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Abstract 

Similarity search is one of the most studied research fields in data mining. Given a query 

data point Q, how to find its closest neighbors efficiently and effectively has always been a 

challenging research topic. In this paper, we discuss continuous research on data analysis 

based on our previous work on similarity search problems, and present an approach to 

improving the scalability of the PanKNN algorithm [13]. This proposed approach can assist 

to improve the performance of existing data analysis technologies, such as data mining 

approaches in Bioinformatics.  
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1. Introduction 

Data mining is an important tool to extract information from various data types. It is 

currently used in a wide range of applications. For example, given an informational 

advantage, data mining can help find valuable patterns from data and transform them into 

business intelligence. As one of the most studied research fields in data mining, the similarity 

search problem has been studied in the last decade, and many algorithms have been proposed 

to solve the K nearest neighbor search [10, 12, 2, 9, 8]. PanKNN [13] is a novel technique 

which explores the meanings of K nearest neighbors from a new perspective, redefines the 

distances between data points and a given query point Q, and efficiently and effectively 

selects data points which are closest to Q. In this paper, we propose an approach to improving 

the scalability of PanKNN, and demonstrate the experimental results.  

 

2. Related work 

Nearest neighbor search is an optimization problem for finding nearest data points in a 

given data space. Different kinds of solutions to the nearest neighbor search problem have 

been proposed. The similarity between two data points used to be based on a similarity 

function such as Euclidean distance which aggregates the difference between each dimension 

of these two data points. Traditional approaches [1, 6, 14] solve the nearest neighbor 

problems based on the distance between the query point and the data point over a full data 

space, thus they suffer from the “cure of dimensionality”. In a high dimensional space the 

data are usually sparse, and widely used distance metric such as Euclidean distance may not 

work well as dimensionality goes higher. Recent research [7] shows that in high dimensions 

nearest neighbor queries become unstable: the difference of the distances of farthest and 

nearest points to some query point does not increase as fast as the minimum of the two, thus 

the distance between two data points in high dimensionality is less meaningful. Although 
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there are approaches [11, 4, 3] targeting partial similarities, they require fixed subset of 

dimensions or fixed number of dimensions as the input parameter for the algorithms.  

 

3. Solving similarity problems 

We first briefly introduce our previous work on PanKNN [13], in which we analyze the 

nearest neighbor problems from a new perspective. We define the new meanings for the K 

nearest neighbors problem, and design algorithms accordingly. The similarity between a data 

point and a query point is not based on the difference aggregation on all the dimensions. 

Instead, we propose self-adaptive strategies to dynamically select dimensions based on the 

different situation of the comparison. 

For a given data point Xi, and a given query point Q, we call the distance between Xi and Q 

as Pan-distance PD(Xi,Q). PD(Xi,Q) does not calculate the aggregated differences between Xi 

and Q on all dimensions. Instead, it only takes into account those dimensions on which Xi is 

close enough to Q, and sums them up. This strategy not only avoids the negative impacts 

from those dimensions on which Xi is far to Q, but also eliminate the curse of dimensionality 

caused by similarity functions such as Euclidean distance which calculates the square root of 

the sum of squares of distances on each dimensions. 

For two data points Xi and Xj, we judge which data point is closer to Q based on how many 

dimensions on which they are close enough (within dimension-wise K nearest neighbors) to 

Q, as well as their average distances to Q on such dimensions. 

The PanKNN is designed as follows. Given a data set DS, we first calculate the difference 

δil of each data point Xi to the query point Q on each dimension Dl. Then we sort the ids on 

each dimension Dl based on δil, and select the first K ids on each dimension Dl and put them 

into KSl. We define set GS to contain the ids in KSl   on all dimensions, and calculate the 

PD(Xi, Q) for each data point if its id is in GS. Finally, we sort the ids based on the Pan-

distance and select the first K ids in the sorted list as the ids of K nearest neighbors of Q. We 

do not need to calculate the difference using different number of dimensions. The number of 

dimensions and the subset of dimensions associated with data point Xi are both dynamically 

decided depending on the values of Xi and their rankings on different dimensions.   

