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Abstract 

Ventricular fibrillation (VF) and ventricular tachycardia (VT) are life-threatening 

signals. Automated external defibrillators can decrease the fatality rate if the VF/VT 

detection is stable and quick. This thesis proposes improved VF/VT detection. For our 

experiments, we use the complete Creighton University Ventricular Tachyarrhythmia 

Database. Samples are analyzed under the same conditions in intervals of 7 s. Based on 

this data, we propose a time-delay transform. Then, we extract six shockable features, 

three known and three new, which are used to construct our Neural Network with Weight 

Fuzzy Membership Functions model (NEWFM). The result is better than the phase space 

reconstruction algorithm. 
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1. Introduction 

There are hundreds of thousands of people dying of sudden cardiac diseases, 

which is primarily caused by ventricular fibrillation and ventricular tachycardia 

(VF/VT). VF/VT is a disorder of cardiac electrical activities, from which it is 

difficult to recover without intervention. When VF/VT occurs, the heart loses the 

pump function and the patient’s life is at risk. Animal experiments and c linical 

experiments have proved that regulated electrical shocks can effectively terminate 

VF/VT. Moreover, the defibrillation success rate is closely related to defibrillation 

time. According to statistics, if defibrillation is delayed by one minute, the recovery 

rate decreases by 7 to 10 percent. Therefore, according to the American Heart 

Association, early defibrillation is an important chain of survival mentioned in 

American Heart Association (AHA) [6]. An automatic external defibrillator (AED) 

can quickly detect and classify VF/VT and other dangerous heart signals. An AED 

can quickly shock patients to recover the heart’s pump function. The application of 

an AED improves the probability of early defibrillation [7]. In order to achieve even 

faster and more accurate early defibrillation, the processing and analysis of real -

time electrocardiograph (ECG) signals can be used. Using ECGs improves the 

accuracy of defibrillation and reduces myocardial damage by allowing for prompt 

diagnosis and treatment. The traditional VF/VT detection algorithm uses the phase 

space reconstruction algorithm (PSR) to convert the time domain into a value 

domain [3]. PSR allows for easier and faster VF/VT detection. However, ECG 

signals are so complex that PSR is unable to achieve a perfect recognition rate. In 

this paper, we present a new algorithm, called time-delay transform (TDT). Then we 

extract and select six features by BSWFM [1, 8, 9] and use Neural Network with 

Weight Fuzzy Membership Functions (NEWFM) to improve the accuracy [2]. 
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2. The New VT/VF Detection 

Fig. 1 shows our proposed VF/VT detection algorithm that we discuss in this 

paper. The algorithm contains 5 steps. In Step 1, we use the Haar wavelet transform 

(HWT) to filter ECG signals. In Step 2, the filtered signals are processed with the 

time-delay transform (TDT) to make the signal more obvious. In Step 3, we extract 

the initial features from the processed signal. In Step 4, the best six features are 

selected using bounded sum of weighted fuzzy membership functions (BSWFM) 

[1], based on NEWFM [2]. In the final step, Step 5, NEWFM trains the six-feature 

database and outputs the best performance result. 
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Figure 1. VT/VF Detection Flow Structure 

2.1. Haar Wavelet Transform 

Haar Wavelet Transform (HWT) is used to filter noisy signals and decomposes a 

signal into two parts [10, 11, 13]. One part is the average, or trend, sub-signal, and 

the other part is the fluctuation sub-signal [14, 17, 18]. 
 

                                                                             (1) 

                                                                             (2) 

 

The original signal is represented by . The trend sub-signal, , shows the 

running average, and the fluctuation sub-signal, , shows the running difference. 

In our experiments, we use HWT 3-level fluctuation sub-signal as input. 

 

2.2. Time-delay Transform 

To make the ECG signal more obvious, this paper proposes a new transform, the 

time-delay transform. We use 0.5s as the delay time [12]. 

                    x’( t ) = x( t ) – x( t + 0.5 ) . (3) 

where x(t) is the HWT D3 signal calculated in Step 2, and x’(t) is the time delayed 

signal. Using this transform, the peaks of NSR and VF/VT become more distinct, as 

do the signal’s fluctuation and variation. 

The time-delay transform makes the peak values more obvious, especially in a VF 

signal, as shown in Fig. 2. At the same time, it can increase the number of peaks, as 

shown in Fig. 3, contributing to the extraction of features in the next step.  
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Figure 2. Comparison of D3 TDT and HWT D3 of a VF Signal 

 

 

Figure 3. Comparison of D3 TDT and HWT D3 of a NSR Signal 

2.3   Feature Extraction  

In Step 3, the initial features are extracted from the processed ECG signal. There 

are 16 features extracted as initial features. Then, in Step 4, we use BSWFM, based 

on NEWFM, to select six features from the initial set. 

 
2.3.1 Phase Space Reconstruction: The Phase Space Reconstruction Algorithm 

transforms the ECG signal from a time-domain to a frequency-domain. In this method, 

x(t) is plotted on the x-axis and x(t +τ) is plotted on the y-axis, where τ is the delay time. 

