c away from the fixed frame (X, 

Y) by the transformation 

tcXx  , Yy  , cUu  , Vv  ,  tXPxp ,)(                         (2.10) 

Where u , v  are the velocity components in the wave frame ( x , y ), p  is pressures and 

P  fixed frame of references. We introduce the following non-dimensional variables and 

parameters for the flow: 
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where 
b

d
 is the non-dimensional amplitude of channel ,




b
 is the wave number,

b

m
k





1  is the non - uniform parameter , Re is the Reynolds number, M is the Hartman 

number ,
2b

k
K  Permeability parameter ,Pr is the Prandtl number, Ec is the Eckert 

number, β is the heat source/sink parameter,            Br (= EcPr) is the Brinkman number, 

Sc Schmidt number and Sr Soret number. 
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3. Solution of the Problem 

In view of the above transformations (2.10) and non-dimensional variables (2.11), 

equations (2.5-2.9) are reduced to the following forms. 
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Applying long wave length approximation and neglecting the wave number along with 

low-Reynolds numbers. Equations (3.1-3.5) become 
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The relative boundary conditions in dimensionless form are given by 

u = -1, θ = 0, 0  at       txxkhy 2sin1 11          (3.10) 

u = -1, θ = 1, 1  at      txxkhy   2sin1 12             (3.11) 

The solutions of velocity and temperature with subject to boundary conditions (3.10) and 

(3.11) are given by 

    AyhCosayhSinau  1211                                       (3.12) 
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Where 
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The coefficients of the heat transfer Zh1 and Zh2 at the walls y = h1 and y = h2 

respectively, are given by 
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(3.15) 
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The solutions of the coefficient of heat transfer at y = h1 and y = h2 are given by  
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Volumetric Flow Rate 

The volumetric flow rate in the wave frame is defined by 
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The pressure gradient obtained from equation (3.19) can be expressed as   
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The instantaneous flux Q (x, t) in the laboratory frame is 
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The average volume flow rate over one wave period (T = λ/c) of the peristaltic wave is 

defined as  
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From the equations (3.20) and (3.22), the pressure gradient can be expressed as     
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4. Numerical Results and Discussion 

The main object of this investigation has been to study Joule heating and mass transfer 

on MHD  

peristaltic Jeffery fluid with porous medium through a vertical asymmetric tapered 

channel. The analytical expressions for velocity distribution, pressure gradient, and 

temperature and heat transfer coefficient have been derived in the previous section. The 

numerical and computational results are discussed through the graphical illustration. 

Mathematica software is used to find out numerical results. Figure 2 represents the 

variation of axial velocity with y for different values of Jeffery fluid (λ1) with     Da = 0.5, 

M= 1, ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = 0.5. We observe from this figure 

that the axial velocity increases with increase in Jeffery fluid λ1 (λ1= 0.5, 1, 1.5).Effect of 

Hartmann number M on axial velocity (u) is depicted in figure (3) with Da = 0.5, λ1= 0.5, 

ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = 0.5. It has been inferred that the axial 

velocity increases with increasing the values of Hartmann number M (M = 0.5, 1, 1.5) 

Figure 4 illustrates the variation in axial velocity for different values of porosity 

parameter Da with M = 1, λ1= 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = 0.5. It 

can be seen that the axial velocity diminished with increase in porosity parameter Da (Da 

= 0.1, 0.3, 0.5). Figure 5 is drawn to study the effect of non-uniform parameter (k1) on 

axial velocity distribution (u) with M = 1,   λ1= 0.5, Da = 0.5, ϕ = π/6, ε = 0.2, x = 0.6, t = 

0.4, dp/dx = 0.5. We notice from this figure that the increase in non-uniform parameter 

(k1) increases the velocity distribution. 
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Figure 2. Velocity distribution for different Values of λ1with Da = 0.5, M= 1, ϕ 
= π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = 0.5 

 

Figure 3. Velocity distribution for different Values M of with Da = 0.5, λ1= 0.5, 
ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = 0.5 
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Figure 4. Velocity distribution for different Values Da of with M = 1, λ1= 0.5, 
ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, dp/dx = 0.5 

 

 

Figure 5. Velocity distribution for different Values k1 of with M = 1, λ1= 0.5, 
Da = 0.5, ϕ = π/6, ε = 0.2, x = 0.6, t = 0.4, dp/dx = 0.5 
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pressure gradient diminished when Jeffery fluid enhances. Figure9 displays the effect of 

volumetric flow rate Ǭ on pressure gradient (dp/dx) M = 1, Da= 0.5, ϕ = π/6, λ1 = 0.5, ε = 

0.2, k1= 0.1, t = π/4, d = 2.It shows from this figure that an increase in the value of 

volumetric flow rate results in the pressure gradient diminished. 