 

4. A Scalable Approach to Finding the Nearest Neighbors 

PanKNN can efficiently and effectively find nearest neighbors when the size of the data set 

is small. However, the performance time increases dramatically with the increment of the data 

size. One of the reasons is that in PanKNN, given a query point, on each dimension, we need 

to sort the whole data set according their distances to the query point. It is well known that the 

average time complexity of most sorting algorithms is O(nlogn). In this section we propose an 

algorithm which solves the scalability problem of PanKNN.  

 

4.1. Segment Mergence 

Let n denote the total number of data points and d be the dimensionality of the data space. 

Let Dl be the lth dimension, where l = 1, 2, ..., d. Let the input d-dimensional data set be X 

  

    X = {X1, X2, ..., Xn}     
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which is normalized to be within the hypercube [0, 1]
d⊂Rd. Each data point Xi is d-

dimensional vector: 

 

 Xi = [xi1, xi2,..., xid]     (1)  

 

  

Data point Xi has the id number i. Let Q be the query point: Q = [q1, q2, ..., qd].  

In PanKNN, we used ∆i =[δi1, δi2, ..., δid] as the array of differences between the data point 

Xi and the query point Q on all dimensions. Given a data set DS of n data points X = {X1, X2 , 

..., Xn} with d dimensions D1 , D2 , ..., Dd, and a query point Q in the same data space, we first 

sort the data points on each dimension D1, l = 1, 2, ..., d, based on δil which is the difference 

between data point Xi and Q on dimension Dl. With the increment of the data size, this 

process can be very time consuming.  

The purpose of sorting all data points in the data set on each dimension based on their 

distances to Q is to find a group of data points on each dimension which are closest to Q. Here 

we design an approach to finding such groups without having to sort the whole data set on 

any dimension.  

Given K as the number of data points we need to find that are closest to Q, on each 

dimension D1, l = 1, 2, ..., d, suppose Vlmax and Vlmin are the largest value and small value of 

data points in DS on D1, respectively. Since we first normalize the data set, Vlmin and Vlmax 

will be 0 and 1, respectively. We divide [Vlmin, Vlmax] evenly by  kn / , resulting in segments 

Sl1, Sl2, …, 
 knlS / . Each segment will contain  K  data points in average. However, some 

segments contain more than  K  data points, and some contain less, due to the uneven 

distribution of data points on each dimension. It is easy to scan through the whole data set to 

calculate how many data points each segment Slj contains (denoted as |Slj |) and record the 

group of data point ids in Slj , for j=1, 2, ...,  kn / . 

We next locate the segment containing ql which is the value of Q on Dl. Suppose segment 

Slj contains the value ql , j=1, 2, ...,  kn / . We design a process called segment mergence 

which is described in figure 1. 
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   Figure .1. Proc: Segment Mergence 

 

 

  Figure .2. Example 1 of segment mergence on dimension Dl 

 

4.2. Example 1 

Figure ure 2 shows an example of the segment mergence. Suppose K is set as 10, we 

divide the value range on Dl so each segment contains 10 data points in average. Slj contains 

ql (the value of Q on Dl) and 5 data points, 2 of which are on the left side of ql. So the initial 

value for Nl is 2, and the initial value for Nr is 3. We merge Slj with the segment on its left 

side    (Slj-1), which contains 6 data points. Nl is updated as 8, which is still less than K which 

is 10. So we continue merging the segment on the left side (Slj-2) which contains 6 data points, 

and Nl is now updated as 14 which is larger than K. Next we merge the updated segment with 

the segment on its right side (Slj+1), which contains 8 data points, and Nr is updated as 11 

which is larger than K, thus we terminate the mergence process. 

From the example we can see, after the segment mergence, the result segment will contain 

at least K data points on the left side of ql, and at least K data points on the right side of ql. 