Therefore, we can generate statistics regarding the number of visited boxes, or grid 

squares. PSR produces a 40 x 40 grid, the number of all boxes is 1600 [5]. 
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boxesallofnumber

boxesvisitedofnumber
d  ,                               (4) 

 

2.3.2 Peak Number: First, the positive values are calculated in order to obtain 

their average. Then, we use statistics to find the number of values greater than the 

average. This number is the number of peaks of NSR and VF, shown in Fig. 4 and 5, 

respectively. 
 

 

Figure 4. Peak number of NSR 

 

Figure 5. Peak Number of VF 

2.3.3 Morphology Points: First, we obtain the maximum peak. And there are 3 

previous points and 3 following points, like Fig 6. These six points contain the 
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morphology information. Therefore, we regard these six points as six distinct 

features [15, 16]. 
 

 

Figure 6. Morphology Points of NSR 

2.3.4 Average distance: First, we obtain all the points within the thresholds 

contained in Table 1. Then, we calculate the distance between every pair of adjacent 

points, as shown in Fig. 7. Finally, we calculate the average distance using every 

distance to calculate the average distance, like equation 5. 
 

                                        (5) 

 

 Figure 7. Average Distance of NSR 

Table 1.  Threshold of Average Distance and Outside Points SD 

No. Threshold 

No.1 [-50, 50]; 

No.2 [-100, 100]; 

No.3 [-200, 200]; 

No.4 [-300, 300]. 
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2.3.5 Outside points Standard Deviation: First, we find all of the points outside of 

the thresholds contained in Table 1. Then, we use these points to calculate the 

standard deviation, which is regarded as a feature of the signal. 
 

 

Figure 7. Outside Points Standard Deviation of NSR 

2.4   Feature Selection 

In the feature extraction part, we can obtain 16 initial features, like Table 2. Then, we 

use Bounded Sum of Weighted Fuzzy Membership Function (BSWFM) based on 

NEWFM to select 6 features [8, 9], like Table 3.  

Table 2. Initial Features 

Feature Name Number 

PSR 1; 

Peak number 1; 

Morphology points 6; 

Average distance 4; 

Outside points SD 4; 

Total 16. 

 

Table 3.  Feature Description 

Feature Name Description 

PSR Phase space reconstruction 

Peak number Number of peaks; 

Morphology point2 First point before second highest peak; 

Average distance2 Average distance between -100 and 100; 

Average distance3 Average distance between -200 and 200; 

Outside points SD The outside points standard deviation -300 and 300. 

 

In this experiment, two hyperboxes are produced by NEWFM for VT/VF and NSR 

classification. Because, a hyperbox contains a set of lines (BSWFM), which is a rule for 

NSR signals, another rule for VT/VF signals shows in the other hyperbox graph 

(BSWFM). The graphs in Fig. 8 are extracted from Neural Network with Weight Fuzzy 

Membership Functions model (NEWFM) program. When the training part is completed, 

the hyperboxes and rules are produced and the NEWFM program will automatically draw 

the graphs and show the difference between the two signals for each input feature. 
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Figure 8. NEWFM Hyperboxes of 6 Features 

3. Experiment and Result 

The Creighton University Ventricular Tachyarrhythmia Database (CUDB) is 

downloaded from the physioNet website [4]. CUDB consists of 35 files, each of them 

508s long and using a frequency of 250Hz. We use the complete CUDB for our 

experiment. All signals are detected under equal conditions. 7 s without any pre-selection 

continuous samples are simulated in the analysis. Table 4 shows some sample numbers 

and numbers indicating whether the result is a true positive (TP), false negative (FN), 

false positive (FP), or true negative (TN). 

Table 4.  Sample Numbers 

Classification Result 

VT/VF 

(489) 

TP FP 

400 89 

NSR 

(1952) 

FN TN 

130 1822 
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Table 5 shows the performance of proposed new algorithm and Amann algorithm [5]. The 

results contain Sensitivity rates (Se), Specificity rates (Sp), Positive productivity rates 

(Pp) and Accuracy rates (Ac). 

Table 5.  Experiment Results 

Algorithm Se Sp Pp Ac 

Amann 70.2 89.3 65 85 

TDT 75.5 93.5 81.8% 91 

 

From Table 5, the Sensitivity rates (Se), Specificity rates (Sp), Positive productivity rates 

(Pp) and Accuracy rates (Ac), we can see that the results of our TDT-NEWFM model are 

better than those of Amann’s algorithm, which means our proposed algorithm more 

accurately classifies cases of VT/VF and NSR. 

 

4.  Conclusion 

This paper proposes a new transform, the time-delay transform, and three new features, 

such as average distance 2, average distance 3 and so on. A minimum of six features are 

selected by BSWFM, which is based on NEWFM. The performance results are better than 

those of Amann’s algorithm. In addition, the analysis time required is decreased from 8 s 

to 7 s. Therefore, our proposed algorithm has two advantages. First, it has a high accuracy 

rate, and, second, it performs more quickly than the previous approach. The six-feature 

model can be used in to detect when shock is required for patient treatment. 
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