 

 

Figure 6. Pressure Gradient for different Values M with Da = 0.5, λ1= 0.5, ϕ = 
π/6, ε = 0.2, k1= 0.1, t = π/4, Ǭ = 0.2, d = 2 

 

Figure 7. Pressure gradient for different values Da with M = 1, λ1= 0.5, ϕ = 
π/6, ε = 0.2, k1= 0.1, t = π/4, Ǭ = 0.2, d = 2 
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Figure 8. Pressure gradient for different values λ1 with M = 1, Da= 0.5, ϕ = 
π/6, ε = 0.2, k1= 0.1, t = π/4, Ǭ = 0.2, d = 2 

 

Figure 9. Pressure Gradient for different Values Ǭ with M = 1, Da= 0.5, ϕ = 
π/6, λ1 = 0.5, ε = 0.2, k1= 0.1, t = π/4, d = 2 
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the temperature of the fluid enhances with an increase in Prandtl number Pr (Pr = 2, 4, 6). 

Figure 12 displays the effect of Jeffery fluid on temperature distribution (θ) with Da = 0.5, 

M = 1, β =0.1, Br = 1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5. It is 

interested to notice from this figure that the temperature of the fluid diminished when 

Jeffery fluid enhances (λ1= 0.5, 1, 1.5). Influence of Brinkman number on temperature 

distribution (θ) is shown in   Figure 13 with Da = 0.5, M = 1, β =0.1,      λ1 = 0.5, Pr = 2, ϕ 

= π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5.It can be seen that the temperature 

distribution gradually enhances with increase in Brinkman number (Br = 0.1, 0.5, 1).The 

temperature distribution (θ) for different values of porosity parameter (Da) is plotted in 

Figure 14. We observe from this figure that the temperature of the fluid enhances with an 

increase in porosity parameter (Da 0.1, 0.5, 1) with fixed other parameters. Figure 15 

depicts to examine the effect of magnetic field on temperature distribution (θ) with Da = 

0.5, β =0.1, λ1 = 0.5, Br = 0.1, Pr = 2, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5. 

Indeed, the temperature of the fluid enhances with an increasing the values of magnetic 

field (M = 0.5, 1, 1.5). 

Therefore, we conclude from these figures (Figures 10-15) that the temperature of the 

enhances with an increase in β, Br, Pr, Da and M whereas the temperature of the fluid 

diminished with an increase in Jeffery fluid and We notice that the temperature profile is 

found almost parabolic in nature. 

 

 

Figure 10. Temperature distribution (θ) for different Values of β with Da = 
0.5, M = 1, Pr =2, Br = 1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 

0.5 
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Figure 11. Temperature distribution (θ) for different Values of Pr with Da = 
0.5, M = 1, β =0.1, Br = 1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 

0.5 

 

Figure 12. Temperature Distribution (θ) for different Values of λ1 with Da = 
0.5, M = 1, β =0.1, Br = 1, Pr = 2, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 
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Figure 13. Temperature Distribution (θ) for different Values of Br with Da = 
0.5, M = 1, β =0.1, λ1 = 0.5, Pr = 2, ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, p = 

0.5 

 

Figure 14. Temperature Distribution (θ) for different Values of Da with M = 1, 
β =0.1, λ1 = 0.5, Br = 0.1, Pr = 2, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5 
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Figure 15. Temperature distribution (θ) for different Values of M with Da = 
0.5, β =0.1, λ1 = 0.5, Br = 0.1, Pr = 2, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p 

= 0.5 

Figures (16) - (20) are plotted to study the effects of β, Pr, Sc, Br and Sr on the 

concentration profile.Figure16 shows that the effect of heat source generation parameter 

on concentration distribution (Φ) with Da = 0.5, Sc = 0.5, Sr = 3, M = 1, Pr =2, Br = 0.1, 

λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 0.6, t = 0.4, p = 0.5.We observe from this figure that 

the concentration field decreases with increase in heat source generation parameter (β = 

0.1, 0.3, 0.5). Influence of Prandtl number (pr) on concentration distribution (Φ) is 

depicted in Figure17 with fixed Da = 0.5, Sc = 0.5, Sr = 3, M = 1, β = 0.1, Br = 0.1, λ1 = 

0.5, ϕ = π/6,  ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, p = 0.5.It can be seen that the concentration 

profile diminishes with increase in Prandtl number (Pr = 2, 4, 6). The concentration 

distribution (Φ) for different values of Schmidt number (Sc) is plotted in Figure18 with 

fixed Da = 0.5, Pr = 2, Sr = 3, M = 1, β = 0.1, Br = 0.1,      λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 

0.1, x = 0.6, t = 0.4, p = 0.5.We notice from this figure that an increase in Schmidt 

number (Sc = 0.1, 0.3, 0.5) results in concentration field diminished. Figure19 depicts the 

variation in concentration profile (Φ) for different values of brinkman number (Br) with 

Da = 0.5, Pr = 2, Sc = 0.5, Sr = 3, M = 1, β = 0.1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 

0.6, t = 0.4, p = 0.5. This figure shows that an increase in brinkman number results in 

concentration profile diminished.Figure20 depicts to examine the effect of Soret number 

(Sr) on concentration distribution (Φ) with Da = 0.5, Pr = 2, Sc = 0.5, Br = 0.1,    M = 1, β 

= 0.1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, p = 0.5. It shows that the 

concentration field decreases when the Soret number increases (Sr = 1, 3, 5). 

Therefore, we conclude that the concentration distribution decreases when increase in 

β, Pr, Sc, Br and Sr in an entire asymmetric vertical tapered channel. 
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Figure 16. Concentration distribution for different values of β with Da = 0.5, 
Sc = 0.5, Sr = 3, M = 1, Pr =2, Br = 0.1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 

0.6, t = 0.4, p = 0.5 

 

Figure 17. Concentration distribution for different values of Pr with Da = 0.5, 
Sc = 0.5, Sr = 3, M = 1, β = 0.1, Br = 0.1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 

0.6, t = 0.4, p = 0.5 
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Figure 18. Concentration distribution for different values of Sc with Da = 
0.5, Pr = 2, Sr = 3, M = 1, β = 0.1, Br = 0.1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 

0.6, t = 0.4, p = 0.5 

 

Figure 19. Concentration distribution for different values Of Br with Da = 
0.5, Pr = 2, Sc = 0.5, Sr = 3, M = 1, β = 0.1, λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x= 

0.6, t = 0.4, p = 0.5 
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Figure 20. Concentration distribution (Mass transfer distribution) for 
different Values of Br with Da = 0.5, Pr = 2, Sc = 0.5, Br = 0.1, M = 1, β = 0.1, 

λ1 = 0.5, ϕ = π/6, ε = 0.2, k1= 0.1, x = 0.6, t = 0.4, p = 0.5 

5. Conclusions 

In this paper, we have proposed a theoretical study on simultaneous effects of joule 

heating and mass transfer on hydromagnetic peristaltic Jeffery fluid model filled with 

porous medium in a tapered vertical channel. We have concluded the following key 

observations: 

(1) Axial velocity increases with an increase in Jeffery fluid λ1, Magnetic field (M) 

and non-uniform parameter (k1). 

(2) The axial velocity diminished with an increase in Porosity parameter (Da). 

(3) Pressure gradient enhances with an increase in Hartmann number M  

(4) Pressure gradient diminished with an increase in porosity parameter Da, Jeffery 

fluid λ1and volumetric flow rate Ǭ. 

(5) The temperature of the fluid enhances with an increase in β, Br, Pr, Da and M.  

(6) The temperature of the fluid diminished with an increase in Jeffery fluid λ1. 

(7) The concentration distribution decreases when increase in β, Pr, Sc, Br and Sr in 

an entire asymmetric vertical tapered channel.  
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