
International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologTechnologTechnologTechnologyyyy

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

29

A Scalable Approach to Multi-dimensional Data Analysis

Yong Shi
Department of Computer Science and Information Systems

Kennesaw State University
1000 Chastain Road

Kennesaw, GA 30144Author(s) Name(s)
yshi5@kennesaw.edu

Abstract

Similarity search is one of the most studied research fields in data mining. Given a query

data point Q, how to find its closest neighbors efficiently and effectively has always been a

challenging research topic. In this paper, we discuss continuous research on data analysis

based on our previous work on similarity search problems, and present an approach to

improving the scalability of the PanKNN algorithm [13]. This proposed approach can assist

to improve the performance of existing data analysis technologies, such as data mining

approaches in Bioinformatics.

Keywords: Nearest neighboring search, scalability, segment mergence.

1. Introduction

Data mining is an important tool to extract information from various data types. It is

currently used in a wide range of applications. For example, given an informational

advantage, data mining can help find valuable patterns from data and transform them into

business intelligence. As one of the most studied research fields in data mining, the similarity

search problem has been studied in the last decade, and many algorithms have been proposed

to solve the K nearest neighbor search [10, 12, 2, 9, 8]. PanKNN [13] is a novel technique

which explores the meanings of K nearest neighbors from a new perspective, redefines the

distances between data points and a given query point Q, and efficiently and effectively

selects data points which are closest to Q. In this paper, we propose an approach to improving

the scalability of PanKNN, and demonstrate the experimental results.

2. Related work

Nearest neighbor search is an optimization problem for finding nearest data points in a

given data space. Different kinds of solutions to the nearest neighbor search problem have

been proposed. The similarity between two data points used to be based on a similarity

function such as Euclidean distance which aggregates the difference between each dimension

of these two data points. Traditional approaches [1, 6, 14] solve the nearest neighbor

problems based on the distance between the query point and the data point over a full data

space, thus they suffer from the “cure of dimensionality”. In a high dimensional space the

data are usually sparse, and widely used distance metric such as Euclidean distance may not

work well as dimensionality goes higher. Recent research [7] shows that in high dimensions

nearest neighbor queries become unstable: the difference of the distances of farthest and

nearest points to some query point does not increase as fast as the minimum of the two, thus

the distance between two data points in high dimensionality is less meaningful. Although

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologyTechnologyTechnologyTechnology

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

30

there are approaches [11, 4, 3] targeting partial similarities, they require fixed subset of

dimensions or fixed number of dimensions as the input parameter for the algorithms.

3. Solving similarity problems

We first briefly introduce our previous work on PanKNN [13], in which we analyze the

nearest neighbor problems from a new perspective. We define the new meanings for the K

nearest neighbors problem, and design algorithms accordingly. The similarity between a data

point and a query point is not based on the difference aggregation on all the dimensions.

Instead, we propose self-adaptive strategies to dynamically select dimensions based on the

different situation of the comparison.

For a given data point Xi, and a given query point Q, we call the distance between Xi and Q

as Pan-distance PD(Xi,Q). PD(Xi,Q) does not calculate the aggregated differences between Xi

and Q on all dimensions. Instead, it only takes into account those dimensions on which Xi is

close enough to Q, and sums them up. This strategy not only avoids the negative impacts

from those dimensions on which Xi is far to Q, but also eliminate the curse of dimensionality

caused by similarity functions such as Euclidean distance which calculates the square root of

the sum of squares of distances on each dimensions.

For two data points Xi and Xj, we judge which data point is closer to Q based on how many

dimensions on which they are close enough (within dimension-wise K nearest neighbors) to

Q, as well as their average distances to Q on such dimensions.

The PanKNN is designed as follows. Given a data set DS, we first calculate the difference

δil of each data point Xi to the query point Q on each dimension Dl. Then we sort the ids on

each dimension Dl based on δil, and select the first K ids on each dimension Dl and put them

into KSl. We define set GS to contain the ids in KSl on all dimensions, and calculate the

PD(Xi, Q) for each data point if its id is in GS. Finally, we sort the ids based on the Pan-

distance and select the first K ids in the sorted list as the ids of K nearest neighbors of Q. We

do not need to calculate the difference using different number of dimensions. The number of

dimensions and the subset of dimensions associated with data point Xi are both dynamically

decided depending on the values of Xi and their rankings on different dimensions.