The reason is that, in the extreme case, the K nearest neighbors of Q on Dl might all on the 
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same side of Q. By having at least K data points on both sides, we assure that the K nearest 

data points are within the resulting segment Slj from the process of segment mergence. 

By applying the process of segment mergence we do not need to sort the whole data set on 

each dimension in order to obtain the K nearest neighbors on each dimension. 

 

4.3. Example 2 

 

 

  Figure .3. Example 2 of segment mergence on dimension Dl 

Figure ure 3 shows another example of the segment mergence. Suppose K is set as 5, we 

divide the value range on Dl so each segment contains 5 data points in average. Slj contains ql 

(the value of Q on Dl) and 8 data points, 2 of which are on the left side of ql. So the initial 

value for Nl is 2, and the initial value for Nr is 6. We merge Slj with the segment on its left 

side (Slj-1), which contains 5 data points. Nl is updated as 7, which is larger than K which is 5. 

So we stop merging the segment on the left side. Since Nr is 6 which is already larger than K 

which is 5, we do not merge the updated segment with the segment on its right side at all, and 

Nr remains as 6. We terminate the mergence process. 

In this example, we merge the segment on the left of Slj with Slj, and we do not merge any 

segments on the right side of Slj since the original value of Nr is already larger than K which 

is 5. After the segment mergence, the resulting segment will contain at least K data points on 

the left side of ql, and at least K data points on the right side of ql. 

 

4.4. Example 3 

 

Figure ure 4 shows another example of the segment mergence. Suppose K is set as 4, we 

divide the value range on Dl so each segment contains 4 data points in average. Slj contains ql 

(the value of Q on Dl) and 9 data points, 4 of which are on the left side of ql. So the initial 

value for Nl is 4, and the initial value for Nr is 5. Since the original value of Nl is 4, which is 

not less than K which is 4, we do not merge Slj with any segments on the left side. Since the 

original value of Nr is 5, which is not less than K which is 4, we do not merge Slj with any 

segments on the right side either.   

 

  Figure .4. Example 3 of segment mergence on dimension Dl 
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In the example, we do not merge Slj with any other segments on Dl, because neither Nl (4) 

nor Nr (5) is less than K which is 4. Slj contains at least K data points on the left side of ql, and 

at least K data points on the right side of ql. 

 

4.5. Finding nearest neighbors with scalability 

Given a data set DS of n data points X = {X1, X2 , ..., Xn } with Dl as the dimension l, l=1, 

2, ..., d, a query point Q in the same data space, we try to find a set PKscalable which consists 

of k data points from DS so that for any data point Xi ∈PKscalable and any data point Xj ∈  
DS − PKscalable, the PD(Xi, Q) is less than or equal to PD(Xj, Q). The set PKscalable is the 

Pan-K Nearest Neighbor set of Q in DS. 

The PanKNN-scalable algorithm is described as follows: 

1) For each Xi ∈DS, we first calculate ∆i =[δi1, δi2, ..., δid] in which δil = |xil − ql|; 

2) On each dimension Dl, l=1, 2, ..., d, suppose its value range is [Vlmin, Vlmax], we divide it 

evenly by K , resulting in segments Sl1, Sl2, …, 
 knlS / .  

3) Starting from Slj which contains the value ql, we perform the segment mergence process. 

The resulting Slj will contain at least 2K data points. We sort the ids of the data points in Slj 
instead of in DS, based on δil for Xi. Let Gl be the sorted list on Dl; 

4) Let KSl be the subset of Gl which contains the first K ids in Gl. For each data point Xi, 

i=1, 2, ... n, we generate Bi = [bi1 , bi2, ..., bid] in which bil = 1, if i ∈KSl; bil = 0, if i ∉KSl; 

5) Let set GS = {i} in which i ∈KSl, l=1, 2, ..., d. For each data point Xi, where i ∈GS, we 
calculate PD(Xi, Q). Next we Sort GS = {i} based on PD(Xi, Q); Let set PKscalable contain 

the first K ids ∈GS. We return PKscalable. 