4. A Scalable Approach to Finding the Nearest Neighbors

PanKNN can efficiently and effectively find nearest neighbors when the size of the data set

is small. However, the performance time increases dramatically with the increment of the data

size. One of the reasons is that in PanKNN, given a query point, on each dimension, we need

to sort the whole data set according their distances to the query point. It is well known that the

average time complexity of most sorting algorithms is O(nlogn). In this section we propose an

algorithm which solves the scalability problem of PanKNN.

4.1. Segment Mergence

Let n denote the total number of data points and d be the dimensionality of the data space.

Let Dl be the lth dimension, where l = 1, 2, ..., d. Let the input d-dimensional data set be X

 X = {X1, X2, ..., Xn}

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologTechnologTechnologTechnologyyyy

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

31

which is normalized to be within the hypercube [0, 1]
d⊂Rd. Each data point Xi is d-

dimensional vector:

 Xi = [xi1, xi2,..., xid] (1)

Data point Xi has the id number i. Let Q be the query point: Q = [q1, q2, ..., qd].

In PanKNN, we used ∆i =[δi1, δi2, ..., δid] as the array of differences between the data point

Xi and the query point Q on all dimensions. Given a data set DS of n data points X = {X1, X2 ,

..., Xn} with d dimensions D1 , D2 , ..., Dd, and a query point Q in the same data space, we first

sort the data points on each dimension D1, l = 1, 2, ..., d, based on δil which is the difference

between data point Xi and Q on dimension Dl. With the increment of the data size, this

process can be very time consuming.

The purpose of sorting all data points in the data set on each dimension based on their

distances to Q is to find a group of data points on each dimension which are closest to Q. Here

we design an approach to finding such groups without having to sort the whole data set on

any dimension.

Given K as the number of data points we need to find that are closest to Q, on each

dimension D1, l = 1, 2, ..., d, suppose Vlmax and Vlmin are the largest value and small value of

data points in DS on D1, respectively. Since we first normalize the data set, Vlmin and Vlmax

will be 0 and 1, respectively. We divide [Vlmin, Vlmax] evenly by kn / , resulting in segments

Sl1, Sl2, …,
 knlS / . Each segment will contain K data points in average. However, some

segments contain more than K data points, and some contain less, due to the uneven

distribution of data points on each dimension. It is easy to scan through the whole data set to

calculate how many data points each segment Slj contains (denoted as |Slj |) and record the

group of data point ids in Slj , for j=1, 2, ..., kn / .

We next locate the segment containing ql which is the value of Q on Dl. Suppose segment

Slj contains the value ql , j=1, 2, ..., kn / . We design a process called segment mergence

which is described in figure 1.

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologyTechnologyTechnologyTechnology

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

32

 Figure .1. Proc: Segment Mergence

 Figure .2. Example 1 of segment mergence on dimension Dl

4.2. Example 1

Figure ure 2 shows an example of the segment mergence. Suppose K is set as 10, we

divide the value range on Dl so each segment contains 10 data points in average. Slj contains

ql (the value of Q on Dl) and 5 data points, 2 of which are on the left side of ql. So the initial

value for Nl is 2, and the initial value for Nr is 3. We merge Slj with the segment on its left

side (Slj-1), which contains 6 data points. Nl is updated as 8, which is still less than K which

is 10. So we continue merging the segment on the left side (Slj-2) which contains 6 data points,

and Nl is now updated as 14 which is larger than K. Next we merge the updated segment with

the segment on its right side (Slj+1), which contains 8 data points, and Nr is updated as 11

which is larger than K, thus we terminate the mergence process.

From the example we can see, after the segment mergence, the result segment will contain

at least K data points on the left side of ql, and at least K data points on the right side of ql.

The reason is that, in the extreme case, the K nearest neighbors of Q on Dl might all on the

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologTechnologTechnologTechnologyyyy

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

33

same side of Q. By having at least K data points on both sides, we assure that the K nearest

data points are within the resulting segment Slj from the process of segment mergence.

By applying the process of segment mergence we do not need to sort the whole data set on

each dimension in order to obtain the K nearest neighbors on each dimension.

4.3. Example 2

 Figure .3. Example 2 of segment mergence on dimension Dl

Figure ure 3 shows another example of the segment mergence. Suppose K is set as 5, we

divide the value range on Dl so each segment contains 5 data points in average. Slj contains ql

(the value of Q on Dl) and 8 data points, 2 of which are on the left side of ql. So the initial

value for Nl is 2, and the initial value for Nr is 6. We merge Slj with the segment on its left

side (Slj-1), which contains 5 data points. Nl is updated as 7, which is larger than K which is 5.

So we stop merging the segment on the left side. Since Nr is 6 which is already larger than K

which is 5, we do not merge the updated segment with the segment on its right side at all, and

Nr remains as 6. We terminate the mergence process.

In this example, we merge the segment on the left of Slj with Slj, and we do not merge any

segments on the right side of Slj since the original value of Nr is already larger than K which

is 5. After the segment mergence, the resulting segment will contain at least K data points on

the left side of ql, and at least K data points on the right side of ql.

4.4. Example 3

Figure ure 4 shows another example of the segment mergence. Suppose K is set as 4, we

divide the value range on Dl so each segment contains 4 data points in average. Slj contains ql

(the value of Q on Dl) and 9 data points, 4 of which are on the left side of ql. So the initial

value for Nl is 4, and the initial value for Nr is 5. Since the original value of Nl is 4, which is

not less than K which is 4, we do not merge Slj with any segments on the left side. Since the

original value of Nr is 5, which is not less than K which is 4, we do not merge Slj with any

segments on the right side either.

 Figure .4. Example 3 of segment mergence on dimension Dl

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologyTechnologyTechnologyTechnology

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

34

In the example, we do not merge Slj with any other segments on Dl, because neither Nl (4)

nor Nr (5) is less than K which is 4. Slj contains at least K data points on the left side of ql, and

at least K data points on the right side of ql.

4.5. Finding nearest neighbors with scalability

Given a data set DS of n data points X = {X1, X2 , ..., Xn } with Dl as the dimension l, l=1,

2, ..., d, a query point Q in the same data space, we try to find a set PKscalable which consists

of k data points from DS so that for any data point Xi ∈PKscalable and any data point Xj ∈
DS − PKscalable, the PD(Xi, Q) is less than or equal to PD(Xj, Q). The set PKscalable is the

Pan-K Nearest Neighbor set of Q in DS.

The PanKNN-scalable algorithm is described as follows:

1) For each Xi ∈DS, we first calculate ∆i =[δi1, δi2, ..., δid] in which δil = |xil − ql|;

2) On each dimension Dl, l=1, 2, ..., d, suppose its value range is [Vlmin, Vlmax], we divide it

evenly by K , resulting in segments Sl1, Sl2, …,
 knlS / .

3) Starting from Slj which contains the value ql, we perform the segment mergence process.

The resulting Slj will contain at least 2K data points. We sort the ids of the data points in Slj
instead of in DS, based on δil for Xi. Let Gl be the sorted list on Dl;

4) Let KSl be the subset of Gl which contains the first K ids in Gl. For each data point Xi,

i=1, 2, ... n, we generate Bi = [bi1 , bi2, ..., bid] in which bil = 1, if i ∈KSl; bil = 0, if i ∉KSl;

5) Let set GS = {i} in which i ∈KSl, l=1, 2, ..., d. For each data point Xi, where i ∈GS, we
calculate PD(Xi, Q). Next we Sort GS = {i} based on PD(Xi, Q); Let set PKscalable contain

the first K ids ∈GS. We return PKscalable.

4.6. Time and space analysis

Suppose the size of the data set is n. Throughout the process, we need to keep track of the

information of all points, which collectively occupies O(n) space. For one query point Q, we

need to sort the data points in Slj after the segment mergence process on each dimension. The

time required is O(dKlogK).

5. Experiments

To assess the accuracy and efficiency of the proposed approach, comprehensive

experiments on both synthetic and real data sets were conducted. Our experiments were run

on Intel(R) Pentium(R) 4 with CPU of 3.39GHz and Ram of 0.99 GB.

5.1. Experiments on high-dimensional data sets

To test the scalability of our algorithm over dimensionality, data size and K as the number

of nearest neighbors required for the query points, we designed a synthetic data generator to

produce data sets with normalized distributions. The sizes of the data sets vary from 20,000,

25,000, ... to 40,000, with the gap of 5,000 between each two adjacent data set sizes, and the

dimensions of the data sets vary from 20, 25 ... to 40, with the gap of 5 between each two

adjacent numbers of dimensions.

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologTechnologTechnologTechnologyyyy

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

35

Figure ure 5 shows the running time of groups of data sets with dimensions increasing

from 20 to 40. Each group has a fixed data size (from 20,000, 15,000, ... to 40,000). And we

set K as 10.

Figure ure 6 shows the running time of groups of data sets on one query with sizes

increasing from 20,000 to 40,000. Each group has fixed number of dimensions (from 20, 25,

... to 40). And we set K as 10. The two figures indicate that our algorithm is scalable over

dimensionality and data size.

 Figure .5. Running time on one query point with increasing dimensions

(K = 10)

Figure .6. Running time on one query point with increasing data set sizes (K

= 10)

Figure ure 7 shows the running time of 3 groups of data sets with the size of 20000, 30000

and 40000 on one query with K increasing from 5,10,... to 30. And we set dimension as 20.