 

4.6. Time and space analysis 

Suppose the size of the data set is n. Throughout the process, we need to keep track of the 

information of all points, which collectively occupies O(n) space. For one query point Q, we 

need to sort the data points in Slj after the segment mergence process on each dimension. The 

time required is O(dKlogK ).   

 
5. Experiments 

To assess the accuracy and efficiency of the proposed approach, comprehensive 

experiments on both synthetic and real data sets were conducted. Our experiments were run 

on Intel(R) Pentium(R) 4 with CPU of 3.39GHz and Ram of 0.99 GB.  

 

5.1. Experiments on high-dimensional data sets 

To test the scalability of our algorithm over dimensionality, data size and K as the number 

of nearest neighbors required for the query points, we designed a synthetic data generator to 

produce data sets with normalized distributions. The sizes of the data sets vary from 20,000, 

25,000, ... to 40,000, with the gap of 5,000 between each two adjacent data set sizes, and the 

dimensions of the data sets vary from 20, 25 ... to 40, with the gap of 5 between each two 

adjacent numbers of dimensions. 
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Figure ure 5 shows the running time of groups of data sets with dimensions increasing 

from 20 to 40. Each group has a fixed data size (from 20,000, 15,000, ... to 40,000). And we 

set K as 10. 

Figure ure 6 shows the running time of groups of data sets on one query with sizes 

increasing from 20,000 to 40,000. Each group has fixed number of dimensions (from 20, 25, 

... to 40). And we set K as 10. The two figures indicate that our algorithm is scalable over 

dimensionality and data size.  

 

 

 Figure .5. Running time on one query point with increasing dimensions 

(K = 10) 

 

  

Figure .6. Running time on one query point with increasing data set sizes (K 

= 10) 

 

Figure ure 7 shows the running time of 3 groups of data sets with the size of 20000, 30000 

and 40000 on one query with K increasing from 5,10,... to 30. And we set dimension as 20. 
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     Figure .7. Running time on one query point with increasing K values 

(dimensionality = 20) 

 

5.1. Experiments of PanKNN-scalable vs. PanKNN 

In this section we will demonstrate how PanKNN-scalable improves the performance 

compared to the original PanKNN. 

We first use the synthetic data sets to demonstrate the advantage of PanKNN-scalable. 

Figure ure 8 shows the running time of PanKNN-scalable vs. PanKNN with sizes increasing 

from 20,000 to 40,000. We set the dimensionality as 20 and K as 10. From this picture we can 

see that PanKNN-scalable performs better than PanKNN when the data size increases. 

 

 

Figure .8. Running time on one query point of PanKNN-scalable vs. 

PanKNN on increasing data sizes (dimensionality = 20 and K = 10) 

 

We also use real data sets from UCI Machine Learning Repository [5] to demonstrate the 

performance difference of PanKNN-scalable vs. PanKNN. Here we demonstrate the testing 

result on one real data set called Wine Recognition data set. It contains the results of a 

chemical analysis of wines grown in the same region in Italy but derived from three different 

cultivars. There are 178 instances, each of which has 13 features (dimensions), including 

alcohol, magnesium, color intensity, etc. The data set has three clusters with the sizes of 59, 

 

x 10
3
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71 and 48. We perform the algorithms on the Wine data set. The accuracy rate of PanKNN-

scalable is 94.1%, which is higher than the accuracy rate of PanKNN (92.9%). 

 

 

6. Conclusion 

In this paper we present our strategy to improve the similarity search approaches. On each 

dimension we divide the value range into segments with equal size and merge the segment 

containing the query point with the neighboring segments to acquire the group of data points 

closest to data point Q on each dimension. This data processing algorithm can be applied in 

many fields such as bioinformatics, pattern recognition, data clustering and signal processing. 
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