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologyTechnologyTechnologyTechnology

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

36

 Figure .7. Running time on one query point with increasing K values

(dimensionality = 20)

5.1. Experiments of PanKNN-scalable vs. PanKNN

In this section we will demonstrate how PanKNN-scalable improves the performance

compared to the original PanKNN.

We first use the synthetic data sets to demonstrate the advantage of PanKNN-scalable.

Figure ure 8 shows the running time of PanKNN-scalable vs. PanKNN with sizes increasing

from 20,000 to 40,000. We set the dimensionality as 20 and K as 10. From this picture we can

see that PanKNN-scalable performs better than PanKNN when the data size increases.

Figure .8. Running time on one query point of PanKNN-scalable vs.

PanKNN on increasing data sizes (dimensionality = 20 and K = 10)

We also use real data sets from UCI Machine Learning Repository [5] to demonstrate the

performance difference of PanKNN-scalable vs. PanKNN. Here we demonstrate the testing

result on one real data set called Wine Recognition data set. It contains the results of a

chemical analysis of wines grown in the same region in Italy but derived from three different

cultivars. There are 178 instances, each of which has 13 features (dimensions), including

alcohol, magnesium, color intensity, etc. The data set has three clusters with the sizes of 59,

x 10
3

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologTechnologTechnologTechnologyyyy

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

37

71 and 48. We perform the algorithms on the Wine data set. The accuracy rate of PanKNN-

scalable is 94.1%, which is higher than the accuracy rate of PanKNN (92.9%).

6. Conclusion

In this paper we present our strategy to improve the similarity search approaches. On each

dimension we divide the value range into segments with equal size and merge the segment

containing the query point with the neighboring segments to acquire the group of data points

closest to data point Q on each dimension. This data processing algorithm can be applied in

many fields such as bioinformatics, pattern recognition, data clustering and signal processing.

References

1. White D.A. and Jain R. Similarity Indexing with the SS-tree. In Proceedings of the 12th

Intl. Conf. on Data Engineering, pages 516–523, New Orleans, Louisiana, February 1996.

2. E. Achtert, C. Bohm, P. Kroger, P. Kunath, A. Pryakhin, and M. Renz. Efficient reverse

k-nearest neighbor search in arbitrary metric spaces. In SIGMOD ’06, pages 515–526, New

York, NY, USA, 2006. ACM.

3. C. C. Aggarwal. Towards meaningful high-dimensional nearest neighbor search by

human-computer interaction. In ICDE, 2002.

4. C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance

metrics in high dimensional space. Lecture Notes in Computer Science, 1973, 2001.

5. S. D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu]. University of California,

Irvine, Department of Information and Computer Science.

6. D. A. Berchtold S., Keim and H.-P. Kriegel. The X-tree : An index structure for high-

dimensional data. In VLDB’96, pages 28–39, Bombay, India, 1996.

7. K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor”

meaningful? In International Conference on Database Theory 99, pages 217–235, Jerusalem,

Israel, 1999.

8. B. Cui, H. Shen, J. Shen, and K. Tan. Exploring bit-difference for approximate KNN

search in high-dimensional databases. In Australasian Database Conference, 2005., 2005.

9. R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via

rank aggregation, 2003.

10. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.

In The VLDB Journal, pages 518–529, 1999.

11. A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest neighbor in high

dimensional spaces? In The VLDB Journal, pages 506–515, 2000.

12. T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. SIGMOD

Rec., 27(2):154–165, 1998.

13. Y. Shi and L. Zhang. A dimension-wise approach to similarity search problems. In the

4th International Conference on Data Mining (DMIN’08), 2008.

International Journal of BioInternational Journal of BioInternational Journal of BioInternational Journal of Bio----Science and BioScience and BioScience and BioScience and Bio----TechnologyTechnologyTechnologyTechnology

Vol. Vol. Vol. Vol. 2222, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010, No. 4, December, 2010

38

14. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for

similarity-search methods in high-dimensional spaces. In Proc. 24th Int. Conf. Very Large

Data Bases, VLDB, pages 194–205, 24–27 1998.

Author

Yong Shi received the BS and MS degrees, both in computer science, from the

University of Science and Technology of China in 1996 and 1999, respectively.

He received Ph.D. in computer science from the State University of New York

at Buffalo in 2006. He is currently an assistant professor in the Department of

Computer Science and Information Systems in Kennesaw State University. His

research interests include data mining, database, machine learning, and

information retrieval.

